
Fixed Point Theory, 14(2013), No. 2, 387-400

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

FIXED POINTS, LIE ∗–HOMOMORPHISMS
AND LIE ∗–DERIVATIONS ON LIE C∗–ALGEBRAS

H. KHODAEI, R. KHODABAKHSH AND M. ESHAGHI GORDJI

Department of Mathematics, Malayer University, P.O. Box 65719-95863, Malayer, Iran

Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran

Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
E-mail: hkhodaei.math@yahoo.com, raziehkhodabakhsh@gmail.com, meshaghi@semnan.ac.ir

Abstract. In this paper, using fixed point methods we investigate Lie ∗–homomorphisms between

Lie C∗–algebras, and Lie ∗–derivations on Lie C∗–algebras associated with the generalized Jensen–
type functional equation
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1. Introduction

The theory of finite dimensional complex Lie algebras is an important part of
Lie theory. It has several applications to physics and connections to other parts of
mathematics. With an increasing amount of theory and applications concerning Lie
algebras of various dimensions, it is becoming necessary to ascertain applicable tools
for handling them. The miscellaneous characteristics of Lie algebras constitute such
tools and have also found applications: Casimir operators [1], derived, lower central
and upper central sequences, Lie algebra of derivations, radical, nilradical, ideals, sub-
algebras [36, 56] and recently megaideals [54]. These characteristics are particularly
crucial when considering possible affinities among Lie algebras. Physically motivated
relations between two Lie algebras, namely contractions and deformations, have been
extensively studied, see e.g. [24, 43]. When investigating these kinds of relations in
dimensions higher than five, one can encounter insurmountable difficulties. Firstly,
aside the semisimple ones, Lie algebras are completely classified only up to dimension
5 and the nilpotent ones up to dimension 6. In higher dimensions, only special types,
such as rigid Lie algebras [34] or Lie algebras with fixed structure of nilradical, are
only classified [63] (for detailed survey of classification results in lower dimensions see
e.g. [54] and references therein). Secondly, if all available characteristics of two re-
sults of contraction/deformation are the same then one cannot distinguish them at all.
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This often occurs when the result of a contraction is oneparametric or moreparametric
class of Lie algebras.

Consider the functional equation =1(f) = =2(f) (=) in a certain general setting.
A function g is an approximate solution of (=) if =1(g) and =2(g) are close in some
sense. The Ulam stability problem asks whether or not there is a true solution of
(=) near g. A functional equation is superstable if every approximate solution of the
equation is an exact solution of it.

The stability problem of functional equations originated from a question of Ulam
[64] concerning the stability of group homomorphisms. Hyers [35] provided a first
affirmative partial answer to the question of Ulam for Banach spaces. Hyers theorem
was generalized by T. Aoki [2] for additive mappings and by Th.M. Rassias [59] for
linear mappings by considering an unbounded Cauchy difference. The paper of Th.M.
Rassias [59] has provided a lot of influence in the development of what we now call
generalized Hyers–Ulam stability or as Hyers–Ulam–Rassias stability of functional
equations. In 1994, a generalization of the Rassias theorem was obtained by Gǎvruta
[22] by replacing the unbounded Cauchy difference by a general control function in
the spirit of Rassias approach. For more details about various results concerning such
problems the reader is referred to [6, 7, 11, 16, 15], [20, 21], [25]–[33], [37, 38, 42, 44, 49]
and [57]–[62].

C. Park et al. proved the stability of homomorphisms and derivations in Banach
algebras, Banach ternary algebras, C∗–algebras, Lie C∗–algebras and C∗–ternary
algebras [44]–[53] (see also [3]–[7], [13]–[19]).

A unital C∗–algebra A, endowed with the Lie product [x, y] = xy − yx on A, is
called a Lie C∗–algebra. A C–linear mapping D on a Lie C∗-algebra A is called a
Lie derivation if D([x, y]) = [D(x), y] + [x,D(y)] holds for all x, y ∈ A. A C–linear
mappingH of a Lie C∗–algebra A to a Lie C∗–algebra B is called a Lie homomorphism
if H([x, y]) = [H(x),H(y)] holds for all x, y ∈ A.

