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Abstract. Let us consider a pair (A, B) of nonempty subsets of a metric space X and a mapping

T : A → B. In this article, we introduced a notion called P−property and used it to prove sufficient

conditions for the existence of a point x0 ∈ A, called best proximity point, satisfying d(x0, Tx0) =
dist(A, B) := inf{d(a, b) : a ∈ A, b ∈ B}.
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1. Introduction

Let (X, d) be a metric space and A be a nonempty subset of X. A map T : A → X is
said to be a contraction mapping if there is a constant k ∈ [0, 1) such that d(Tx, Ty) ≤
k d(x, y), for all x, y in A. The well-known Banach contraction principle states that if
A is a complete subset of a metric space X and T : A → A is a contraction self map
map then, the fixed point equation Tx = x has a unique solution in A. Due to the
wide applications of this principle, there are enormous extensions and generalization
of Banach contraction principle are available in the literature. For interesting and
important extensions, generalizations of contraction principle, one may refer [1, 2].
The following generalization of Banach contraction principle was proved in [3].

Theorem 1.1. [3] Let A and B be nonempty closed subsets of a complete metric
space X and T : A ∪B → A ∪B be a mapping satisfies

(1) T (A) ⊆ B and T (B) ⊆ A,
(2) d(Tx, Ty) ≤ k d(x, y), for all x ∈ A and y ∈ B, where k ∈ (0, 1).

Then A ∩B is nonempty and T has a unique fixed point in A ∩B.

The interesting feature of the above theorem is that the continuity of T is no longer
needed. Note that the conditions in the above theorem forces us to conclude that A∩B
is nonempty and the mapping T restricted to A∩B is a contraction mapping. In [4],
the authors generalized Theorem 1.1 which does not forces the set A∩B to be empty.
Let us define the notion called cyclic contraction which was introduced in [4].
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Definition 1.2. [4] Let A and B be nonempty subsets of a metric space X. A mapping
T : A∪B → A∪B is said to be a cyclic contraction mapping if there exists k ∈ (0, 1)
and satisfies

(1) T (A) ⊆ B and T (B) ⊆ A,
(2) d(Tx, Ty) ≤ k d(x, y) + (1− k) dist(A,B), for all x ∈ A and y ∈ B.

Note that if dist(A,B) = 0, then the notion of cyclic contraction reduces to a
mapping which satisfy the assumptions of Theorem 1.1. Interestingly, consider a
mapping T : A → B and if A∩B is an empty set, then d(x, T (x)) > 0 and d(x, Tx) ≥
dist(A,B), for all x ∈ A. This motivates us to define the following notion called best
proximity points.

Definition 1.3. [4] Let A,B be nonempty subsets of a metric space X and T : A → B
be a given mapping. A point x0 ∈ A is said to be a best proximity point of T if
d(x0, Tx0) = dist(A,B).

In [4], the authors proved the following best proximity point theorem.

Theorem 1.4. [4] Let A,B be nonempty closed convex subsets of a uniformly convex
Banach space and T : A ∪ B → A ∪ B be a cyclic contraction mapping. Then there
exists a unique x0 ∈ A such that ‖x0 − Tx0‖ = dist(A,B).

Some generalized versions of Theorem 1.4 can be found in [5, 6, 7, 8, 9]. Recently,
in [10], Basha introduced a class of non-self mappings called proximal contraction and
proved an another generalization of Banach contraction principle.

Definition 1.5. [10] Let A and B be nonempty subsets of a metric space X. A
mapping T : A → B is said to be a proximal contraction if there exists α ∈ [0, 1) such
that

d(u, Tx) + d(Tx, Ty) + d(Ty, v) ≤ α d(x, y)
whenever x and y are distinct elements in A satisfying the condition that d(u, Tx) =
dist(A,B) and d(v, Ty) = dist(A,B) for some u, v ∈ A.

