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1. Introduction

In the paper we study the existence of positive solution for the second-order m-
point boundary value problem

x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1)

x′(0) =
m−2∑
i=1

αix
′(ξi), x(1) =

m−2∑
i=1

βix(ξi)
(1.1)

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 ≤ αi ≤ 1, βi ≥ 0, i = 1, 2, · · · ,m − 2,
m−2∑
i=1

βiξi < 1, under the resonant condition
m−2∑
i=1

βi = 1,

m−2∑
i=1

αi 6= 1.

The multi-point boundary value problems for ordinary differential equations arise in
different areas of applied mathematics and physics, for example, in heat flow problems.
The study of multi-point boundary value problems for linear second-order ordinary
differential equations was initiated by Il’in and Moiseev [1,2]. Then Gupta [3,4,5]
considered three point boundary value problems for nonlinear ordinary differential
equations. Since then, by using various methods, such as Leray-Schauder continuation
theorem, nonlinear alternatives of Leray-Schauder, coincidence degree theory and
different fixed point theorems, the more general nonlinear multi-point boundary value
problems have been studied by several authors. We refer the reader to [6-13] and
references along this line.
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For problem (1.1) under the case f(t, x) = a(t)f(x), Ma [14] established the exis-
tence results of positive solutions by using Krasnosel’skii-Guo fixed point theorem on
cone expansion and compression. When the first order derivative is considered in the
nonlinear term, Yang, Liu and Jia [15] obtained the triple positive solutions by using
a fixed point theorem due to Avery and Peterson [16]. For problem (1.1) with the
one-dimensional p-Laplacian, Su [17] and Wang [18,19], Ma [20], Ji [21] established
the existence results of positive solutions. All these results were established under the
non-resonant conditions

αi ≥ 0, βi ≥ 0, i = 1, 2, · · · , m− 2, 0 <
m−2∑
i=1

αi < 1, 0 <
m−2∑
i=1

βi < 1.

When the condition
m−2∑
i=1

βi = 1 is considered, the problem studied is called bound-

ary value problem at resonance, that is , the associated linear operator Lx = −x′′ is

non-invertible. In the resonance case for αi = 0, i = 1, 2, · · · , m−2 and
m−2∑
i=1

βi = 1,

Feng and Webb [22], Ma [23] obtained the existence of solutions by using Mawhin
continuous theorem [24]. Liu [25] considered second order m-point boundary value
problem 

x′′(t) = f(t, x(t), x′(t)) + e(t), t ∈ (0, 1)

x′(0) =
m−2∑
i=1

αix
′(ξi), x(1) =

n−2∑
j=1

βjx(ηj).

Each of the following resonant conditions

(1)
m−2∑
i=1

αi =
n−2∑
j=1

βj = 1; (2)
m−2∑
i=1

αi = 1,
n−2∑
j=1

βjηj = 1; (3)
m−2∑
i=1

βi = 1,
n−2∑
j=1

βjηj = 1

is considered. By using Mawhin continuous theorem, he established the existence
results of solution for this resonant problem.

Though a lot of attention has been devoted to the study of positive solution
of boundary value problem with non-resonant conditions and solution of boundary
value problem with resorant conditions, only few papers deal with positive solution to
boundary value problems at resonance. Bai and Fang [26] established the existence
of positive solutions of the following second-order differential equation{

(p(t)x′(t))′ = f(t, x(t), x′(t)), t ∈ (0, 1)
x′(0) = 0, x(1) = x(η)

by using a fixed point index theorem for semi-linear A-proper maps due to Cremins
[27]. Infante and Zima [28] obtained the existence of positive solution for problem

x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1)

x′(0) = 0, x(1) =
m−2∑
i=1

αix(ηi)
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with resonance condition
m−2∑
i=1

αi = 1. The result was based on the Leggett-Williams

norm-type theorem due to O’Regan and Zima [29].
To the best of our knowledge, positive solution of problem (1.1) with resonant

condition
m−2∑
i=1

βi = 1 has not been considered before. The main purpose of this

paper is to fill this gap. In this paper we will give sufficient conditions to ensure the

existence of positive solution for problem (1.1) with resonant condition
m−2∑
i=1

βi = 1.

Our method is based on the Leggett-Williams norm-type theorem.

