
Fixed Point Theory, 14(2013), No. 2, 327-344

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

RELAXED IMPLICIT EXTRAGRADIENT-LIKE METHODS
FOR FINDING MINIMUM-NORM SOLUTIONS

OF THE SPLIT FEASIBILITY PROBLEM

LU-CHUAN CENG∗, MU-MING WONG∗∗, ADRIAN PETRUŞEL∗∗∗ AND JEN-CHIH YAO∗∗∗∗
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Abstract. In this paper, we consider the split feasibility problem (SFP) in infinite-dimensional

Hilbert spaces, and study the relaxed implicit extragradient-like methods for finding a common
element of the solution set Γ of the SFP and the set Fix(S) of fixed points of a nonexpansive

mapping S. Combining Mann’s implicit iterative method and Korpelevich’s extragradient method,

we propose two implicit iterative algorithms for finding an element of Fix(S) ∩ Γ . On one hand, for
S = I, the identity mapping, we derive the strong convergence of one implicit iterative algorithm

to the minimum-norm solution of the SFP under appropriate conditions. On the other hand, we

also derive the weak convergence of another implicit iterative algorithm to an element of Fix(S)∩Γ
under mild assumptions.
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1. Introduction

Let H be a real Hilbert space, whose inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. We will denote by xn → x (respectively, xn ⇀ x), the
strong (respectively, weak) convergence of the sequence {xn} to x. Let H1 and H2 be
two infinite-dimensional real Hilbert spaces and let C and Q be the nonempty closed
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convex subsets of H1 and H2, respectively. The split feasibility problem (SFP) is to
find a point x∗ with the property:

x∗ ∈ C and Ax∗ ∈ Q. (1.1)

It was first considered by Censor and Elfving [7], in finite-dimensional Hilbert spaces,
for modeling inverse problems which arise from phase retrievals and in medical image
reconstruction [3]. It has been found that the SFP can also be used to model intensity-
modulated radiation therapy (IMRT) [8] - [11]. In the recent past, a wide variety of
iterative methods have been used in signal processing and image reconstruction and
for solving the SFP; see, e.g., [12] - [10] and the references therein. A special case of
the SFP is the following convex constrained linear inverse problem:

find x ∈ C such that Ax = b. (1.2)

It has been extensively investigated in the literature using the projected Landweber
iterative method; see, e.g., [14], [18] and the references therein. Comparatively, the
SFP has received much less attention so far, due to the complexity resulting from
the set Q. Therefore, whether various versions of the projected Landweber iterative
method [18] can be extended to solve the SFP remains an interesting open topics. The
original algorithm given in [7] involves the computation of the inverse A−1 (assuming
the existence of the inverse of A), and thus, did not become popular. A seemingly
more popular algorithm that solves the SFP is the CQ algorithm of Byrne [4], [3]
which is found to be a gradient-projection method (GPM) in convex minimization (it
is also a special case of the proximal forward-backward splitting method [12]). The
CQ algorithm only involves the computation of the projections PC and PQ onto the
sets C and Q, respectively, and therefore it is implementable in the case where PC

and PQ have closed-form expressions (for example, C and Q are closed balls or half-
spaces). However, it remains a challenge how to implement the CQ algorithm in the
case where the projections PC and/or PQ fail to have closed-form expressions, though
theoretically we can prove the (weak) convergence of the algorithm. Very recently,
Xu [30] gave a continuation of the study on the CQ algorithm and its convergence.
He applied Mann’s algorithm to the SFP and purposed an averaged CQ algorithm
which is proved to be weakly convergent to a solution of the SFP. He also established
the strong convergence result, which shows that the minimum-norm solution can be
obtained.

On the other hand, Korpelevich [17] introduced the extragradient method for com-
puting a solution of a variational inequality. She also proved that the sequences gen-
erated by this method converge to a solution of a variational inequality. Motivated
by the idea of an extragradient method, Nadezhkina and Takahashi [19] introduced
an iterative algorithm for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of a variational inequality. Meanwhile,
Nadezhkina and Takahashi [20] provided a strong convergence theorem inspired by
the extragradient method as well.