In [10], Basha obtained necessary conditions for the existence of a best proximity
point of a proximal contraction mapping T : A → B. In this article, we introduce
a notion called P−property which is used to prove an extended version of Banach
contraction principle. Also, we proved that the restriction of a proximal contraction
mapping T : A → B to A0 is nothing but the usual contraction mapping, provided
the pair (A,B) has P−property and T (A0) ⊆ B0.

2. Preliminaries

Let A,B be two nonempty subsets of a metric space X and let us fix the following
notations for our further use in this article.

A0 = {x ∈ A : d(x, y) = dist(A,B) for some y ∈ B}
B0 = {y ∈ B : d(x, y) = dist(A,B) for some x ∈ A}

In [11], the authors discussed sufficient conditions which guarantees the nonemptiness
of A0 and B0. Also, in [12], the authors proved that A0 is contained in the boundary
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of A. It is easy to verify that A0, B0 are convex subsets of A and B respectively, if
given A and B are convex subsets of a normed linear space. Let us define the non-self
contraction map as follows.

Definition 2.1. Let A,B be two nonempty subsets of a metric space X. A map
T : A → B is said to be an (A,B) non-self k−contraction map if there exists k ∈ [0, 1)
such that

d(Tx, Ty) ≤ k d(x, y), for all x, y ∈ A.

It is worth to mention that, since T is not a self-map, for any x in A, we can not
define T (Tx). That is, for a fixed x0 ∈ A, it is not possible to define the iterated
sequence xn = Txn−1, for each n ∈ N, in a usual way. Now, let us introduce a notion
called P−property, which we will play an important role in our main results.

Definition 2.2. Let (A,B) be a pair of nonempty subsets of a metric space X. Then
the pair (A,B) is said to have P -property if and only if

d(x1, y1) = dist(A,B)
d(x2, y2) = dist(A,B)

}
⇒ d(x1, x2) = d(y1, y2)

where x1, x2 ∈ A0 and y1, y2 ∈ B0.

It is easy to see that, for any nonempty subset A of X, the pair (A,A) has P -
property. Also, Theorem 3.5 shows that the pair (A,B) of nonempty closed convex
subsets of a real Hilbert space H has P−property. Before proving Theorem 3.5, let
us recall the notion of metric projection. Let C be a nonempty subset of a normed
linear space N . Then the metric projection operator PC : N → 2C is defined as
PC(x) = {y ∈ C : ‖x− y‖ = dist(x,C)}, for each x ∈ N, where 2C denotes the set
of all subsets of C. It is well known the fact that the metric projection operator PC

on a strictly convex Banach space N is a single valued map from N to C, where C
is a nonempty weakly compact convex subset of N . The following lemma, which has
been proved in [13], play an important role in proving Theorem 3.5.

Lemma 2.3. [13] Let (A,B) be a pair of nonempty closed convex subsets of a real
Hilbert space and let x, y ∈ A0. Then ‖x− PB(y)‖ = ‖y − PB(x)‖.

3. Main results

Theorem 3.1. Let (A,B) be a pair of nonempty closed subsets of a complete metric
space (X, d) with A0 6= ∅. Let T : A → B be an (A,B) non-self k−contraction map
such that T (A0) ⊆ B0. Assume that (A,B) satisfies P -property. Then there exists a
unique element x∗ in A such that

d(x∗, Tx∗) = dist(A,B).

Further, for each fixed x0 in A0, there exists a sequence {xn} such that for each
n ∈ N, d(xn, Txn−1) = dist(A,B) and {xn} converges to the best proximity point x∗

of the map T.

Proof. Let x0 ∈ A0. Since T (A0) ⊆ B0, there exists an element x1 ∈ A0 such that
d(x1, Tx0) = dist(A,B). Again, since Tx1 ∈ B0, there exists an element x2 ∈ A0
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such that d(x2, Tx1) = dist(A,B). This process can be continued. Having chosen xn

in A0, it is possible to find xn+1 in A0 such that

d(xn+1, Txn) = dist(A,B) (3.1)

because of the fact that T (A0) ⊆ B0. Now, let us claim that {xn} is a Cauchy
sequence. Since (A,B) satisfies P−property, for any n ∈ N, we have

d(xn+1, Txn) = dist(A,B),
d(xn, Txn−1) = dist(A,B)

}
⇒ d(xn+1, xn) = d(Txn, Txn−1).