2. Some background definitions and results

For the convenience of the reader,we present here the necessary definitions and a
new fixed point theorem due to O’Regan and Zima. Let X, Y be real Banach spaces.
A nonempty convex closed set C ⊂ X is said to be a cone provided that

(i) ax ∈ C,for all x ∈ C, a ≥ 0;
(ii) x,−x ∈ C implies x = 0.
Note that every cone C ⊂ X induces an ordering in X given by x ≤ y if y−x ∈ C.
L : domL ⊂ X → Y is called a Fredholm operator with index zero if ImL is closed

and dim Ker L=codim ImL< ∞. This implies that there exist continuous projections
P : X → X and Q : Y → Y such that ImP = KerL and KerQ = ImL. Moreover,
since dim Im Q=codim Im L, there exists an isomorphism J : ImQ → KerL. Denote
by LP the restriction of L to KerP ∩ domL to ImL and its inverse by KP , so
KP : ImL → KerP ∩ domL and the coincidence equation Lx = Nx is equivalent to

x = (P + JQN)x + KP (I −Q)Nx.

Let γ : X → C be a retraction, that is, a continuous mapping such that γx = x for
all x ∈ C and

Ψ := P + JQN + KP (I −Q)N, Ψγ := Ψ ◦ γ.

Lemma 2.1 ([29]) Let C be a cone in X and Ω1,Ω2 be open bounded subsets of X
with Ω1 ⊂ Ω2 and C ∩ (Ω2 \Ω1) 6= ∅. Assume that L : domL ⊂ X → Y is a Fredholm
operator of index zero and
(C1) QN : X → Y is continuous and bounded, KP (I −Q)N : X → X is compact on
every bounded subset of X,
(C2) Lx 6= λNx for all x ∈ C ∩ ∂Ω2 ∩ domL and λ ∈ (0, 1),
(C3) γ maps subsets of Ω2 into bounded subsets of C,
(C4) dB([I− (P +JQN)γ]|kerL,KerL∩Ω2, 0) 6= 0, where dB stands for the Brouwer
degree,
(C5) There exists u0 ∈ C\{0} such that ‖x‖ ≤ σ(u0)‖Ψx‖ for x ∈ C(u0) ∩ ∂Ω1,
where C(u0) = {x ∈ C : µu0 ≤ x} for some µ > 0 and σ(u0) is such that ‖x + u0‖ ≥
σ(u0)‖x‖ for every x ∈ C,
(C6) (P + JQN)γ(∂Ω2) ⊂ C,
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(C7) Ψγ(Ω2\Ω1) ⊂ C,
then the equation Lx = Nx has a solution in the set C ∩ (Ω2\Ω1).

3. Main result

Consider the Banach spaces X = Y = C[0, 1] endowed with the norm ‖x‖ =
max
0≤t≤1

|x(t)|. Define the linear operator L : domL ⊂ X → Y,Lx = −x′′(t), t ∈ [0, 1],

where

domL = {x ∈ X|x′′ ∈ C[0, 1], x′(0) =
m−2∑
i=1

αix
′(ξi), x(1) =

m−2∑
i=1

βix(ξi)}.

Define the operator N : X → Y by

(Nx)(t) = f(t, x(t)), t ∈ [0, 1].

It is obvious that

KerL = {x ∈ domL : x(t) ≡ c , t ∈ [0, 1]}.

Denote ξ0 = 0, ξm−1 = 1, α0 = αm−1 = β0 = βm−1 = 0 and the function G(s), s ∈
[0, 1] as follow:

G(s) = 1−s+

m−1∑
i=0

βiξi − 1

m−1∑
i=0

αi − 1

m−1∑
i=k

αi−
m−1∑
i=k

βi(ξi−s), ξk−1 ≤ s ≤ ξk, k = 1, 2, · · · , m−1

Note that G(s) ≥ 0, s ∈ [0, 1].
Denote the function U(t, s) as follow:

U(t, s) =



s2

2
+

i−1∑
k=0

βk(s− ξk)(
1
2
− t)

1−
m−1∑
i=0

βiξi

+
3t2 + 5

6
∫ 1

0

G(s)ds

G(s), 0 ≤ t ≤ s ≤ 1

s2

2
+ t− s +

i−1∑
k=0

βk(s− ξk)(
1
2
− t)