Furthermore, assume that the SFP is consistent, that is, the solution set Γ of the
SFP is nonempty. Let H be a real Hilbert space and f : H → R be a function. Then
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the minimization problem

min
x∈C

f(x) :=
1
2
‖Ax− PQAx‖2 (1.3)

is ill-posed. Xu [30] considered the following Tikhonov’s regularization problem:

min
x∈C

fα(x) :=
1
2
‖Ax− PQAx‖2 +

1
2
α‖x‖2, (1.4)

where α > 0 is the regularization parameter. The regularized minimization (1.4) has
a unique solution which is denoted by xα. The following result is not hard to prove.
Proposition 1.1. (see [30], [5]) There hold the following statements:

(i) the gradient

∇fα(x) = ∇f(x) + αI = A∗(I − PQ)A + αI

is (α + ‖A‖2)-Lipschitzian and α-strongly monotone;
(ii) the mapping PC(I − λ∇fα) is a contraction with coefficient√

1− λ(2α− λ(‖A‖2 + α)2) (≤
√

1− αλ ≤ 1− 1
2
αλ),

where 0 < λ ≤ α
(‖A‖2+α)2 ;

(iii) if the SFP is consistent, then the strong limα→0 xα exists and is the minimum-
norm solution of the SFP.

It is worth noting that xα is a fixed point of the mapping PC(I − λ∇fα) for any
λ > 0 satisfying 0 < λ ≤ α

(‖A‖2+α)2 , and can be obtained through the limit as n →∞
of the sequence of Picard iterates

xα
n+1 = PC(I − λ∇fα)xα

n.

Secondly, letting α → 0 yields xα → xmin in norm. It is a very subtle work that Ceng,
Ansari and Yao [5] very recently combined these two steps to get xmin in a relaxed
extragradient algorithm. The following result shows that for suitable choices of λ and
α, the minimum-norm solution xmin can be obtained by the relaxed extragradient
algorithm.
Theorem 1.1. (see [5], Theorem 3.1) Define a sequence {xn} through the following
Mann’s type extragradient algorithm: x0 = x ∈ H1 chosen arbitrarily,

yn = PC(xn − λn∇fαn(xn)),
xn+1 = βnxn + γnyn + δnPC(xn − λn∇fαn

(yn)), ∀n ≥ 0,
(1.5)

where ∇fαn
= αnI + A∗(I − PQ)A, and the sequences {αn}, {βn}, {γn}, {δn} and

{λn} satisfy the following conditions:
(i) 0 < λn ≤ αn

(‖A‖2+αn)2 for all (large enough) n;
(ii) αn → 0 and λn → 0;
(iii)

∑∞
n=0 α2

nλnδn = ∞;
(iv) |λn+1−λn|+λn|αn+1−αn|

α3
n+1λ2

n+1δn+1
→ 0;

(v) {βn}, {γn}, {δn} ⊂ [0, 1] and βn + γn + δn = 1 for all n ≥ 0;
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(vi) 2δn

αn+‖A‖2 ≤ γnλn for all (large enough) n.
Then, both the sequences {xn} and {yn} converge in norm to the minimum-norm
solution of the SFP.

At the same time, they also proposed a Mann’s type extragradient-like algorithm if
the SFP is consistent (i.e., the solution set Γ of the SFP is nonempty) and Fix(S)∩Γ 6=
∅, where S : C → C is a nonexpansive mapping.
Theorem 1.2. (see [5], Theorem 3.2]) Let S : C → C be a nonexpansive mapping
such that Fix(S) ∩ Γ 6= ∅. Assume that 0 < λ < 2

‖A‖2 , and let {xn} and {yn} be the
sequences in C generated by the following Mann type extragradient-like algorithm: x0 = x ∈ C chosen arbitrarily,

yn = (1− βn)xn + βnPC(xn − λ∇fαn(xn)),
xn+1 = γnxn + (1− γn)SPC(yn − λ∇fαn

(yn)), ∀n ≥ 0,
(1.6)

where the sequences of parameters {αn}, {βn} and {γn} satisfy the following condi-
tions:

(i)
∑∞

n=0 αn < ∞;
(ii) {βn} ⊂ [0, 1] and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) {γn} ⊂ [0, 1] and 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Then, both the sequences {xn} and {yn} converge weakly to an element z ∈ Fix(S)∩Γ.
In this paper, our purpose is to study the relaxed implicit extragradient-like meth-

ods for finding a common element of the solution set Γ of the SFP and the set Fix(S)
of fixed points of a nonexpansive mapping S in the setting of infinite -dimensional
real Hilbert spaces. Combining Mann’s implicit iterative method and Korpelevich’s
extragradient method, we propose two implicit iterative algorithms for finding an el-
ement of Fix(S)∩ Γ . On one hand, we propose an implicit iterative algorithm in the
case when S = I the identity mapping and the SFP is consistent (i.e., the solution
set Γ of the SFP is nonempty). That is, define a sequence {xn} through the following
Mann’s type implicit extragradient-like algorithm:

x0 = x ∈ H1 chosen arbitrarily,
yn = PC(xn − λn∇fαn

(xn)),
xn+1 = βnxn + γnPC(xn+1 − λn∇fαn

(xn+1))
+δnPC(xn+1 − λn∇fαn(yn)), ∀n ≥ 0,

(1.7)

where ∇fαn
= αnI + A∗(I − PQ)A, and the sequences {αn}, {βn}, {γn}, {δn} and

{λn} satisfy the following conditions:
(i) 0 < λn ≤ αn

(‖A‖2+αn)2 for all (large enough) n;
(ii) αn → 0 and λn → 0;
(iii)