C. Park [45] investigated Lie ∗–homomorphisms in Lie C∗–algebras, and Lie ∗–
derivations on Lie C∗–algebras associated with the additive functional equation. In
this paper, using fixed point methods we investigate Lie ∗–homomorphisms between
Lie C∗–algebras, and Lie ∗–derivations on Lie C∗–algebras associated with the gen-
eralized Jensen–type functional equation
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)− f(µx1) = 0 (1.1)

for all µ ∈ T1 := {λ ∈ C; |λ| = 1}, where n ≥ 2. Before proceeding to the main results,
we recall a fundamental result in fixed point theory.

Theorem 1.1. (Cf. [12, 55].) Suppose that we are given a complete generalized metric
space (Ω, d) and a strictly contractive function T : Ω → Ω with Lipschitz constant L.
Then for each given x ∈ Ω, either

d(Tmx, Tm+1x) = ∞ for all m ≥ 0,
or there exists a natural number m0 such that
• d(Tmx, Tm+1x) <∞ for all m ≥ m0;
• the sequence {Tmx} is convergent to a fixed point y∗ of T ;
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• y∗ is the unique fixed point of T in the set Λ = {y ∈ Ω : d(Tm0x, y) <∞};
• d(y, y∗) ≤ 1

1−Ld(y, Ty) for all y ∈ Λ.

Radu and Cadariu [8, 9, 55] applied the fixed point method to the investigation of
functional equations (see also [10, 17, 23, 39, 50]).

Throughout this paper, let A be a Lie C∗–algebra with norm ‖ . ‖ and unit e, and
B a Lie C∗–algebra with norm ‖ . ‖. Let U(A) = {u ∈ A|uu∗ = u∗u = e}.

2. Approximation of Lie ∗-homomorphisms in Lie C∗-algebras

We start our work with the following theorem which establishes the stability of Lie
∗–homomorphisms in Lie C∗–algebras associated with the generalized Jensen–type
functional equation (1.1), via fixed point method.

Theorem 2.1. Let ` ∈ {−1, 1} be fixed and let f : A→ B be a mapping with f(0) = 0
for which there exists a function φ : An+2 → [0,∞) such that
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n

) + µ
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n
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− f(µx1)− µ[f(z), f(w)]‖
≤ φ(x1, x2, · · · , xn, z, w) (2.1)

‖f(nmu∗)− f(nmu)∗‖ ≤ φ(nmu, nmu, · · · , nmu, 0, 0) (2.2)
for all µ ∈ T1 := {λ ∈ C; |λ| = 1}, all u ∈ U(A), m = 0, 1, · · · , and all
x1, · · · , xn, z, w ∈ A. If there exists an L < 1 such that

φ(x1, x2, · · · , xn, z, w) ≤ n`Lφ(
x1

n`
,
x2

n`
, · · · , xn

n`
,
z

n`
,
w

n`
) (2.3)

for all x1, · · · , xn, z, w ∈ A, then there exists a unique Lie ∗–homomorphism H : A→
B such that

‖f(x)−H(x)‖ ≤ L
1+`
2

1− L
φ(x, 0, 0, · · · , 0) (2.4)

for all x ∈ A.

Proof. Consider the set X := {g | g : A → B} and introduce the generalized metric
on X as follows:

d(g, h) := inf{C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cφ(x, 0, · · · , 0),∀x ∈ A}
It is easy to show that (X, d) is a generalized complete metric space [10]. Now we
define the linear mapping J : X → X by

J(h)(x) =
1
n`
h(n`x)

for all x ∈ A. It is easy to see that

d(J(g), J(h)) ≤ Ld(g, h)

for all g, h ∈ X. It follows from (2.3) that

lim
m→∞

1
nm`

φ(nm`x1, n
m`x2, · · · , nm`xn, n

m`z, nm`w) = 0 (2.5)
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for all x1, · · · , xn, z, w ∈ A. Putting µ = 1, x1 = x and z = w = xj = 0 for j = 2, · · · , n
in (2.1), we obtain

