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Abstract. In this paper we prove the generalized Hyers–Ulam–Rassias stability of Jordan derivations
on Hilbert C∗− modules associated with the following generalized Jensen type functional equation
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1. Introduction and preliminaries

A classical question in the theory of functional equations is the following: “When
is it true that a function, which approximately satisfies a functional equation E must
be close to an exact solution of E?” If the problem accepts a solution, we say that the
equation E is stable. Such a problem was formulated by Ulam [54] in 1940 and solved
in the next year for the Cauchy functional equation by Hyers [19]. It gave rise the
stability theory for functional equations. The result of Hyers was extended by Aoki
[2] in 1950, by considering the unbounded Cauchy differences. In 1978, Th.M. Rassias
[50] proved that the additive mapping T , obtained by Hyers or Aoki, is linear if, in
addition, for each x ∈ E the mapping f(tx) is continous in t ∈ R. Găvruta [16] gen-
eralized the Rassias’ result. Following the techniques of the proof of the corollary of
Hyers [19] we observed that Hyers introduced (in 1941) the following Hyers continuity
condition: about the continuity of the mapping for each fixed, and then he proved
homogenouity of degree one and therefore the famous linearity. This condition has
been assumed further till now, through the complete Hyers direct method, in order
to prove linearity for generalized Hyers–Ulam stability problem forms (see [27]). Be-
ginning around the year 1980. The stability problems of several functional equations
and approximate homomorphisms have been extensively investigated by a number of
authors and there are many interesting results concerning this problem (see [4], [7],
[11], [12], [13], [15], [17], [23], [25], [26], [28], [29], [31], [32]–[37], [42], [49], [51], [52]).
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J.M. Rassias [45] following the spirit of the innovative approach of Hyers [19], Aoki
[2] and Th.M. Rassias [50] for the unbounded Cauchy difference proved a similar
stability theorem in which he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for
p, q ∈ R with p+ q 6= 1 (see also [44], [46] for a number of other new results).

In 2003 Cădariu and Radu applied the fixed point method to the investigation of the
Jensen functional equation [5] (see also [6], [7], [14], [21], [39], [43], [47], [48]). They
could present a short and a simple proof (different of the “direct method ”, initiated by
Hyers in 1941) for the generalized Hyers–Ulam stability of Jensen functional equation
[5], for Cauchy functional equation [7] and for quadratic functional equation [6].

The following functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y), (1.1)

is called a quadratic functional equation, and every solution of equation (1.1) is said to
be a quadratic mapping. F. Skof [53] proved the Hyers–Ulam stability of the quadratic
functional equation (1.1) for mappings f : E1 → E2, where E1 is a normed space and
E2 is a Banach space. In [8], S. Czerwik proved the Hyers–Ulam stability of the
quadratic functional equation (1.1). C. Borelli and G.L. Forti [3] generalized the
stability result of the quadratic functional equation (1.1). Jun and Lee [20] proved
the Hyers–Ulam stability of the Pexiderized quadratic equation

f(x+ y) + g(x− y) = 2h(x) + 2k(y)

for mappings f, g, h and k. The stability problem of the quadratic equation has been
extensively investigated by some mathematicians [24].

Recently P. Gǎvruta and L. Gǎvruta used a new method for investigation of Hyers–
Ulam–Rassias stability of a nonlinear functional equation, Volterra integral operator
and Fredholm operator. This method generalized the fixed point method [17].

Hilbert C∗ - modules provide a natural generalization of Hilbert spaces arising when
the field of scalars C is replaced by an arbitrary C∗−algebra. This generalization,
was introduced by I. Kaplansky in [22] (see also [18]).

Definition 1.1. A pre-Hilbert A - module is a (right) A−module M equipped with
a sesquilinear form 〈., .〉 : M×M→ A with the following properties:

(1) 〈x, x〉 ≥ 0 for any x ∈M,
(2) 〈x, x〉 = 0 implies that x = 0,
(3) 〈y, x〉 = 〈x, y〉∗ for any x, y ∈M,
(4) 〈x, ya〉 = 〈x, y〉a for any x, y ∈M and any a ∈ A.

The mapping 〈., .〉 is called an A−valued inner product.