Therefore,

d(xn+1, xn) = d(Txn, Txn−1) ≤ k d(xn, xn−1).

Consequently,

d(xn, xn+p) ≤
(

kn

1− k

)
d(x1, x0).

Hence {xn} is a Cauchy sequence in A. Since X is complete and A is a closed
subset of X, the sequence {xn} converges to some element x∗ in A. Since T is a
continuous map on A, we have Txn → Tx∗. The continuity of the metric implies that
d(xn+1, Txn) → d(x∗, Tx∗). But, (3.1) implies that {d(xn+1, Txn)} is a constant
sequence which converges to dist(A,B). Therefore,

d(x∗, Tx∗) = dist(A,B),

and thus x∗ ∈ A is a best proximity point for T . Suppose there are x, y ∈ A with
x 6= y satisfying

d(x, Tx) = dist(A,B) and

d(y, Ty) = dist(A,B).

Since (A,B) satisfies P -property and T is a (A,B) non-self k−contraction map,

d(x, y) = d(Tx, Ty) ≤ k d(x, y) < d(x, y),

we arrived at a contradiction. Hence T has a unique best proximity point. �

Since (A,A) satisfies P−property, for any subset A of X, we can deduce the fol-
lowing Banach’s contraction principle as a corollary to Theorem 3.1.

Corollary 3.2. Let A be a nonempty closed subset of a complete metric space X and
T : A → A be a contraction map. Then T has a unique fixed point x∗ in A. Further,
for each fixed x0 in A, the iterated sequence {xn} defined as xn = Txn−1, for all n ∈
N, converges to the fixed point x∗.

The following example illustrate Theorem 3.1.

Example 3.3. Consider a pair (A,B) of nonempty closed subsets of R2 where A =
{(1, t) ∈ R2 : 0 ≤ t ≤ 1} and B = {(2, t) ∈ R2 : 0 ≤ t ≤ 1}. Let T : A → B be a
mapping defined by T (1, t) = (2, t

2 ). Then T is an (A,B) non-self k−contraction map
and (1, 0) is the unique best proximity point for the map T in A.
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The following example shows that the condition P−property in Theorem 3.1
can not be relaxed to ensure the existence of a best proximity point for a non-self
k−contraction mapping.

Example 3.4. Fix R > 0 and r = R
4 . Let X = C, the set of all complex numbers.

Consider A = {R eiθ : 0 ≤ θ ≤ 2π} and B = {r eiθ : 0 ≤ θ ≤ 2π}. Then A, B
are nonempty closed subsets of C with A0 = A and B0 = B. It is worth to note
that (A,B) does not have P−property. Let T : A → B be a mapping defined by
T (R eiθ) = r ei(θ+π). Then T is a contraction mapping having no best proximity
point.

Using the Lemma 2.3, let us prove the following result.

Theorem 3.5. Any pair (A,B) of nonempty closed convex subsets of a real Hilbert
space H has the P−property.

Proof. Suppose x1, x2 ∈ A0 and y1, y2 ∈ B0 such that ‖x1 − y1‖ = dist(A,B) and
‖x2 − y2‖ = dist(A,B). The uniqueness of metric projection operator on a Hilbert
space implies that y1 = PB(x1) and y2 = PB(x2). By Lemma 2.3, we have ‖x1−y2‖ =
‖x2 − y1‖. Therefore, by Pythagoras theorem,

‖x1 − y2‖2 = ‖x1 − x2‖2 + ‖x2 − y2‖2

= ‖x1 − x2‖2 + dist(A,B)2 (3.2)

‖x2 − y1‖2 = ‖y1 − y2‖2 + ‖x2 − y2‖2

= ‖y1 − y2‖2 + dist(A,B)2 (3.3)

The above equality follows from the fact that x1−x2 ⊥ x2−y2 and y1−y2 ⊥ y2−x2.
From (3.2) and (3.3), we conclude that ‖x1−x2‖ = ‖y1− y2‖. Hence, any pair (A,B)
of nonempty closed convex subsets a real Hilbert space has the P−property. �

The following theorem ensures the existence of a best proximity point for a proximal
contraction mappings.