∑∞
n=0 α2

nλnδn = ∞;
(iv) |λn+1−λn|+λn|αn+1−αn|

α3
n+1λ2

n+1δn+1
→ 0;

(v) {βn}, {γn}, {δn} ⊂ [0, 1] and βn + γn + δn = 1 for all n ≥ 0;
(vi) 2δn

αn+‖A‖2 ≤ γnλn for all (large enough) n.
It is proven that the sequence {xn} generated by (1.7) converges in norm to the
minimum-norm solution of the SFP. On the other hand, we propose another Mann’s
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type implicit extragradient-like algorithm in the case when S : C → C is a nonexpan-
sive mapping such that Fix(S)∩Γ 6= ∅. For 0 < λ < 2

‖A‖2 , define the sequences {xn}
and {yn} in C through the following Mann type implicit extragradient-like algorithm: x0 = x ∈ C chosen arbitrarily,

yn = (1− βn)xn + βnPC(yn − λ∇fαn
(yn)),

xn+1 = γnxn + (1− γn)SPC(xn+1 − λ∇fαn
(yn)), ∀n ≥ 0,

(1.8)

where the sequences of parameters {αn}, {βn} and {γn} satisfy the following condi-
tions:

(i)
∑∞

n=0 αn < ∞;
(ii) {βn} ⊂ [0, 1] and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) {γn} ⊂ [0, 1] and 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

It is also shown that both the sequences {xn} and {yn} generated by (1.8) converge
weakly to an element z ∈ Fix(S) ∩ Γ . It is worth emphasizing that our results
are novel in the Hilbert spaces setting. Our results represent the supplementation,
improvement, extension and development of the corresponding results in [30], [5] to
a great extent.

Compared with the above Theorems 1.1 and 1.2, our results improve, extend,
supply and develop them in the following aspects:

(i) The relaxed implicit extragradient-like methods of this paper are superior to the
relaxed extragradient methods in Theorems 1.1 and 1.2 because the relaxed implicit
extragradient-like methods under consideration are essentially the predictor-corrector
methods, which comprise one predictor step and another corrector step.

(ii) The iterative algorithm (1.5) is extended to develop the Mann’s type implicit
extragradient-like algorithm (1.7) with S ≡ I the identity mapping.

(iii) The iterative algorithm (1.6) is extended to develop the Mann’s type implicit
extragradient-like algorithm (1.8).

(iv) The relaxed implicit extragradient-like methods of this paper combine Mann’s
implicit iterative method with Korpelevich’s extragradient method to be designed.

(v) Under the same conditions imposed on the sequences of parameters as in The-
orem 1.1, the sequence {xn} generated by (1.7) converges in norm to the minimum-
norm solution of the SFP.

(vi) Under the same conditions imposed on the sequences of parameters as in
Theorem 1.2, both the sequences {xn} and {yn} generated by (1.8) converge weakly
to an element z ∈ Fix(S) ∩ Γ .

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. Throughout the paper, unless otherwise specified, we denote
by xn → x (respectively, xn ⇀ x), the strong (respectively, weak) convergence of the
sequence {xn} to x. In addition, we use ωw(xn) to denote the weak ω-limit set of the
sequence {xn}; namely,

ωw(xn) := {x : xni ⇀ x for some subsequence {xni} of {xn}}.
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Let C be a nonempty, closed and convex subset of H and V : C → H be a
(possibly nonself) ρ-contraction mapping with coefficient ρ ∈ [0, 1), that is, there
exists a constant ρ ∈ [0, 1) such that ‖V x − V y‖ ≤ ρ‖x − y‖, ∀x, y ∈ C. Now we
present some known results and definitions which will be used in the sequel.

The metric (or nearest point) projection fromH onto C is the mapping PC : H → C
which assigns to each point x ∈ H the unique point PCx ∈ C satisfying the property

‖x− PCx‖ = inf
y∈C

‖x− y‖ =: d(x,C).