‖nf(
x

n
)− f(x)‖ ≤ φ(x, 0, · · · , 0) (2.6)

for all x ∈ A. Thus by using (2.3) with the case ` = 1, we obtain that

‖ 1
n
f(nx)− f(x)‖ ≤ 1

n
φ(nx, 0, · · · , 0) ≤ Lφ(x, 0, · · · , 0) (2.7)

for all x ∈ A, that is,
d(f, J(f)) ≤ L <∞. (2.8)

Also, it from (2.6) with the case ` = −1, that

d(f, J(f)) ≤ 1 <∞. (2.9)

By Theorem 1.1, in both case, J has a unique fixed point in the set X1 := {h ∈ X :
d(f, h) <∞}. Let H be the fixed point of J. We note that H is the unique mapping
with

H(nx) = nH(x)
for all x ∈ A, such that there exists C ∈ (0,∞) satisfying

‖f(x)−H(x)‖ ≤ Cφ(x, 0, · · · , 0)

for all x ∈ A. On the other hand we have limm→∞ d(Jm(f),H) = 0, so

lim
m→∞

1
nm`

f(nm`x) = H(x) (2.10)

for all x ∈ A. Also by Theorem 1.1, we have

d(f,H) ≤ 1
1− L

d(f, J(f)) (2.11)

It follows from (2.8), (2.9) and (2.11), that

d(f,H) ≤ L
1+`
2

1− L

This implies the inequality (2.4). It follows from (2.1), (2.5) and (2.10), we have
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for all µ ∈ T1 and all x1, · · · , xn ∈ A. Put µ = 1 in above equation then

H(
∑n

i=1 xi

n
) +

n∑
j=2

H(

∑n
i=1,i 6=j xi − (n− 1)xj

n
) = H(x1)

for all x1, · · · , xn ∈ A. This means H satisfies (1.1). Putting w1 =
Pn

i=1 xi

n and

wj =
Pn

i=1,i6=j xi−(n−1)xj

n for j = 2, 3, · · · , n in above equation, we get

H(
n∑

j=1

wj) =
n∑

j=1

H(wj) (2.12)

for all w1, · · · , wn ∈ A. Setting wj = 0 for j = 3, 4, · · · , n in (2.12), we get

H(w1 + w2) = H(w1) +H(w2)

Hence, H is cauchy additive. Letting xi = x and z = w = 0 for i = 1, 2, · · · , n in
(2.1), we have

‖µf(x)− f(µx)‖ ≤ φ(x, x, · · · , x, 0, 0)

for all x ∈ A. It follows that

‖H(µx)− µH(x)‖ = lim
m→∞

1
nm`

‖f(µnm`x)− µf(nm`x)‖

≤ lim
m→∞

1
nm`

φ(nm`x, nm`x, · · · , nm`x, 0, 0) = 0

for all µ ∈ T1, and all x ∈ A. Thus

H(µx) = µH(x) (2.13)

for all µ ∈ T1, and all x ∈ A.
Now let λ ∈ C (λ 6= 0) and M an integer greater than (n+1)|λ|. Then | λ

M | < 1
n+1 <

1 − 2
n (n > 2). By ([41], Theorem 1), there exists n elements µ1, µ2, · · · , µn ∈ T1,

such that n λ
M = µ1 + µ2 + · · ·+ µn. And H(x) = H(n. 1nx) = nH( 1

nx) for all x ∈ A.
So H( 1

nx) = 1
nH(x) for all x ∈ A. Thus by (2.13)
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M
H(x) = λH(x)

for all x ∈ A. Hence

H(ξx+ ηy) = H(ξx) +H(ηy) = ξH(x) + ηH(y)

for all ξ, η ∈ C (ξ, η 6= 0) and all x, y ∈ A. And H(0x) = 0 = 0H(x) for all x ∈ A. So
the unique additive mapping H : A→ B is a C–linear mapping.