Definition 1.2. A pre-Hilbert A−module M is called a Hilbert C∗−module if it is
complete with respect to the norm ‖x‖ = ‖〈x, x〉‖ 1

2 .

Definition 1.3. A linear mapping d : M→M is called a derivation on the Hilbert
C∗−module M if it satisfies the condition d(〈x, y〉z) = 〈d(x), y〉z + 〈x, d(y)〉z +
〈x, y〉d(z) for every x, y, z ∈M.

Definition 1.4. A linear mapping d : M→M is called a Jordan derivation on the
Hilbert C∗−moduleM if it satisfies the condition d(〈x, x〉y) = 〈d(x), x〉y+〈x, d(x)〉y+
〈x, x〉d(y) for every x, y ∈M.
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In this paper, for a fixed positive integer n ≥ 2, we introduce a new functional
equation, which is called an generalized Jensen type functional equation and whose
solution is said to be an generalized Jensen type mapping,
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We investigate the Hyers–Ulam–Rassias stability of Jordan derivations on Hilbert
C∗−modules.

Throughout this paper assume that n0 ∈ N is a positive integer. Suppose that
T1 := {z ∈ C : |z| = 1} and that T1

1
no

:= {eiθ; 0 ≤ θ ≤ 2π
no
}. We have T1 = T1

1
1
.

Moreover, in this paper, M denotes a Hilbert C∗− module with norm ‖.‖.
Let X and Y be vector spaces. For a given mapping f : X → Y and for a fixed

positive integer n ≥ 2, we define

Dµf(x1, · · · , xn) := 2
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µxj
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µxi) +
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µf(xi)− 2nf(
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for all µ ∈ T 1
1

no

and all x1, · · · , xn ∈ X.

2. Stability of Jordan derivations on Hilbert C∗− modules:
direct method

In this section, using an idea of Gavruta [16], we used direct method to prove the
stability of Jordan derivations on Hilbert C∗− modules in the spirit of Hyers, Ulam
and Rassias.

Lemma 2.1. Let X and Y be real vector spaces. A mapping f : X → Y satisfies
(1.2) for all x1, · · · , xn if and only if the mapping f is additive.

Proof. Putting x1 = · · · = xn = 0 in (1.2), we get that f(0) = 0. Let j and k be fixed
integers with 1 ≤ j < k ≤ n. Setting xi = 0 for all 1 ≤ i ≤ n, i 6= j, k in (1.2), we have

2f(
xj

2
+ xk) + 2f(xj +

xk

2
) + f(xj) + f(xk) = 4f(xj + xk) (2.1)

for all xj , xk ∈ X. Replacing xj by 2xj and xk by 2xj in (2.1), respectively, we get

2f(xj + 2xk) + 2f(2xj + xk) + f(2xj) + f(2xk) = 4f(2xj + 2xk) (2.2)

for all xj , xk ∈ X. Putting xk = 0 in (2.2), we conclude that f(2xj) = 2f(xj) for all
xj ∈ X, there for we obtain that

f(xj + 2xk) + f(2xj + xk) + f(xj) + f(xk) = 4f(xj + xk) (2.3)

for all xj , xk ∈ X. Replacing xj by xj − xkin (2.3), we have

f(xj + xk) + f(2xj − xk) + f(xj − xk) + f(xk) = 4f(xj) (2.4)

for all xj , xk ∈ X. Letting xj = 0 in (2.4), we conclude that f(−xk) = −f(xk) for all
xj ∈ X. This means that f is an odd function. Replacing xk by −xk in (2.4), and
using the oddness of f , we obtain that

f(xj − xk) + f(2xj + xk) + f(xj + xk)− f(xk) = 4f(xj) (2.5)
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for all xj , xk ∈ X. Replacing xj and xk by xk and xj in (2.5), respectively, and using
the oddness of f , we get

−f(xj − xk) + f(xj + 2xk) + f(xj + xk)− f(xj) = 4f(xk) (2.6)

for all xj , xk ∈ X. Adding (2.5) to (2.6) and using (2.3),we get that

f(xj + xk) = f(xj) + f(xk)

for all xj , xk ∈ X. Therefore, f : X → Y is an additive mapping.
The converse is obviously true. �

Now we prove the generalized Hyers–Ulam –Rassias stability of Jordan derivations
on Hilbert C∗− modules for the functional equation Dµf(x1, · · · , xn) = 0.