The following properties of projections are useful and pertinent to our purpose.
Proposition 2.1. (see [15]) Given any x ∈ H and z ∈ C. We have:

(i) z = PCx ⇔ 〈x− z, y − z〉 ≤ 0, ∀y ∈ C;
(ii) z = PCx ⇔ ‖x− z‖2 ≤ ‖x− y‖2 − ‖y − z‖2, ∀y ∈ C;
(iii) 〈PCx−PCy, x− y〉 ≥ ‖PCx−PCy‖2, ∀x, y ∈ H, which hence implies that PC

is nonexpansive and monotone.
Definition 2.1. A mapping T : H → H is said to be:

(a) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H;

(b) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

〈x− y, Tx− Ty〉 ≥ ‖Tx− Ty‖2, ∀x, y ∈ H;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1
2
(I + S),

where S : H → H is nonexpansive; projections are firmly nonexpansive.
Definition 2.2. Let T be a nonlinear operator whose domain is D(T ) ⊆ H and
whose range is R(T ) ⊆ H.

(a) T is said to be monotone if

〈x− y, Tx− Ty〉 ≥ 0, ∀x, y ∈ D(T ).

(b) Given a number β > 0, T is said to be β-strongly monotone if

〈x− y, Tx− Ty〉 ≥ β‖x− y‖2, ∀x, y ∈ D(T ).

(c) Given a number ν > 0, T is said to be ν-inverse strongly monotone (ν-ism) if

〈x− y, Tx− Ty〉 ≥ ν‖Tx− Ty‖2, ∀x, y ∈ D(T ).

Example 2.1. (see [28]) Let V : C → H be a ρ-contraction with ρ ∈ [0, 1) and
T : C → C be a nonexpansive mapping. Then

(i) I − V is (1− ρ)-strongly monotone:

〈(I − V )x− (I − V )y, x− y〉 ≥ (1− ρ)‖x− y‖2, ∀x, y ∈ C;

(ii) I − T is monotone:

〈(I − T )x− (I − T )y, x− y〉 ≥ 0, ∀x, y ∈ C.
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It can be easily seen that the projection PC is 1-ism. Inverse strongly monotone
(also referred to as co-coercive) operators have been applied widely in solving practical
problems in various fields, for instance, in traffic assignment problems; see [1], [16].
Definition 2.3. A mapping T : H → H is said to be an averaged mapping if it can
be written as the average of the identity mapping I and a nonexpansive mapping,
that is,

T ≡ (1− α)I + αS

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when the last
equality holds, we say that T is α-averaged. Thus firmly nonexpansive mappings (in
particular, projections) are 1

2 -averaged maps.
Proposition 2.2. (see [4]) Let T : H → H be a given mapping.

(i) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(ii) If T is ν-ism, then for γ > 0, γT is ν
γ -ism.

(iii) T is averaged if and only if the complement I − T is ν-ism for some ν > 1/2.
Indeed, for α ∈ (0, 1), T is α-averaged if and only if I − T is 1

2α -ism.
Proposition 2.3. (see [4], [13]) Let S, T, V : H → H be given operators.

(i) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is averaged and V is
nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement I − T is firmly nonex-
pansive.

(iii) If T = (1− α)S + αV for some α ∈ (0, 1) and if S is firmly nonexpansive and
V is nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if
each of the mappings {Ti}N

i=1 is averaged, then so is the composite T1 ◦ ... ◦ TN . In
particular, if T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then the
composite T1 ◦ T2 is α-averaged, where α = α1 + α2 − α1α2.

The following result is useful when we prove the weak convergence of a sequence.
Proposition 2.4. (see [21]) Let K be a nonempty closed convex subset of a real
Hilbert space H. Let {xn} be a bounded sequence which satisfies the following prop-
erties:

(i) every weak limit point of {xn} lies in K;
(ii) limn→∞ ‖xn − x‖ exists for every x ∈ K.

Then {xn} converges weakly to a point in K.
The following so-called demiclosedness principle for nonexpansive mappings will

often be used.
Lemma 2.1. (see [2], Demiclosedness principle) Let C be a nonempty closed convex
subset of a real Hilbert space H and let T : C → C be a nonexpansive mapping with
Fix(T ) 6= ∅. If {xn} is a sequence in C converging weakly to x and if {(I − T )xn}
converges strongly to y, then (I − T )x = y; in particular, if y = 0, then x ∈ Fix(T ).

The following lemma plays a key role in proving strong convergence of the sequences
generated by our algorithms.
Lemma 2.2. (see [26], Lemma 2.1) Let {an} be a sequence of nonnegative real
numbers satisfying the condition

an+1 ≤ (1− sn)an + sntn, ∀n ≥ 0,
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where {sn}, {tn} are sequences of real numbers such that
(i) {sn} ⊂ [0, 1] and

∑∞
n=0 sn = ∞, or equivalently
∞∏

n=0

(1− sn) := lim
n→∞

n∏
k=0

(1− sk) = 0;

(ii) lim supn→∞ tn ≤ 0, or
(ii)′

∑∞
n=0 sntn is convergent.