1−
m−1∑
i=0

βiξi

+
3t2 + 5

6
∫ 1

0

G(s)ds

G(s), 0 ≤ s ≤ t ≤ 1

for ξi−1 ≤ s ≤ ξi, i = 1, 2, · · · , m− 1 and positive number

κ := min{1, min
s∈[0,1]

∫ 1

0

G(s)ds

G(s)
, min
t,s∈[0,1]

1
U(t, s)

}.
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Theorem 3.1 Assume that there exists R ∈ (0,∞) such that f : [0, 1] × [0, R] → R
is continuous and
(H1) f(t, x) > −κx, for all (t, x) ∈ [0, 1]× [0, R],
(H2) f(t, R) < 0, for all t ∈ [0, 1],
(H3) there exists r ∈ (0, R), t0 ∈ [0, 1], a ∈ (0, 1], M ∈ (0, 1) and continuous
functions g : [0, 1] → [0,+∞), h : (0, r] → [0,+∞) such that f(t, x) ≥ g(t)h(x) for
[t, x] ∈ [0, 1]× (0, r] and h(x)/xa is non-increasing on (0, r] with

h(r)
ra

∫ 1

0

U(t0, s)g(s)ds ≥ 1−M

Ma
.

Then problem (1.1) with resonant condition
m−2∑
i=1

βi = 1 has at least one positive

solution.
Proof. Firstly we claim that

ImL = {y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0}.

Indeed, for each y ∈ {y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0}, we take

x(t) = −
∫ t

0

(t− s)y(s)ds +

m−1∑
i=0

∫ ξi

0

y(s)ds

m−1∑
i=0

αi − 1

t.

It is easy to check that −x′′(t) = y(t), x′(0) =
m−2∑
i=1

αix
′(ξi), x(1) =

m−2∑
i=1

βix(ξi),

which means x(t) ∈ domL. Thus

{y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0} ⊂ ImL.

On the other hand, for each y(t) ∈ ImL, there exists x(t) ∈ domL,

x′′(t) = −y(t), x′(0) =
m−2∑
i=1

αix
′(ξi), x(1) =

m−2∑
i=1

βix(ξi).

Integrating both sides on [0,t], we have

x(t) = −
∫ t

0

(t− s)y(s)ds + x′(0)t + x(0).
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Considering the boundary condition x′(0) =
m−2∑
i=1

αix
′(ξi), x(1) =

m−2∑
i=1

βix(ξi) and

condition
m−1∑
i=0

βi = 1, we conclude that

∫ 1

0

(1− s)y(s)ds−

m−1∑
i=0

βiξi − 1

m−1∑
i=0

αi − 1

m−1∑
i=0

αi

∫ ξi

0

y(s)ds−
m−1∑
i=0

βi

∫ ξi

0

(ξi − s)y(s)ds = 0,

which equivalents to the conclusion that
∫ 1

0

G(s)y(s)ds = 0. So we have

ImL ⊂ {y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0}.

Thus,

ImL = {y ∈ Y |
∫ 1

0

G(s)y(s)ds = 0}.

Clearly, dim KerL=1 and ImL is closed. Next we see Y = Y1

⊕
ImL,where

Y1 = {y1|y1 =
1∫ 1

0

G(s)ds

∫ 1

0

G(s)y(s)ds, y ∈ Y }.

In fact, for each y(t) ∈ Y , we have∫ 1

0

G(s)[y(s)− y1]ds = 0.

This shows that y−y1 ∈ ImL. Since Y1∩ImL = {0}, we have Y = Y1

⊕
ImL. Thus

L is a Fredholm operator with index zero.
Then define the projections P : X → X, Q : Y → Y by

Px =
∫ 1

0

x(s)ds,

Qy =
1∫ 1

0

G(s)ds

∫ 1

0

G(s)y(s)ds.

Clearly, ImP = KerL,KerQ = ImL and KerP = {x ∈ X :
∫ 1

0

x(s)ds = 0}. Note

that for y ∈ ImL, the inverse KP of LP is given by

(KP )y =
∫ t

0

k(t, s)y(s)ds
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where

k(t, s) =



s2

2
+

i−1∑
k=0

βk(s− ξk)(
1
2
− t)

1−
m−1∑
i=0

βiξi

, t ≤ s, ξi−1 ≤ s ≤ ξi

s2

2
+ t− s +

i−1∑
k=0

βk(s− ξk)(
1
2
− t)

1−
m−1∑
i=0

βiξi

, t ≥ s, ξi−1 ≤ s ≤ ξi.