Theorem 2.2. Let X be a real vector space and Y be a Banach space. Suppose
that f : X → Y be a mapping satisfying f(0) = 0 for which there is a function
ϕ : Xn → [0,∞) such that

lim
k→∞

1
2k
ϕ(2kx1, · · · , 2kxn) = 0, (2.7)

ϕ̃j(x) =
∞∑

k=0

1
2k
ϕ(0, · · · , 0, 2kx︸︷︷︸

j th

, 0, · · · , 0) <∞, (2.8)

and

‖D1f(x1, · · · , xn)‖Y ≤ ϕ(x1, · · · , xn) (2.9)

for all x1, · · · , xn ∈ X. Then there exists a unique generalized Jensen type additive
mapping L : X → Y such that

‖f(x)− L(x)‖Y ≤ 1
2
ϕ̃j(2x) (2.10)

for all x ∈ X.

Proof. For convenience, set

ϕj(x) := ϕ(0, · · · , 0, x︸︷︷︸
j th

, 0, · · · , 0)

for all x ∈ X and all 1 ≤ j ≤ n. For each 1 ≤ k ≤ n with k 6= j, let xk = 0 and
xj = 2x in (2.9), then we get the following inequality

‖2f(x)− f(2x)‖Y ≤ ϕj(2x) (2.11)

for all x ∈ X. Replacing x by 2kx in (2.11) and dividing both sides of (2.11) by 2k+1,
we get ∥∥∥ 1

2k+1
f(2k+1x)− 1

2k
f(2kx)

∥∥∥
Y
≤ 1

2k+1
ϕj(2k+1x)
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for all x ∈ X and all k ∈ N. Therefore, we have∥∥∥ 1
2k+1

f(2k+1x)− 1
2m

f(2mx)
∥∥∥

Y
≤

k∑
l=m

∥∥∥ 1
2l+1

f(2l+1x)− 1
2l
f(2lx)

∥∥∥
Y

≤ 1
2

k∑
l=m

1
2l
ϕj(2l+1x)

(2.12)

for all x ∈ X and all integers k ≥ m ≥ 0. It follows from (2.8) and (2.12) that the
sequence { f(2kx)

2k } is a Cauchy sequence in Y for all x ∈ X, and thus converges by the
completeness of Y. So we can define the mapping L : X → Y by

L(x) = lim
k→∞

f(2kx)
2k

for all x ∈ X. Letting m = 0 and taking the limit as k →∞ in (2.12), we obtain the
desired inequality (2.10).

It follows from (2.7) and (2.9) that

‖D1L(x1, · · · , xn)‖Y = lim
k→∞

1
2k
‖D1f(2kx1, · · · , 2kxn)‖Y

≤ lim
k→∞

1
2k
ϕ(2kx1, · · · , 2kxn) = 0

for all x1, · · · , xn ∈ X. Therefore the mapping L : X → Y satisfies the equation (1.2).
Hence, by Lemma 2.1, L is a generalized Jensen type additive mapping.

To prove the uniqueness of L, let L′ : X → Y be another generalized Jensen
type additive mapping satisfying (2.10). By Lemma 2.1, the mapping L′ is additive.
Therefore it follows from (2.10) that

‖L(x)− L′(x)‖Y = lim
k→∞

1
2k

∥∥f(2kx)− L′(2kx)
∥∥

Y

≤ 1
2

lim
k→∞

1
2k

∞∑
l=0

1
2l
ϕj(2l+k+1x)

=
1
2

lim
k→∞

∞∑
l=k

1
2l
ϕj(2l+1x) = 0.

So L(x) = L′(x) for all x ∈ X. It completes the proof. �

Theorem 2.3. Let f : M → M be a mapping satisfying f(0) = 0 for which there
exists a control function ϕ : Mn → [0,∞) satisfying (2.7), (2.8) and

‖Dµf(x1, · · · , xn)‖ ≤ ϕ(x1, · · · , xn) (2.13)

for all µ ∈ T 1
1

no

and all x1, · · · , xn ∈M. Let ψ : M2 → [0,∞) be a function such that

lim
k→∞

1
2k
ψ(2kx, 2ky) = 0 (2.14)
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and

‖f(< x, x > y)− < f(x), x > y− < x,f(x) > y

− < x, x > f(y)‖ ≤ ψ(x, y) (2.15)

for all x, y ∈M, then there exists a unique Jordan derivation H : M→M such that

‖f(x)−H(x)‖ ≤ 1
2
ϕ̃j(2x) (2.16)

for all x ∈M.