Then, limn→∞ an = 0.
It is easy to see that the following lemma holds.

Lemma 2.3. (see [15]) Let H be a real Hilbert space. Then

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2, ∀x, y ∈ H, ∀λ ∈ [0, 1].

The following elementary fact on real sequences is well-known but useful.
Lemma 2.4. (see [22] p. 80) Let {an}, {bn} and {δn} be sequences of nonnegative
real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n ≥ 0.

If
∑∞

n=0 δn < ∞ and
∑∞

n=0 bn < ∞, then limn→∞ an exists. If in addition {an} has
a subsequence which converges to zero, then limn→∞ an = 0.
Corollary 2.1. (see [25], p. 303) Let {an} and {bn} be two sequences of nonnegative
real numbers satisfying the inequality

an+1 ≤ an + bn, ∀n ≥ 0.

If
∑∞

n=0 bn converges, then limn→∞ an exists.

3. Relaxed Implicit Extragradient-Like Methods

Throughout this paper, we assume that the SFP is consistent, that is, the solution
set Γ of the SFP is nonempty. Let H be a real Hilbert space and f : H → R be a
function. Then the minimization problem

min
x∈C

f(x) :=
1
2
‖Ax− PQAx‖2

is ill-posed. Xu [30] considered the following Tikhonov’s regularization problem:

min
x∈C

fα(x) :=
1
2
‖Ax− PQAx‖2 +

1
2
α‖x‖2, (3.1)

where α > 0 is the regularization parameter. The regularized minimization (3.1) has
a unique solution which is denoted by xα. The following result is easy to prove.
Proposition 3.1. (see [30]) If the SFP is consistent, then the strong limα→0 xα exists
and is the minimum-norm solution of the SFP.

Let xmin be a minimum-norm solution of the SFP; namely, xmin ∈ Γ has the
property

‖xmin‖ = min{‖x∗‖ : x∗ ∈ Γ}.
xmin can be obtained by two steps. First, observing that the gradient

∇fα(x) = ∇f(x) + αI = A∗(I − PQ)A + αI
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is (α + ‖A‖2)-Lipschitzian and α-strongly monotone, we know that the mapping
PC(I − λ∇fα) is a contraction with coefficient√

1− λ(2α− λ(‖A‖2 + α)2) (≤
√

1− αλ ≤ 1− 1
2
αλ),

where
0 < λ ≤ α

(‖A‖2 + α)2
. (3.2)

Indeed, observe that

‖PC(I − λ∇fα)(x)− PC(I − λ∇fα)(y)‖2
≤ ‖(I − λ∇fα)(x)− (I − λ∇fα)(y)‖2
= ‖x− y‖2 − 2λ〈∇fα(x)−∇fα(y), x− y〉+ λ2‖∇fα(x)−∇fα(y)‖2
≤ (1− 2λα + λ2(‖A‖2 + α)2)‖x− y‖2
≤ (1− 2λα + λ α

(‖A‖2+α)2 · (‖A‖
2 + α)2)‖x− y‖2

= (1− λα)‖x− y‖2.

(3.3)

It is worth noting that xα is a fixed point of the mapping PC(I−λ∇fα) for any λ > 0
satisfying (3.2), and can be obtained through the limit as n →∞ of the sequence of
Picard iterates

xα
n+1 = PC(I − λ∇fα)xα

n.

Secondly, letting α → 0 yields xα → xmin in norm. It is interesting to know whether
these two steps can be combined to get xmin in a relaxed implicit extragradient-
like algorithm. The following result shows that for suitable choices of λ and α, the
minimum-norm solution xmin can be obtained by the relaxed implicit extragradient-
like algorithm.
Theorem 3.1. Define a sequence {xn} through the following Mann’s type implicit
extragradient-like algorithm:

x0 = x ∈ H1 chosen arbitrarily,
yn = PC(xn − λn∇fαn

(xn)),
xn+1 = βnxn + γnPC(xn+1 − λn∇fαn

(xn+1))
+δnPC(xn+1 − λn∇fαn

(yn)), ∀n ≥ 0,

(3.4)

where ∇fαn
= αnI + A∗(I − PQ)A, and the sequences {αn}, {βn}, {γn}, {δn} and

{λn} satisfy the following conditions:
(i) 0 < λn ≤ αn

(‖A‖2+αn)2 for all (large enough) n;
(ii) αn → 0 and λn → 0;
(iii)

∑∞
n=0 α2

nλnδn = ∞;
(iv) |λn+1−λn|+λn|αn+1−αn|

α3
n+1λ2

n+1δn+1
→ 0;

(v) {βn}, {γn}, {δn} ⊂ [0, 1] and βn + γn + δn = 1 for all n ≥ 0;
(vi) 2δn

αn+‖A‖2 ≤ γnλn for all (large enough) n.
Then, both the sequences {xn} and {yn} converge in norm to the minimum-norm
solution of the SFP.