By (2.2) and (2.5), we get

‖H(u∗)−H(u)∗‖ = lim
m→∞

1
nm`

‖f(nm`u∗)− f(nm`u)∗‖
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≤ lim
m→∞

1
nm`

φ(nm`u, nm`u, · · · , nm`u, 0, 0) = 0

for all u ∈ U(A). Since H : A → B is C–linear and each x ∈ A is a finite linear
combiniation of unitary elements ([40], Theorem 4.1.7), i.e., x =

∑k
j=1 λjuj (λj ∈

C, uj ∈ U(A)),

H(x∗) = H(
k∑

j=1

λju
∗
j ) =

k∑
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λjH(u∗j ) =
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λjH(uj)∗ = (
k∑
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λjH(uj))∗

= H((
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λjuj)∗ = H(x)∗

for all x ∈ A. It follows from (2.10) that

H(x) = lim
m→∞

f(n2m`x)
n2m`

for all x ∈ A. Let xi = 0 for i = 1, 2, · · · , n in (2.1), then we get

‖f([z, w])− [f(z), f(w)]‖ ≤ φ(0, 0, · · · , 0, z, w)

for all z, w ∈ A. Since

‖H([z, w])− [H(z),H(w)]‖ = lim
m→∞

1
n2m`

‖f(n2m`[z, w])− [f(nm`z), f(nm`w)]‖

= lim
m→∞

1
n2m`

‖f([nm`z, nm`w])− [f(nm`z), f(nm`w)]‖

≤ lim
m→∞

1
n2m`

φ(0, 0, · · · , 0, nm`z, nm`w) ≤ lim
m→∞

1
nm`

φ(0, 0, · · · , 0, nm`z, nm`w) = 0

for all z, w ∈ A. So
H([z, w]) = [H(z),H(w)]

for all z, w ∈ A. Hence the C–linear H : A→ B is a Lie ∗–homomorphism satisfying
the inequality (2.4), as desired. �

Example 2.2. Let ` = 1 and L = 1
n in above Theorem, and let A be a unital C∗–

algebra, and let a mapping f : A→ A be defined by

f(x) =
{
x for ‖x‖ < 1,
0 for ‖x‖ ≥ 1,

for all x ∈ A. Let φ(x1, x2, · · · , xn, z, w) = n+ 2 for all x1, · · · , xn, z, w ∈ A. Then

‖µf(
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n

) + µ
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n
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− f(µx1)− µ[f(z), f(w)]‖
≤ φ(x1, x2, · · · , xn, z, w) = n+ 2,

L

1− L
φ(x, 0, 0, · · · , 0) =

1
n

1− 1
n

(n+ 2) =
n+ 2
n− 1

<∞,

‖f(nmu∗)− f(nmu)∗‖ = 0 ≤ φ(nmu, nmu, · · · , nmu, 0, 0) = n+ 2
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for all µ ∈ T1, all x1, · · · , xn, z, w ∈ A, m = 0, 1, · · · , and all u ∈ U(A). But the
mapping f : A→ A is not a Lie ∗–homomorphism.

(a) For x = 0,

H(0) = lim
m→∞

f(nm0)
nm

= lim
m→∞

f(0)
nm

= lim
m→∞

0
nm

= 0.

(b) For each x 6= 0, ‖nmx‖ = nm‖x‖ ≥ 1 for all sufficiently large integer m. So

H(x) = lim
m→∞

f(nmx)
nm

= lim
m→∞

0
nm

= 0.

Therefore, the unique Lie ∗–homomorphism H : A→ A must be identically zero and
satisfies

‖f(x)−H(x)‖ ≤ n+ 2
n− 1

for all x ∈ A.