Proof. By the same reasoning as in the proof of Theorem 2.2, there exists a unique
generalized Jensen type additive mapping H : M→M. The mapping H : M→M
is defined by H(x) = limk→∞

1
2k f(2kx) for all x ∈M.

By the assumption, we have∥∥DµH(0, · · · , 0, x︸︷︷︸
j th

, 0, · · · , 0)
∥∥

= lim
k→∞

1
2k

∥∥Dµf(0, · · · , 0, 2kx︸︷︷︸
j th

, 0, · · · , 0)
∥∥

≤ lim
k→∞

1
2k
ϕ(0, · · · , 0, 2kx︸︷︷︸

i th

, 0, · · · , 0) = 0

for all x ∈M and all µ ∈ T1
1

no

. Then

H(µx) = µH(x)

for all x ∈M and all µ ∈ T1
1

no

. By a similar method to the proof of [10], one can show

that the mapping H : M→M is C−linear. It follows from (2.14) and (2.15) that

‖H(< x, x > y)− < H(x), x > y− < x,H(x) > y− < x, x > H(y)‖

= lim
k→∞

1
23k

‖f(< 2kx, 2kx > 2ky)− < f(2kx), 2kx > 2ky

− < 2kx, f(2kx) > 2ky− < 2kx, 2kx > f(2ky)‖

≤ lim
k→∞

1
23k

ψ(2kx, 2ky)

for all x, y ∈M. So

H(< x, x > y) =< H(x), x > y+ < x,H(x) > y+ < x, x > H(y)

for all x, y ∈M. Therefore the mapping H : M→M is a Jordan derivation. �

Theorem 2.4. Let ε ≥ 0 and {pk}k∈J be real numbers such that pk > 0 for all k ∈ J,
where J ⊆ {1, 2, · · · , n} and |J | ≥ 3. Let f : M→M be a mapping for which there
is a function ψ : M2 → [0,∞) satisfying (2.14), (2.15) and

‖Dµf(x1, · · · , xn)‖ ≤ ε
∏
k∈J

‖xk‖pk , (2.17)
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for all x1, · · · , xn ∈M and all µ ∈ T1
1

no

. Then the mapping f : M→M is a Jordan
derivation.

Proof. It follows from (2.17) that f(0) = 0. Since |J | ≥ 3, letting µ = 1 and xk = 0
for all 1 ≤ k ≤ n, k 6= i, j, in (2.17), we get

2f(
xi

2
+ xj) + 2f(xi +

xj

2
) + f(xi) + f(xj) = 4f(xi + xj)

for all xi, xj ∈M. By the same reasoning as in the proof of Lemma 2.1, the mapping
f is additive. So by letting xi = x and xk = 0 for all 1 ≤ k ≤ n, k 6= i, in (2.17),
we get that f(µx) = µf(x) for all x ∈ M and all µ ∈ T1

1
no

. By a similar method to

the proof of [10], the mapping f is C−linear. Hence, it follows from (2.14) and (2.15)
that

‖f(< x, x > y)− < f(x), x > y− < x, f(x) > y− < x, x > f(y)‖

= lim
k→∞

1
23k

‖f(< 2kx, 2kx > 2ky)−

< f(2kx), 2kx > 2ky− < 2kx, f(2kx) > 2ky− < 2kx, 2kx > f(2ky)‖

≤ lim
k→∞

1
23k

ψ(2kx, 2ky)

for all x, y ∈M. So

f(< x, x > y) =< f(x), x > y− < x, f(x) > y− < x, x > f(y)

for all x, y ∈M. Therefore, the mapping f : M→M is a Jordan derivation. �

Corollary 2.5. Let {εi}i∈J and {pi}i∈J be real numbers such that εi ≥ 0 and
0 < pi < 1 for all i ∈ J = {1, 2, · · · , n}. Let f : M→M be a mapping for which

there is a function

‖Dµf(x1, · · · , xn)‖ ≤
n∑

i=1

εi‖xi‖pi , (2.18)

‖f(< x, x > y)− < f(x), x > y− < x, f(x) > y

− < x, x > f(y)‖ ≤ (εr‖x‖pr + εs‖y‖ps), (2.19)

for all µ ∈ T 1
1

no

and all x, y, x1, · · · , xn ∈ M. Then there exists a unique Jordan
derivation H : M→M such that

‖f(x)−H(x)‖ ≤ 2pi

2− 2pi
εi‖x‖pi

for all x ∈M and for all i ∈ J .

