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1. Introduction

Motivated by [1], I.A. Rus in [2] introduced the following definition.

Definition 1.1. Let X be a nonempty set, m a positive integer and T : X −→ X a

mapping. X =
m⋃

i=1

Xi is said to be a cyclic representation of X with respect to T if

(i) Xi, i = 1, . . . ,m are nonempty sets.
(ii) T (X1) ⊂ X2, . . . , T (Xm−1) ⊂ Xm, T (Xm) ⊂ X1.

Recently, in [3] the authors prove some results about fixed point theorems for
operators T defined on a metric space X with a cyclic representation of X with
respect to T .
Now, we recollect the main result of [3].

Definition 1.2. A function ϕ : R+ −→ R+ is said to be a comparison function if ϕ
satisfies:

(a) ϕ is increasing.
(b) (ϕn(t)) converges to 0 as n →∞ for every t ∈ R+.

If we replace (b) by

(b′)
∞∑

k=0

ϕk(t) converges for all t ∈ R+,

then ϕ is said to be a (c)-comparison function.
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Obviously, any ϕ (c)-comparison function is a comparison function.

The converse is false. The function given by ϕ(t) =
t

1 + t
, t ∈ R+ is a comparison

function which is not a (c)-comparison function (this example appears in [4]).
Using (b) of Definition 1.2 it is easily seen that if ϕ : R+ −→ R+ is a comparison

function, then ϕ(t) < t for any t > 0 and ϕ(0) = 0.

Definition 1.3. Let (X, d) be a metric space, m a positive integer, A1, A2, . . . , Am

nonempty subsets of X, X =
m⋃

i=1

Ai and T : X −→ X an operator.

T is a cyclic ϕ-contraction if

(a)
m⋃

i=1

Ai is a cyclic representation of X with respect to T .

(b) There exists a comparison function ϕ : R+ −→ R+ satisfying

d(Tx, Ty) ≤ ϕ(d(x, y)),

for any x ∈ Ai, y ∈ Ai+1 with i = 1, . . . ,m, where Am+1 = A1.

Now, we present the main result of [3].

Theorem 1.4. Let (X, d) be a complete metric space, m a positive integer,

A1, A2, . . . , Am nonempty closed subsets of X, X =
m⋃

i=1

Ai, ϕ : R+ −→ R+ a (c)-

comparison function and T : X −→ X an operator. If

(i) X =
m⋃

i=1

Ai is a cyclic representation of X with respect to T .

(ii) T is a cyclic ϕ-contraction.

Then T has a unique fixed point x∗ ∈
m⋂

i=1

Ai. Moreover, T is a Picard operator

(this means that for any starting point x0 ∈ X, the Picard iteration (Tnx0) converges
to x∗).

The purpose of this paper is to present a version of Theorem 1.4 in the context of
ordered metric spaces.
The existence of fixed point in ordered metric spaces has been considered recently in
some papers (see [5− 14], among others).

In the context of ordered metric spaces, the usual contraction is weakened but at
the expense that the operator is monotone.

The main tool in the fixed point theorems in ordered metric spaces combines the
ideas in the contraction principle with those in the monotone iterative technique [15].

2. Fixed point results: increasing case

We start this section with the following definition.
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Definition 2.1. Let (X,≤) be a partially ordered set and T : X −→ X a mapping.
We say that T is increasing if, for x, y ∈ X,

x ≤ y ⇒ Tx ≤ Ty.

In what follows we present the following result which is a version of Theorem 1.4
in the context of ordered metric spaces when the operator is monotone.

Theorem 2.2. Let (X,≤) be a partially ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space.

Suppose that m is a positive integer, A1, A2, . . . , Am nonempty subsets of X,

X =
m⋃

i=1

Ai, ϕ : R+ −→ R+ a (c)-comparison function and T : X −→ X a increasing

and continuous mapping such that

(i)
m⋃

i=1

Ai is a cyclic representation of X with respect to T .

(ii) d(Tx, Ty) ≤ ϕ(d(x, y)), for any x ∈ Ai, y ∈ Ai+1 with x and y comparable
(i = 1, 2, . . . ,m), where Am+1 = A1.

(iii) There exists x0 ∈ X with x0 ≤ Tx0.
Then T has at least a fixed point.