Corollary 2.3. Let ` ∈ {−1, 1} be fixed and θ and p be non–negative real numbers
such that p ` < `. Suppose that a function f : A→ B with f(0) = 0 satisfies

‖µf(
∑n

i=1 xi + [z, w]
n

) + µ
n∑

j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj + [z, w]

n
)

− f(µx1)− µ[f(z), f(w)]‖

≤ θ(
n∑

i=1

‖xi‖p + ‖z‖p + ‖w‖p),

‖f(nmu∗)− f(nmu)∗‖ ≤ n.nmpθ

for all µ ∈ T1, all u ∈ U(A), m = 0, 1, · · · , and all x1, · · · , xn, z, w ∈ A. Then there
exists a unique Lie ∗–homomorphism H : A→ B such that

‖f(x)−H(x)‖ ≤ 2p

`(2− 2p)
θ‖x‖p

for all x ∈ A.

Proof. Define φ(x1, x2, · · · , xn, z, w) = θ(
∑n

i=1 ‖xi‖p + ‖z‖p + ‖w‖p) and apply The-
orem 2.1. �

Theorem 2.4. Let ` ∈ {−1, 1} be fixed and let f : A→ B be a mapping with f(0) = 0
for which there exists a function φ : An+2 → [0,∞) satisfying (2.2) and (2.3), such
that

‖µf(
∑n

i=1 xi + [z, w]
n

) + µ
n∑

j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj + [z, w]

n
)

− f(µx1)− µ[f(z), f(w)]‖
≤ φ(x1, x2, · · · , xn, z, w) (2.14)

for all µ = 1, i, and all x1, · · · , xn, z, w ∈ A. If f(tx) is continuous in t ∈ R for each
fixed x ∈ A, then there exists a unique Lie ∗–homomorphism H : A → B satisfying
the inequality (2.4).
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Proof. Put z = w = 0 and µ = 1 in (2.14). By the same reasoning as in the proof
of Theorem 2.1, there exists a unique additive mapping H : A → B satisfying the
inequality (2.4). The additive mapping H : A→ B is given by

H(x) = lim
m→∞

1
nm`

f(nm`x)

for all x ∈ A. By the same reasoning as in the proof of ([59], Theorem), the additive
mapping H : A→ B is R–linear.

Putting µ = i, z = w = 0 and xi = x for i = 1, 2, · · · , n in (2.14), we get

‖if(x)− f(ix)‖ ≤ φ(x, x, · · · , x, 0, 0)

for all x ∈ A. So

‖iH(x)−H(ix)‖ = lim
m→∞

1
nm`

‖if(nm`x)− f(nm`ix)‖

≤ lim
m→∞

1
nm`

φ(nm`x, nm`x, · · · , nm`x, 0, 0) = 0

for all x ∈ A. Hence
iH(x) = H(ix)

for all x ∈ A. For each element λ ∈ C, λ = s+ it, where s, t ∈ R. So

H(λx) = H(sx+ itx) = sH(x) + tH(ix) = sH(x) + itH(x) = (s+ it)H(x) = λH(x)

for all x ∈ A. So

H(ξx+ ηy) = H(ξx) +H(ηy) = ξH(x) + ηH(y)

for all ξ, η ∈ C (ξ, η 6= 0) and all x, y ∈ A. Hence the additive mapping H : A→ B is
C–linear.

The rest of the proof is the same as in the proof of Theorem 2.1. �

3. Approximation of Lie ∗-derivations in Lie C∗-algebras

In this section, we prove the following stability problem for Lie ∗–derivations in Lie
C∗–algebras associated with the generalized Jensen–type functional equation (1.1),
via fixed point method.

Theorem 3.1. Let ` ∈ {−1, 1} be fixed and let f : A→ A be a mapping with f(0) = 0
for which there exists a function ψ : An+2 → [0,∞) such that

‖µf(
∑n

i=1 xi + [z, w]
n

) + µ
n∑

j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj + [z, w]

n
)

− f(µx1)− µ[f(z), w]− µ[z, f(w)]‖
≤ ψ(x1, x2, · · · , xn, z, w) (3.1)

‖f(nmu∗)− f(nmu)∗‖ ≤ ψ(nmu, nmu, · · · , nmu, 0, 0) (3.2)
for all µ ∈ T1, all u ∈ U(A), m = 0, 1, · · · , and all x1, · · · , xn, z, w ∈ A. If there exists
an L < 1 such that

ψ(x1, x2, · · · , xn, z, w) ≤ L

n`
ψ(n`x1, n

`x2, · · · , n`xn, n
`z, n`w) (3.3)
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for all x1, · · · , xn, z, w ∈ A, then there exists a unique Lie ∗–derivation D : A → A
such that

‖f(x)−D(x)‖ ≤ L
1+`
2

n(1− L)
ψ(nx, 0, 0, · · · , 0) (3.4)

for all x ∈ A.