Proof. The result follows from Theorem 2.3 by taking

ϕ(x1, · · · , xn) =
n∑

i=1

εi‖xi‖pi

and
ψ(x, y) = (εr‖x‖pr + εs‖y‖ps)
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for all x, y, x1, · · · , xn ∈M. It follows from (2.18) that f(0) = 0. �

3. Stability of Jordan derivations on Hilbert C∗−modules: fixed point
method

In this section, by using the idea of P. Gǎvruta and L. Gǎvruta [17], we prove
the generalized Hyers–Ulam–Rassias stability of Jordan derivations on Hilbert C∗−
modules for the functional equation Dµf(x1, · · · , xn) = 0.

We apply the following theorem:

Theorem 3.1. (Banach) Let (X, d) be a complete metric space and T : X → X a
contraction, i.e. there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X.
Then there exists a unique a ∈ X such that Ta = a. Moreover, a = limn→∞T

nx,
and

d(a, x) ≤ 1
1− α

d(x, Tx), for any x ∈ X.

Theorem 3.2. Let f : M → M be a mapping satisfying f(0) = 0 for which there
exists a control function ϕ : Mn → (0,∞) such that

lim
k→∞

1
2k
ϕ
(
2kx1, · · · , 2kxn

)
= 0, (3.1)

‖Dµf(x1, · · · , xn)‖ ≤ ϕ(x1, · · · , xn), (3.2)

for all µ ∈ T1
1

no

and all x1, · · · , xn ∈ M. Let ψ : M2 → [0,∞) be a function such
that

lim
k→∞

1
2k
ψ(2kx, 2ky) = 0 (3.3)

and

‖f(< x, x > y)− < f(x), x > y− < x,f(x) > y

− < x, x > f(y)‖ ≤ ψ(x, y) (3.4)

for all x, y ∈ M. If for some 1 ≤ j ≤ n, there exists a Lipschitz constant 0 ≤ L < 1
such that

ϕ(0, · · · , 0, x︸︷︷︸
j th

, 0, · · · , 0) ≤ 2Lϕ(0, · · · , 0, 1
2
x︸︷︷︸

j th

, 0, · · · , 0)

for all x ∈M, then there exists a unique Jordan derivation H : M→M such that

‖f(x)−H(x)‖ ≤ 1
2− 2L

ϕ(0, · · · , 0, 2x︸︷︷︸
j th

, 0, · · · , 0) (3.5)

for all x ∈M.

Proof. For convenience, set

ϕj(x) := ϕ(0, · · · , 0, x︸︷︷︸
j th

, 0, · · · , 0)
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for all x ∈M and all 1 ≤ j ≤ n. Consider the set

X :=
{
g : M→M, sup

x∈M

‖g(x)− f(x)‖
ϕj(2x)

<∞
}

and introduce the metric on X :

d(g, h) = sup
x∈M

‖g(x)− h(x)‖
ϕj(2x)

.

Then (X , d) is complete. Now we consider the linear mapping J : X → X such that
Jg(x) := 1

2g(2x) for all x ∈M. For any g, h ∈ X , we have

d(g, h) < C =⇒ ‖g(x)− h(x)‖
ϕj(2x)

≤ C, ∀x ∈M

=⇒

∥∥∥ 1
2g(2x)−

1
2h(2x)

∥∥∥
ϕj(4x)

≤ 1
2
C

=⇒

∥∥∥ 1
2g(2x)−

1
2h(2x)

∥∥∥
ϕj(2x)

≤ LC

=⇒ d(Jg, Jh) ≤ LC.
Therefore, we see that

d(Jg, Jh) ≤ Ld(g, h), ∀g, h ∈ X .
This means J is a strictly contractive self-mapping of X , with the Lipschitz constant
L.