Proof. If Tx0 = x0 then the proof is finished.
Suppose that x0 < Tx0.
Since T is a increasing mapping, we obtain

x0 ≤ Tx0 ≤ T 2x0 ≤ T 3x0 ≤ . . . ≤ Tnx0 ≤ Tn+1x0 ≤ . . .

Put xn+1 = Txn. Then, by (i) for any n ≥ 1 there exists in ∈ {1, 2, . . . ,m} such that
xn−1 ∈ Ain and xn ∈ Ain+1 and, as xn−1 and xn are comparable, by (ii) we get

d(xn+1, xn) = d(Txn, Txn−1) ≤ ϕ(d(xn, xn−1)).

Since ϕ is increasing, we get by induction that

d(xn+1, xn) ≤ ϕn(d(x1, x0)). (2.1)

Thus, for every n ∈ N and p ≥ 1, by (2.1) we have that

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + d(xn+p−1, xn+p−2) + . . . + d(xn+1, xn)
(2.2)

≤ ϕn+p−1(d(x1, x0)) + ϕn+p−2(d(x1, x0)) + . . . + ϕn(d(x1, x0) > 0.

Since ϕ is a (c)-comparison function and d(x1, x0) = d(Tx0, x0) > 0,
∞∑

k=0

ϕk(d(x1, x0))

converges and using Cauchy’s criterium for convergent series, from (2.2) we obtain

lim
n→∞

d(xn+p, xn) = 0.

This shows that (xn) is a Cauchy sequence in X.
Since X is a complete metric space, there exists z ∈ X such that lim

n→∞
xn = z.
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Finally, the continuity of T implies that

z = lim
n→∞

xn+1 = lim
n→∞

Txn = Tz

and this finishes the proof. �

Remark 2.3. Notice that, as
m⋃

i=1

Ai is a cyclic representation of X with respect to

T , the fixed point z of the operator T in Theorem 2.2 satisfies that z ∈
m⋂

i=1

Ai.

Remark 2.4. Notice that in Theorem 2.2 we do not assume that the subsets Ai are
closed.

In what follows we prove that Theorem 2.2 is true for T not necessarily continuous
if we assume the following condition in X (which appears in Theorem 1.4 of [6]):

if (xn) is a increasing sequence in X such that xn → x then xn ≤ x, for all n ∈ N.
(2.3)

Theorem 2.5. If in Theorem 2.2 we substitute the continuity of T by condition (2.3)
we obtain the same conclusion.

Proof. Following the proof of Theorem 2.2 we only have to check that Tz = z.

As
m⋃

i=1

Ai is a cyclic representation of X with respect to T , the sequence (xn)

appearing in Theorem 2.2 has a infinite number of terms in each Ai, for i = 1, . . . ,m.
Suppose that z ∈ Ain

for certain in ∈ {1, . . . ,m}.
We take a subsequence (xnk

) of (xn) in Ain−1 (where A0 = Am) converging to z.
As (xnk

) is a increasing sequence in X with xnk
→ z, condition (2.3) gives us that

xnk
≤ z for all k ∈ N.

Using the contractive condition ((ii) of Theorem 2.2) and the fact that ϕ(t) < t,
for t > 0, we get

d(xnk+1, T (z)) = d(Txnk
, T z) ≤ ϕ(d(xnk

, z)) < d(xnk
, z).

Letting k →∞ in the last inequality we obtain

d(z, Tz) ≤ d(z, z) = 0

and this proves that z is a fixed point of T .
This finishes the proof. �

Now, we present an example where it can be appreciated that assumptions in
Theorem 2.2 do not guarantee uniqueness of the fixed point.

Example 2.6. Consider (R2, d2), where d2 is the Euclidean distance and with the
order given by R = {(x, x) : x ∈ R2}.