Proof. Putting µ = 1, x1 = x and z = w = xj = 0 for j = 2, · · · , n in (3.1), we obtain

‖nf(
x

n
)− f(x)‖ ≤ ψ(x, 0, · · · , 0) (3.5)

for all x ∈ A. Replacing x by nx in (3.5), we get

‖ 1
n
f(nx)− f(x)‖ ≤ 1

n
ψ(nx, 0, · · · , 0) (3.6)

for all x ∈ A. Consider the set X ′ := {g | g : A → A} and introduce the generalized
metric on X ′ as follows:

d(g, h) := inf{C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cψ(nx, 0, · · · , 0),∀x ∈ A}

It is easy to show that (X ′, d) is a generalized complete metric space.
Now we define the linear mapping T : X ′ → X ′ by

T (h)(x) = n`h(
x

n`
)

for all x ∈ A. It is easy to see that

d(T (g), T (h)) ≤ Ld(g, h)

for all g, h ∈ X ′. It follows from (3.5) by using (3.3), with the case ` = 1, that

‖nf(
x

n
)− f(x)‖ ≤ ψ(x, 0, · · · , 0) ≤ L

n
ψ(nx, 0, · · · , 0) (3.7)

for all x ∈ A, that is,

d(f, T (f)) ≤ L

n
<∞. (3.8)

It follows from (3.6) with the case ` = −1, that

d(f, T (f)) ≤ 1
n
<∞. (3.9)

By Theorem 1.1, in both case, T has a unique fixed point in the set X2 := {g ∈
X ′ : d(f, g) < ∞}. Let D be the fixed point of T. D is the unique mapping with
D(nx) = nD(x) for all x ∈ A, such that there exists C ∈ (0,∞) satisfying

‖f(x)−D(x)‖ ≤ Cψ(nx, 0, · · · , 0)

for all x ∈ A. On the other hand we have limm→∞ d(Tm(f), D) = 0. It follows that

lim
m→∞

nm`f(
x

nm`
) = D(x) (3.10)

for all x ∈ A. Also by Theorem 1.1, we have

d(f,D) ≤ 1
1− L

d(f, T (f)) (3.11)
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It follows from (3.8), (3.9) and (3.11), that

d(f,D) ≤ L
1+`
2

n(1− L)

This implies the inequality (3.4). It follows from (3.3) that

lim
m→∞

nm`ψ(
x1

nm`
,
x2

nm`
, · · · , xn

nm`
,
z

nm`
,
w

nm`
) = 0 (3.12)

for all x1, · · · , xn, z, w ∈ A. By the same reasoning as the proof of Theorem 2.1, One
can show that the mapping D : A→ A is C–linear. By (3.2) and (3.12), we get

‖D(u∗)−D(u)∗‖ = lim
m→∞

nm`‖f(
u∗

nm`
)− f(

u

nm`
)∗‖

≤ lim
m→∞

nm`ψ(
u

nm`
,
u

nm`
, · · · , u

nm`
, 0, 0) = 0

for all u ∈ U(A). By the same reasoning as the proof of Theorem 2.1, one can show
that D(x∗) = D(x)∗ for all x ∈ A. It follows from (3.10) that

lim
m→∞

n2m`f(
x

n2m`
) = D(x)

for all x ∈ A. Let xi = 0 for i = 1, 2, · · · , n in (3.1), then we get

‖f([z, w])− [f(z), w]− [z, f(w)]‖ ≤ ψ(0, 0, · · · , 0, z, w)