Letting µ = 1, xj = 2x and for each 1 ≤ k ≤ n with k 6= j, xk = 0 in (3.2), we get∥∥∥2f(x)− f(2x)
∥∥∥

ϕj(2x)
≤ 1 (3.6)

for all x ∈M. So ∥∥∥f(x)− 1
2f(2x)

∥∥∥
ϕj(2x)

≤ 1
2

for all x ∈M. Hence d(f, Jf) ≤ 1
2
.

By Theorem 3.1, there exists a unique mapping H : M→M such that

H(2x) = 2H(x) (3.7)

for all x ∈M, i.e., H is a unique fixed point of J . Moreover,

H(x) = lim
m→∞

1
2m

f (2mx) (3.8)

for all x ∈M. So, We can conclude that d(H, f) ≤ 1
1− L

d(f, Jf), which implies the

inequality

d(f,H) ≤ 1
2− 2L

.

This implies that the inequality (3.5) holds.
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It follows from (3.1), (3.2) and (3.8) that∥∥∥2
n∑

j=1

H(
xj

2
+

n∑
i=1,i 6=j

xi) +
n∑

i=1

H(xi)− 2nH(
n∑

i=1

xi)
∥∥∥

= lim
m→∞

1
2m

∥∥∥2
n∑

j=1

f(2m−1xj +
n∑

i=1,i 6=j

2mxi) +
n∑

i=1

f(2mxi)− 2nf(
n∑

i=1

2mxi)‖

≤ lim
m→∞

1
2m

ϕ (2mx1, · · · , 2mxn)

for all x1, · · · , xn ∈M. So

2
n∑

j=1

H(
xj

2
+

n∑
i=1,i 6=j

xi) +
n∑

i=1

H(xi) = 2nH(
n∑

i=1

xi)

for all x1, · · · , xn ∈M. By Lemma 2.1, the mapping H : M→M is Cauchy additive,
i.e., H(x+ y) = H(x) +H(y) for all x, y ∈M.

By a similar method to the proof of [10], one can show that the mapping
H : M→M is C−linear.
It follows from (3.3) and (3.4) that

‖H(< x, x > y)− < H(x), x > y− < x,H(x) > y− < x, x > H(y)‖

= lim
k→∞

1
23k

‖f(< 2kx, 2kx > 2ky)− < f(2kx), 2kx > 2ky

− < 2kx, f(2kx) > 2ky− < 2kx, 2kx > f(2ky)‖

≤ lim
k→∞

1
23k

ψ(2kx, 2ky)

for all x, y ∈M. So

H(< x, x > y) =< H(x), x > y− < x,H(x) > y− < x, x > H(y)

for all x, y ∈M.
Thus H : M→M is a Jordan derivations on Hilbert C∗−modules satisfying (3.5),

as desired. �

Corollary 3.3. Let θ > 0, {εi}i∈J and {pi}i∈J be real numbers such that εi ≥ 0 and
0 < pi < 1 for all i ∈ J = {1, 2, · · · , n}. Let f : M → M be a mapping satisfying
f(0) = 0 for which

‖Dµf(x1, · · · , xn)‖ ≤ θ +
n∑

i=1

εi‖xi‖pi , (3.9)

‖f(< x, x > y)− < f(x), x > y− < x, f(x) > y

− < x, x > f(y)‖ ≤ (εr‖x‖pr + εs‖y‖ps), (3.10)

for all µ ∈ T1
1

no

and all x, y, x1, · · · , xn ∈ M. Then there exists a unique Jordan
derivation H : M→M such that

‖f(x)−H(x)‖ ≤ 1
2− 2pi

θ +
2pi

2− 2pi
εi‖x‖pi
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for all x ∈M and for all i ∈ J .

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x1, · · · , xn) := θ +
n∑

i=1

εi‖xi‖pi

and
ψ(x, y) = (εr‖x‖pr + εs‖y‖ps)

for all x, y, x1, · · · , xn ∈M. We can choose L =
1

21−pi
to get the desired result. �
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Univ. Timişoara, Ser. Mat. Inform., 41(2003), 25–48.
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