Let Ai (i = 1, 2) be the closed subsets of R2 given by

A1 = {(x, y) : x ≥ 0} and A2 = {(x, y) : x ≤ 0}.
Obviously, R2 = A1 ∪A2.
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We consider the operator T : R2 −→ R2 defined by T (x, y) = (−x, y).
Obviously, A1 ∪ A2 is a cyclic representation of R2 with respect to T and with

m = 2.
Moreover, T is a increasing and continuous operator since elements in X are only

comparable to themselves.
This fact says us that T satisfies (ii) of Theorem 2.2 for any (c)-comparison function

ϕ : R+ −→ R+.
As (0, 0) ≤ T (0, 0) = (0, 0), assumptions of Theorem 2.2 are satisfied and the operator
T has as fixed points the set {(0, y) : y ∈ R}.

In what follows we give a sufficient condition for the uniqueness of the fixed point
in Theorems 2.2 and 3.

This condition says:

for x, y ∈
m⋂

i=1

Ai there exists z ∈ X which is comparable to x and y. (2.4)

Theorem 2.7. Adding condition (2.4) to the assumptions of Theorem 2.2 (or Theo-
rem 2.5) we obtain uniqueness of the fixed point.

Proof. Suppose that z, y ∈ X are two fixed points of T . By Remark 2.3, z, y ∈
m⋂

i=1

Ai.

We distinguish two cases.
Case 1. Suppose that z is comparable to y.

By (ii) of Theorem 2.2 we have

d(z, y) = d(Tz, Ty) ≤ ϕ(d(z, y)) < d(z, y)

which is impossible. Therefore, z = y.
Case 2. Suppose that z is not comparable to y.

By condition (4), there exists x ∈ X comparable to z and y.
The increasing character of T implies that Tnx is comparable to Tnz = z for

n = 0, 1, 2, . . ..

As z ∈
m⋂

i=1

Ai, by using (ii) of Theorem 2.2, we have

d(z, Tnx) = d(Tnz, Tnx) ≤ ϕ(d(Tn−1z, Tn−1x)) ≤ ϕ(d(z, Tn−1x)).

Taking into account the monotonicity of ϕ and using mathematical induction, we get

d(z, Tnx) ≤ ϕn(d(z, x)).

Since ϕ is a (c)-comparison function

lim
n→∞

d(z, Tnx) ≤ lim
n→∞

ϕn(d(z, x)) = 0.

Consequently, lim
n→∞

Tnx = z.
Using a similar argument we can prove that lim

n→∞
Tnx = y.

Finally, the uniqueness of the limit gives us y = z.
This finishes the proof. �
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3. Fixed point results: nonincreasing case

In this section we present a parallel study for nonincreasing functions.
We start with the following definition.

Definition 3.1. Let (X,≤) be a partially ordered set and T : X −→ X an operator.
We say that T is nonincreasing if for x, y ∈ X,

x ≤ y ⇒ Tx ≥ Ty.

Theorem 3.2. Let (X,≤) be a partially ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space.

Suppose that m is a positive integer, A1, A2, . . . , Am nonempty subsets of X, X =
m⋃

i=1

Ai, ϕ : R+ −→ R+ a (c)-comparison function and T : X −→ X a nonincreasing

operator such that

(i)
m⋃

i=1

Ai is a cyclic representation of X with respect to T .

(ii) d(Tx, Ty) ≤ ϕ(d(x, y)) for any x ∈ Ai, y ∈ Ai+1 with x and y comparable
(i = 1, 2, . . . ,m), where Am+1 = A1.

(iii) There exists x0 with x0 comparable to Tx0.
Suppose also that either T is continuous or

X is such that if (xn)⊂X with xn →x then there exists a subsequence (xnk
) of (xn)

such that every term of the subsequence (xnk
) is comparable to the limit x. (3.1)

Then T has at least a fixed point.

Proof. If Tx0 = x0 then the proof is finished.
Suppose that x0 6= Tx0.
Put xn+1 = Txn.
As T is nonincreasing, for any n ≥ 1, xn−1 and xn are comparable and, using a

similar argument that in the proof of Theorem 2.2, we can prove that (xn) is a Cauchy
sequence and, therefore, (xn) is convergent to certain z ∈ X.

In the case that T is continuous it is easily seen that z is a fixed point.
Suppose that condition (3.1) holds.

As z ∈ X =
m⋃

i=1

Ai, there exists in ∈ {1, 2, . . . ,m} such that z ∈ Ain
.