for all z, w ∈ A. Since

‖D([z, w])− [D(z), w]− [z,D(w)]‖

= lim
m→∞

n2m`‖f(
1

n2m`
[z, w])− [f(

z

nm`
),

w

nm`
]− [

z

nm`
, f(

w

nm`
)]‖

= lim
m→∞

n2m`‖f([
z

nm`
,
w

nm`
])− [f(

z

nm`
),

w

nm`
]− [

z

nm`
, f(

w

nm`
)]‖

≤ lim
m→∞

n2m`ψ(0, 0, · · · , 0, z

nm`
,
w

nm`
) = 0

for all z, w ∈ A. So
D([z, w]) = [D(z), w] + [z,D(w)]

for all z, w ∈ A. Hence the C–linear D : A → A is a Lie ∗–homomorphism satisfying
the inequality (3.4), as desired. �

Corollary 3.2. Let ` ∈ {−1, 1} be fixed and ε and p be non–negative real numbers,
such that p ` < `. Suppose that a function f : A→ A with f(0) = 0 such that

‖µf(
∑n

i=1 xi + [z, w]
n

) + µ
n∑

j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj + [z, w]

n
)

− f(µx1)− µ[f(z), w]− µ[z, f(w)]‖

≤ ε(
n∑

i=1

‖xi‖p + ‖z‖p + ‖w‖p),

‖f(nmu∗)− f(nmu)∗‖ ≤ n.nmpε
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for all µ ∈ T1, all u ∈ U(A), m = 0, 1, · · · , and all x1, · · · , xn, z, w ∈ A. Then there
exists a unique Lie ∗–derivation D : A→ A such that

‖f(x)−D(x)‖ ≤ np−12p

`(2− 2p)
ε‖x‖p

for all x ∈ A.

Theorem 3.3. Let ` ∈ {−1, 1} be fixed and let f : A→ A be a mapping with f(0) = 0
for which there exists a function ψ : An+2 → [0,∞) satisfying (3.2) and (3.3), such
that

‖µf(
∑n

i=1 xi + [z, w]
n

) + µ
n∑

j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj + [z, w]

n
)

− f(µx1)− µ[f(z), w]− µ[z, f(w)]‖
≤ ψ(x1, x2, · · · , xn, z, w) (3.13)

for all µ = 1, i, and all x1, · · · , xn, z, w ∈ A. If f(tx) is continuous in t ∈ R for each
fixed x ∈ A, then there exists a unique Lie ∗–derivation D : A → A satisfying the
inequality (3.4).

Proof. Put z = w = 0 and µ = 1 in (3.13). By the same reasoning as in the proof
of Theorem 2.1, there exists a unique additive mapping D : A → A satisfying the
inequality (3.4). The additive mapping D : A→ A is given by

D(x) = lim
m→∞

nm`f(
x

nm`
)

for all x ∈ A. By the same reasoning as in the proof of ([59], Theorem), the additive
mapping D : A→ A is R–linear.
Putting µ = i, z = w = 0 and xi = x for i = 1, 2, · · · , n in (3.13), we get

‖if(x)− f(ix)‖ ≤ ψ(x, x, · · · , x, 0, 0)

for all x ∈ A. So

‖iD(x)−D(ix)‖ = lim
m→∞

nm`‖if(
x

nm`
)− f(

ix

nm`
)‖

≤ lim
m→∞

nm`ψ(
x

nm`
,
x

nm`
, · · · , x

nm`
, 0, 0) = 0

for all x ∈ A. Hence
iD(x) = D(ix)

for all x ∈ A. For each element λ ∈ C, λ = s+ it, where s, t ∈ R. So

D(λx) = D(sx+ itx) = sD(x) + tD(ix) = sD(x) + itD(x) = (s+ it)D(x) = λD(x)

for all x ∈ A. So

D(ξx+ ηy) = D(ξx) +D(ηy) = ξD(x) + ηD(y)

for all ξ, η ∈ C (ξ, η 6= 0) and all x, y ∈ A. Hence the additive mapping D : A→ A is
C–linear.

The rest of the proof is the same as in the proof of Theorem 2.1. �
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