Considering that f can be extended continuously on [0, 1] × (−∞,+∞), condition
(C1) of Lemma 2.1 is fulfilled.
Define the cone of nonnegative functions

C = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]},

and
Ω1 = {x ∈ X : r > |x| > M‖x‖, t ∈ [0, 1]},

Ω2 = {x ∈ X : ‖x‖ < R}.
Clearly, Ω1 and Ω2 are bounded and open sets, furthermore

Ω1 = {x ∈ X : r ≥ |x| ≥ M‖x‖, t ∈ [0, 1]} ⊂ Ω2, C ∩ Ω2\Ω1 6= 0.

Let J = I and (γx)(t) = |x(t)| for x ∈ X. Then γ is a retraction and maps subsets of
Ω2 into bounded subsets of C, which means that (C3) of Lemma 2.1 holds.

Next we confirm that (C2) of Lemma 2.1 holds. For this purpose, suppose that
there exists x0 ∈ C ∩ ∂Ω2 ∩ domL and λ0 ∈ (0, 1) such that Lx0 = λ0Nx0. Then

x′′0(t) + λ0f(t, x0) = 0

for all t ∈ (0, 1). Let t1 ∈ [0, 1] be such that x0(t1) = R. This gives

0 ≥ x′′(t1) = −λ0f(t1, x0(t1)),

which contradicts to (H2). Thus (C2) holds.
For x ∈ KerL ∩ Ω2, define

H(x, λ) = x− λ|x| − λ∫ 1

0

G(s)ds

∫ 1

0

G(s)f(s, |x|)ds,

where x ∈ KerL∩Ω2 and λ ∈ [0, 1]. Suppose H(x, λ) = 0. In view of (H1) we obtain

c = λ|c|+ λ∫ 1

0

G(s)ds

∫ 1

0

G(s)f(s, |c|)ds
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≥ λ|c| − λ∫ 1

0

G(s)ds

∫ 1

0

G(s)κ|c|ds = λ|c|(1− κ) ≥ 0.

Hence H(x, λ) = 0 implies c ≥ 0. Furthermore, if H(R, λ) = 0, we get

0 ≤ R(1− λ) =
λ∫ 1

0

G(s)ds

∫ 1

0

G(s)f(s,R)ds,

contradicting (H2). Thus H(x, λ) 6= 0 for x ∈ ∂Ω2 and λ ∈ [0, 1]. Therefore

dB(H(x, 0),KerL ∩ Ω2, 0) = dB(H(x, 1),KerL ∩ Ω2, 0) = dB(I,KerL ∩ Ω2, 0) = 1.

This ensures

dB([I − (P + JQN)γ]|KerL,KerL ∩ Ω2, 0) = dB(H(x, 1),KerL ∩ Ω2, 0) 6= 0.

Let x ∈ Ω2\Ω1 and t ∈ [0, 1]. From condition H1, we see

(Ψγx)(t) =
∫ 1

0

|x(t)|dt +
1∫ 1

0

G(s)ds

∫ 1

0

G(s)f(s, |x(s)|)ds

+
∫ 1

0

k(t, s)[f(s, |x(s)|)− 1∫ 1

0

G(s)ds

∫ 1

0

G(τ)f(τ, |x(τ)|)dτ ]ds

=
∫ 1

0

|x(t)|dt +
∫ 1

0

U(t, s)f(s, |x(s)|)ds ≥
∫ 1

0

|x(s)|ds− κ

∫ 1

0

U(t, s)|x(s)|ds

=
∫ 1

0

(1− κU(t, s))|x(s)|ds ≥ 0.

Hence Ψγ(Ω2)\Ω1 ⊂ C. Moreover, since for x ∈ ∂Ω2, we have

(P + JQN)γx =
∫ 1

0

|x(s)|ds +
1∫ 1

0

G(s)ds

∫ 1

0

G(s)f(s, |x(s)|)ds

≥
∫ 1

0

(1− κ∫ 1

0

G(s)ds

G(s))|x(s)|ds

≥ 0,

which means (P + JQN)γ(∂Ω2) ⊂ C. This ensures that conditions (C6), (C7) of
Lemma 2.1 hold.