On the other hand, as
m⋃

i=1

Ai is a cyclic representation of X with respect to T , the

sequence (xn) has infinite terms in each Ai for i = 1, 2, . . . ,m.
We take a subsequence (xnk

) of (xn) in Ain−1 (where A0 = Am).
As (xnk

) → x by condition (3.1), we can find a subsequence of (xnk
) which we will

follow denoting by (xnk
) whose terms are comparable to z.

Now, using the same reasoning that in the proof of Theorem 2.5, we prove that z
is a fixed point of T . �
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Remark 3.3. Example 2.6 proves that assumptions on Theorem 3.2 do not guarantee
uniqueness of the fixed point.

Theorem 3.4. Adding condition (2.4) to the assumptions of Theorem 3.2 we obtain
uniqueness of the fixed point.

Proof. The proof is similar to Theorem 2.7 and we omit it. �

4. Fixed point results: compact case

In this section, we prove that if X is compact, the conclusions of Theorems 2.2 and
2.5 are true under the weaker assumption that ϕ is a comparison function.

Theorem 4.1. Let (X,≤) be a partially ordered set and suppose that there exists a
metric d in X such that (X, d) is a complete metric space.

Moreover, suppose that m is a positive integer, A1, A2, . . . , Am nonempty subsets

of X, X =
m⋃

i=1

Ai, ϕ : R+ −→ R+ a comparison function and T : X −→ X maps

comparable elements into comparable elements such that

(i)
m⋃

i=1

Ai is a cyclic representation of X with respect to T .

(ii) d(Tx, Ty) ≤ ϕ(d(x, y)) for any x ∈ Ai, y ∈ Ai+1 (i = 1, 2, . . . ,m), with x
and y comparable, where Am+1 = A1.

If there exists x0 ∈ X with x0 comparable to Tx0 then inf{d(x, Tx) : x ∈ X} = 0.
If, in addition (X,≤) satisfies (2.4), X is compact and T is continuous then T has

a unique fixed point.

Proof. If Tx0 = x0 then it is obvious that inf{d(x, Tx) : x ∈ X} = 0.
Suppose that x0 < Tx0 (the same argument serves for Tx0 < x0).
Since that T applies comparable elements into comparable elements, the consecu-

tive terms of the sequence (Tnx0) are comparable and by assumptions (i) and (ii) we
can obtain

d(Tn+1x0, T
nx0) ≤ ϕ(d(Tnx0, T

n−1x0)).
Using the monotonicity of ϕ, the fact that ϕ < t for t > 0 and mathematical induction,
we have

d(Tn+1x0, T
nx0) ≤ ϕn(d(Tx0, x0)).

Now, using (b) of the definition of comparison function

lim
n→∞

d(Tn+1x0, T
nx0) = 0.

Therefore, inf{d(x, Tx) : x ∈ X} = 0.
This finishes the first part of the proof.
Now, suppose that X is compact and T is continuous.
As the mapping

X −→ R+

x 7→ d(x, Tx)
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is obviously continuous and since X is compact we can find z ∈ X such that

d(z, Tz) = inf{d(x, Tx) : x ∈ X}.
Finally, the first part of the theorem gives us

d(z, Tz) = 0

and, consequently, z is a fixed point of T .
The uniqueness of the fixed point is proved as in Theorem 2.7. �

5. Examples

We begin this section with some examples which prove that if at least one of the
assumptions of Theorem 2.2 is not satisfied then the conclusion of this theorem is
false.

Example 5.1. We consider N∗, the set of the natural number without zero, with the
usual distance given by d(x, y) = |x− y| and the usual order. Obviously, (N∗, d) is a
complete metric space.

We consider the closed subsets of N∗ defined by

A1 = {n ∈ N∗ : n even },

A2 = {n ∈ N∗ : n odd }.
Obviously, N∗ = A1 ∪A2.

Let T : N∗ −→ N∗ be the operator defined by T (n) = n + 1. It is easily seen that
T is continuous and increasing and that N∗ = A1 ∪A2 is a cyclic representation of N∗
with respect to T .

Notice that for any n ∈ N∗, n ≤ T (n) = n + 1.
On the other hand, for p ∈ A1 and q ∈ A2 with p < q we have

d(Tp, Tq) = |p− q|,
and for any ϕ : R+ −→ R+, ϕ a (c)-comparison function

ϕ(d(p, q)) = ϕ(|p− q|) < |p− q|.
Thus, assumption (ii) of Theorem 2.2 is not satisfied.