Note that αn = n−δ, λn = n−σ and δn = n−ε with 0 < δ < σ ≤ ε < 1 and
3δ + 2σ + ε < 1 satisfy conditions (i)-(iv).
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Proof. For any λ satisfying (3.2), xα is a fixed point of the mapping PC(I−λ∇fα). For
each n ≥ 0, let zn be a unique fixed point of the contraction Tn := PC(I − λn∇fαn

).
Then, zn := xαn

, and so zn → xmin in norm. So, it is sufficient to prove that

‖xn+1 − zn‖ → 0.

Noting that Tn has a contraction coefficient (1− 1
2αnλn), we have

‖yn − zn‖ = ‖Tnxn − Tnzn‖ ≤ (1− 1
2
αnλn)‖xn − zn‖. (3.5)

Analogously, we have

‖PC(I − λn∇fαn
)xn+1 − zn‖ = ‖Tnxn+1 − Tnzn‖ ≤ (1− 1

2
αnλn)‖xn+1 − zn‖. (3.6)

We now estimate
‖zn − zn−1‖ = ‖Tnzn − Tn−1zn−1‖

≤ ‖Tnzn − Tnzn−1‖+ ‖Tnzn−1 − Tn−1zn−1‖
≤ (1− 1

2αnλn)‖zn − zn−1‖+ ‖Tnzn−1 − Tn−1zn−1‖,
which hence implies that

‖zn − zn−1‖ ≤
2

αnλn
‖Tnzn−1 − Tn−1zn−1‖. (3.7)

However, since ∇f is Lipschitzian and {zn} is bounded, we have

‖Tnzn−1 −Tn−1zn−1‖ = ‖PC(I − λn∇fαn
)zn−1 − PC(I − λn−1∇fαn−1)zn−1‖

≤ ‖(I − λn∇fαn
)zn−1 − (I − λn−1∇fαn−1)zn−1‖

= ‖λn∇fαn(zn−1)− λn−1∇fαn−1(zn−1)‖
= ‖(λn − λn−1)∇fαn(zn−1) + λn−1(∇fαn(zn−1)−∇fαn−1(zn−1))‖
≤ |λn − λn−1|‖∇f(zn−1) + αnzn−1‖+ λn−1|αn − αn−1|‖zn−1‖
≤ (|λn − λn−1|+ λn−1|αn − αn−1|)M,

(3.8)
where M = supn≥1 max{‖∇f(zn−1) + αnzn−1‖, ‖zn−1‖} < ∞. Utilizing conditions
(i), (vi), and inequalities (3.5)-(3.8), we obtain

‖xn+1 − zn‖ = ‖βn(xn − zn) + γn(PC(I − λn∇fαn
)xn+1 − zn)

+δn(PC(xn+1 − λn∇fαn
(yn))− zn)‖

≤ βn‖xn − zn‖+ γn‖PC(I − λn∇fαn
)xn+1 − zn‖

+δn‖PC(xn+1 − λn∇fαn(yn))− PC(zn − λn∇fαn(zn))‖
≤ βn‖xn − zn‖+ γn(1− 1

2αnλn)‖xn+1 − zn‖
+δn‖(xn+1 − λn∇fαn

(yn))− (zn − λn∇fαn
(zn))‖

≤ βn‖xn − zn‖+ γn(1− 1
2αnλn)‖xn+1 − zn‖

+δn[‖xn+1 − zn‖+ λn‖∇fαn(yn)−∇fαn(zn)‖]
≤ βn‖xn − zn‖+ γn(1− 1

2αnλn)‖xn+1 − zn‖
+δn[‖xn+1 − zn‖+ λn(αn + ‖A‖2)‖yn − zn‖]
≤ βn‖xn − zn‖+ γn(1− 1

2αnλn)‖xn+1 − zn‖
+δn[‖xn+1 − zn‖+ λn(αn + ‖A‖2)(1− 1

2αnλn)‖xn − zn‖]
= [βn + δnλn(αn + ‖A‖2)(1− 1

2αnλn)]‖xn − zn‖
+(1− βn − 1

2αnγnλn)‖xn+1 − zn‖,
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and hence

‖xn+1 − zn‖ ≤
βn+δnλn(αn+‖A‖2)(1− 1

2 αnλn)