Theorem 3.6. Let (A,B) be a pair of nonempty closed subsets of a complete metric
space X such that A0 is nonempty and T : A → B be a proximal contraction mapping
such that T (A0) ⊆ B0. Suppose (A,B) has the P−property. Then T has a unique
best proximity point.

Proof. Given T : A → B is a proximal contraction mapping. Now let us prove that
the map T restricted to A0 is a (A0, B0) non-self k−contraction mapping into B0.

Let x, y ∈ A0. Since T (A0) ⊆ B0, there exists x0, y0 ∈ A0 such that d(x0, Tx) =
dist(A,B) and d(y0, T y) = dist(A,B). Thus the P−property of (A,B) concludes that
d(x0, y0) = d(Tx, Ty). Therefore,

d(Tx, Ty) = d(x0, y0)

≤ d(x0, Tx) + d(Tx, Ty) + d(Ty, y0) ≤ α d(x, y).

Thus, T : A0 → B0 is a contraction mapping. Note that A0 and B0 are nonempty
closed subsets of A and B respectively. Since dist(A0, B0) = dist(A,B), (A0)0 =
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A0 6= ∅ and (A0, B0) has the P−property. Hence the conclusion follows from Theorem
3.1. �

The following theorem provides sufficient conditions to ensure the existence of a
best proximity point for a nonexpansive non-self mapping.

Theorem 3.7. Let (A,B) be a pair of nonempty compact convex subsets of a normed
linear space X and T : A → B be a nonexpansive mapping such that T (A0) ⊆ B0.
Assume that (A,B) satisfies P -property. Then there exists an element x∗ in A such
that d(x∗, Tx∗) = dist(A,B).

Proof. Since A,B are compact sets, it is easy to see that A0 is nonempty, and hence
B0 so. Fix y0 ∈ B0. For each fixed n ∈ N, define a mapping Tn : A → B by

Tn(x) =
1
n

y0 +
(

1− 1
n

)
Tx, for all x ∈ A.

Since B is a convex set, the mapping Tn is well defined for all n ∈ N. Also by the
non-expansivity of T , it is easy to verify that each Tn : A → B is a (A,B) non-self
1
n−contraction mapping. Since B0 is convex and T (A0) ⊆ B0, we conclude that
Tn(A0) ⊆ B0, for all n ∈ N. Hence by Theorem 3.1, for each n ∈ N, there exists
xn ∈ A such that ‖xn − Tn(xn)‖ = dist(A,B). Since A is compact, with out loss of
generality, let us assume that xn → x0, for some x0 ∈ A. Then for each n ∈ N,

dist(A,B) ≤ ‖x0 − Tx0‖
≤ ‖x0 − xn‖+ ‖xn − Tn(xn)‖+ ‖Tn(xn)− Tx0‖

≤ ‖x0 − xn‖+ dist(A,B) +
1
n
‖y0 − Tx‖+

(
1− 1

n

)
‖Txn − Tx0‖

Since Txn → Tx0 as n → ∞, the above inequalities shows that x0 ∈ A satisfies
‖x0 − Tx0‖ = dist(A,B), and hence T has a best proximity point. �

Let us illustrate the above theorem with the following example.

Example 3.8. Let A := {(x, y) ∈ R2 : −2 ≤ x ≤ −1, 0 ≤ y ≤ 1} and B := {(x, y) ∈
R2 : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1}. Then dist(A,B) = 2 and the pair (A,B) satisfies the
P−property. Let T : A → B be a mapping defined as T (x, y) = (−x, y). It is easy to
verify that T is a nonexpansive mapping. Hence by Theorem 3.7, T has at least one
best proximity point in A. Note that any (−1, y) ∈ A is a best proximity point of T .
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