At last, we confirm that (C5) is satisfied. Taking u0(t) ≡ 1 on [0,1], we see

u0 ∈ C\{0}, C(u0) = {x ∈ C|x(t) > 0 on[0, 1]}
and we can take σ(u0) = 1. Let x ∈ C(u0) ∩ ∂Ω1, we have

x(t) > 0, t ∈ [0, 1], 0 < ‖x‖ ≤ r and x(t) ≥ M‖x‖ on [0, 1].
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Therefore, in view of (H3), we obtain for all x ∈ C(u0) ∩ ∂Ω1,

(Ψx)(t0) =
∫ 1

0

x(s)ds +
∫ 1

0

U(t0, s)f(s, x(s))ds

≥ M‖x‖+
∫ 1

0

U(t0, s)g(s)h(x(s))ds

= M‖x‖+
∫ 1

0

U(t0, s)g(s)
h(x(s))
xa(s)

xa(s)ds

≥ M‖x‖+
h(r)
ra

∫ 1

0

U(t0, s)g(s)Ma‖x‖ads

≥ M‖x‖+ (1−M)‖x‖ = ‖x‖.
So ‖x‖ ≤ σ(u0)‖Ψx‖ for all x ∈ C(u0) ∩ ∂Ω1, which means that condition (C5) of
Lemma 2.1 holds.
Thus by Lemma 2.1, we confirm that the equation Lx = Nx has a solution x, which

implies that problem (1.1) with resonance condition
m−2∑
i=1

βi = 1 has at least one

positive solution.

4. Example

In this section we give an example to illustrate the main results of the paper.
Consider the multi-point boundary value problem

x′′(t) +
(
−1

3
t2 +

1
3
t +

1
3

)
(x2 − 4x + 3)

√
x2 − 6x + 10 = 0, t ∈ (0, 1)

(5.1)

x′(0) =
1
4
x′

(
1
4

)
+

1
4
x′

(
1
2

)
, x(1) =

1
3
x

(
1
4

)
+

2
3
x

(
1
2

)
where α1 = α2 =

1
4
, β1 =

1
3
, β2 =

2
3
, ξ1 =

1
4
, ξ2 =

1
2

and

G(s) =



7
6
, 0 ≤ s <

1
4

23
24

− 1
3
s,

1
4
≤ s <

1
2

1− s,
1
2
≤ s ≤ 1

By a simple computation, we have∫ 1

0

G(s)ds =
5
8
, κ =

15
28

,

∫ 1

0

U(0, s)ds = 1.

We take R =
6
5
, r =

1
2
, t0 = 0, a = 1, M =

1
2

and

g(t) = −1
3
t2 +

1
3
t +

1
3
, h(x) =

√
x2 − 6x + 10 .
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It’s easy to check that
1
3
≤ g(t) ≤ 5

12
<

15
28

, t ∈ [0, 1], x2 − 4x + 3 ≥ −x, x ∈ [0,
6
5
].

We see that
(1) f(t, x) > −15

28
x, for all (t, x) ∈ [0, 1]× [0, R],

(2) f(t, R) < 0, for all t ∈ [0, 1],

(3) f(t, x) ≥ g(t)h(x) for all [t, x] ∈ [0, 1] ×
(

0,
1
2

]
and

h(x)
x

=
√

x2 − 6x + 10
x

is

non-increasing on
(

0,
1
2

]
with

h(r)
ra

∫ 1

0

U(0, s)g(s)ds ≥
√

29
3

∫ 1

0

U(0, s)ds =
√

29
3

≥ 1 =
1−M

Ma
.

Thus all the conditions of Theorem 3.1 are satisfied. This ensures that resonance
problem (5.1) has at least one solution, positive on [0,1].
Remark 4.1. To our best knowledge, the early methods for positive solutions about
second-order m-point boundary value problems such as in [14, 15] and [17, 18, 19, 20,
21] for p = 2 are not applicable to this problem. We generalize the results of positive
solutions for problem (1.1).
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