βn+ 1
2 αnγnλn

‖xn − zn‖

= [ βn

βn+ 1
2 αnγnλn

+ δnλn(αn+‖A‖2)(1− 1
2 αnλn)

βn+ 1
2 αnγnλn

]‖xn − zn‖

≤ [1− αnγnλn

2(βn+ 1
2 αnγnλn)

+ δnαn(1− 1
2 αnλn)

(βn+ 1
2 αnγnλn)(αn+‖A‖2) ]‖xn − zn‖

= [1− αnγnλn

2(βn+ 1
2 αnγnλn)

+ δnαn

(βn+ 1
2 αnγnλn)(αn+‖A‖2) −

α2
nλnδn

2(βn+ 1
2 αnγnλn)(αn+‖A‖2) ]‖xn − zn‖

≤ [1− α2
nλnδn

2(βn+ 1
2 αnγnλn)(αn+‖A‖2) ]‖xn − zn‖ (using condition (vi))

≤ [1− α2
nλnδn

2(βn+ 1
2 αnγnλn)(αn+‖A‖2) ]‖xn − zn−1‖+ ‖zn − zn−1‖

≤ [1− α2
nλnδn

2(βn+ 1
2 αnγnλn)(αn+‖A‖2) ]‖xn − zn−1‖+ 2

αnλn
‖Tnzn−1 − Tn−1zn−1‖

≤ [1− α2
nλnδn

2(βn+ 1
2 αnγnλn)(αn+‖A‖2) ]‖xn − zn−1‖+ 2M(|λn−λn−1|+λn−1|αn−αn−1|)

αnλn

= [1− α2
nλnδn

2(βn+ 1
2 αnγnλn)(αn+‖A‖2) ]‖xn − zn−1‖

+ α2
nλnδn

2(βn+ 1
2 αnγnλn)(αn+‖A‖2) ·

4M(βn+ 1
2 αnγnλn)(αn+‖A‖2)(|λn−λn−1|+λn−1|αn−αn−1|)

α3
nλ2

nδn

= (1− sn)‖xn − zn−1‖+ sntn,
(3.9)

where sn := α2
nλnδn

2(βn+ 1
2 αnγnλn)(αn+‖A‖2) and

tn :=
4M(βn + 1

2αnγnλn)(αn + ‖A‖2)(|λn − λn−1|+ λn−1|αn − αn−1|)
α3

nλ2
nδn

→ 0

(due to conditions (ii) and (iv)). Taking into account conditions (ii), (v) and (vi), we
have for all (large enough) n,

sn = α2
nλnδn

2(βn+ 1
2 αnγnλn)(αn+‖A‖2)

≤ α2
nλnδn

αnγnλn(αn+‖A‖2) = δn

γn
· αn

αn+‖A‖2

≤ αn

αn+‖A‖2 ·
1
2λn(αn + ‖A‖2) = 1

2αnλn

≤ 1
2 ( αn

αn+‖A‖2 )2.

So, it follows that sn ∈ [0, 1] for all (large enough) n. In the meantime, we also derive
from (v)

sn =
α2

nλnδn

2(βn + 1
2αnγnλn)(αn + ‖A‖2)

≥ α2
nλnδn

(2 + αnλn)(αn + ‖A‖2)
.

Thus, it follows from conditions (ii), (iii) that
∑∞

n=0 sn = ∞. By applying Lemma
2.2 to (3.9) we conclude that ‖xn+1 − zn‖ → 0; hence, xn → xmin in norm. Taking
into account the strong convergence of both {xn} and {zn} to xmin, we deduce from
(3.5) that

‖yn − zn‖ ≤ ‖xn − zn‖ → 0.

Therefore, yn → xmin in norm. This completes the proof. �
Remark 3.1. (see [5], Remark 3.1) In Theorem 3.1, put αn = n−δ, λn = n−σ and
δn = n−ε where δ = 1

10 , σ = 1
5 and ε = 1

4 . Then it is easy to see that 0 < δ < σ ≤
ε < 1 and 3δ +2σ + ε = 19

20 < 1. Thus, conditions (i)-(iv) in Theorem 3.1 are satisfied.
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In particular, if lim infn→∞ γn > 0 additionally, then it is clear that condition (vi) is
also satisfied.
Remark 3.2 It is worth pointing out that the Mann type implicit extragradient-like
algorithm in Theorem 3.1 is essentially the predictor-corrector algorithm. Indeed, the
first iterative step yn = PC(xn−λn∇fαn

(xn)) is the predictor one, and the second im-
plicit iterative step xn+1 = βnxn+γnPC(I−λn∇fαn)xn+1+δnPC(xn+1−λn∇fαn(yn))
is actually the corrector one. Obviously, both the iterative algorithms in [30] (The-
orem 5.5) and [5] (Theorem 3.1) are extended to develop Mann’s type implicit
extragradient-like algorithm in Theorem 3.1. Therefore, although those algorithms
in [30] (Theorem 5.5) and [5] (Theorem 3.1) are explicit, Mann’s type implicit
extragradient-like algorithm in Theorem 3.1 is superior to them to a certain extent.