In this case, it is obvious that T has not fixed point.

Example 5.2. Consider the same set (N∗, d) that in Example 5.1 and the same
operator T : N∗ −→ N∗ given by T (n) = n + 1 and the same subsets Ai (i = 1, 2).

But now we consider in N∗ the order given by R = {(n, n) : n ∈ N∗}.
In this case, assumption (i) of Theorem 2.2 is obviously satisfied. Moreover, since

elements in N∗ are only comparable to themselves, assumption (ii) of Theorem 2.2 is
also satisfied.

On the other hand, assumption (iii) of Theorem 2.2 fails since for any n ∈ N∗, n
and T (n) are not comparable.

Obviously, T has not fixed point.

Now, we present an example which can be treated by Theorem 2.2 and it does not
satisfy assumptions of Theorem 1.4.
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Example 5.3. We consider N∗, the set of the natural numbers without zero, with
the usual distance given by d(x, y) = |x− y| and the usual order. Obviously, (N∗, d)
is a complete metric space.

We consider the closed subsets of N∗ defined by

A1 = {n ∈ N∗ : n even }
A2 = {n ∈ N∗ : n odd }

Obviously, N∗ = A1 ∪A2.
Let T : N∗ −→ N∗ be the operator defined by T (n) = n + 1. It is easily seen that

T is continuous and increasing and that N∗ = A1 ∪A2 is a cyclic representation of N∗
with respect to T .

Notice that for any n ∈ N∗, n ≤ T (n) = n + 1.
On the other hand, for p ∈ A1 and q ∈ A2 with p < q we have

d(Tp, Tq) = |p− q|,

and for any ϕ : R+ −→ R+, ϕ a (c)-comparison function

ϕ(d(p, q)) = ϕ(|p− q|) < |p− q|.

Thus, assumption (ii) of Theorem 2.2 is not satisfied.
In this case, it is obvious that T has not fixed point.

Example 5.4. Consider the same set (N∗, d) that in Example 5.1 and the same
operator
T : N∗ −→ N∗ given by T (n) = n + 1, and the same subsets Ai(i = 1, 2).

But now we consider in N∗ the order given by R = {(n, n) : n ∈ N∗}.
In this case, assumption (i) of Theorem 2.2 is obviously satisfied. Moreover, since

elements in N∗ are only comparable to themselves, assumption (ii) of Theorem 2.2 is
also satisfied.

On the other hand, assumption (iii) of Theorem 2.2 fails since for any n ∈ N∗, n
and T (n) are not comparable.

Obviously, T has not fixed point.

Now, we present an example which can be treated by Theorem 2.2 and it does not
satisfy assumptions of Theorem 1.4.

Example 5.5. Let X = {(0, 1), (1, 0), (1, 1)} ⊂ R2 with the Euclidean distance d2.
(X, d2) is, obviously, a complete metric space.

We consider in X the order ≤ given by R = {(x, x) : x ∈ X}.
Notice that the elements in X are only comparable to themselves. Let T : X −→ X

be the operator given by T (1, 0) = (0, 1); T (0, 1) = (1, 0), T (1, 1) = (1, 1).
If we take A1 = {(0, 1), (1, 1)} and A2 = {(1, 0), (1, 1)} then it is easily proved that

A1 ∪A2 is a cyclic representation of X with respect to T (in this case m = 2).
The condition (ii) of Theorem 2.2 is obviously satisfied since the elements in X are

only comparable to themselves.
Moreover, as (1, 1) ≤ T (1, 1), Theorem 2.2 gives us the existence of a fixed point

for T (which it is obviously the point (1, 1)).
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On the other hand,
√

2 = d2(T (1, 0), T (0, 1)) = d2((0, 1), (1, 0))

and if ϕ : R+ −→ R+ is a (c)-comparison function

ϕ(d((1, 0), (0, 1))) = ϕ(
√

2) <
√

2.

Consequently, T is not a cyclic ϕ-contraction for any ϕ (c)-comparison function and,
consequently, this example cannot be treated by Theorem 1.4.
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