Under the assumptions of Theorem 3.1, the sequence {λn} is forced to tend to
zero. If we keep it as a constant, then we have weak convergence as shown below.
Theorem 3.2. Let S : C → C be a nonexpansive mapping such that Fix(S)∩Γ 6= ∅.
Assume that 0 < λ < 2

‖A‖2 , and let {xn} and {yn} be the sequences in C generated
by the following Mann type implicit extragradient-like algorithm: x0 = x ∈ C chosen arbitrarily,

yn = (1− βn)xn + βnPC(yn − λ∇fαn
(yn)),

xn+1 = γnxn + (1− γn)SPC(xn+1 − λ∇fαn
(yn)), ∀n ≥ 0,

(3.10)

where the sequences of parameters {αn}, {βn} and {γn} satisfy the following condi-
tions:

(i)
∑∞

n=0 αn < ∞;
(ii) {βn} ⊂ [0, 1] and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) {γn} ⊂ [0, 1] and 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Then, both the sequences {xn} and {yn} converge weakly to an element z ∈ Fix(S)∩Γ.
Proof. First of all, in terms of conditions (ii) and (iii), without loss of generality
we may assume that {βn} ⊂ [a, b] for some a, b ∈ (0, 1) and {βn} ⊂ [c, d] for some
c, d ∈ (0, 1). Now we assert that PC(I−λ∇fα) is ζ-averaged for each λ ∈ (0, 2

α+‖A‖2 ),
where

ζ =
2 + λ(α + ‖A‖2)

4
.

Indeed, it is easy to see that ∇f = A∗(I − PQ)A is 1
‖A‖2 -ism, that is,

〈∇f(x)−∇f(y), x− y〉 ≥ 1
‖A‖2

‖∇f(x)−∇f(y)‖2.

Observe that

(α + ‖A‖2)〈∇fα(x)−∇fα(y), x− y〉
= (α + ‖A‖2)[α‖x− y‖2 + 〈∇f(x)−∇f(y), x− y〉]
= α2‖x− y‖2 + α〈∇f(x)−∇f(y), x− y〉
+α‖A‖2‖x− y‖2 + ‖A‖2〈∇f(x)−∇f(y), x− y〉
≥ α2‖x− y‖2 + 2α〈∇f(x)−∇f(y), x− y〉+ ‖∇f(x)−∇f(y)‖2
= ‖α(x− y) +∇f(x)−∇f(y)‖2
= ‖∇fα(x)−∇fα(y)‖2.
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Hence, it follows that ∇fα = αI + A∗(I − PQ)A is 1
α+‖A‖2 -ism. Thus, λ∇fα is

1
λ(α+‖A‖2) -ism according to Proposition 2.2 (ii). By Proposition 2.2 (iii) the comple-

ment I − λ∇fα is λ(α+‖A‖2)
2 -averaged. Therefore, noting that PC is 1

2 -averaged and
utilizing Proposition 2.3 (iv), we know that for each λ ∈ (0, 2

α+‖A‖2 ), PC(I − λ∇fα)
is ζ-averaged with

ζ =
1
2

+
λ(α + ‖A‖2)

2
− 1

2
· λ(α + ‖A‖2)

2
=

2 + λ(α + ‖A‖2)
4

∈ (0, 1).

This shows that PC(I − λ∇fα) is nonexpansive. Furthermore, for λ ∈ (0, 2
‖A‖2 ),

utilizing the fact that limn→∞
2

αn+‖A‖2 = 2
‖A‖2 we may assume that

0 < λ <
2

αn + ‖A‖2
, ∀n ≥ 0.

Consequently, it follows that for each integer n ≥ 0, PC(I − λ∇fαn
) is ζn-averaged

with

ζn =
1
2

+
λ(αn + ‖A‖2)

2
− 1

2
· λ(αn + ‖A‖2)

2
=

2 + λ(αn + ‖A‖2)
4

∈ (0, 1).

This immediately implies that PC(I − λ∇fαn
) is nonexpansive for all n ≥ 0.

Next we divide the remainder of the proof into several steps.
Step 1. {xn} is bounded.

Indeed, take a fixed p ∈ Fix(S) ∩ Γ arbitrarily. Then, we get Sp = p and PC(I −
λ∇f)p = p for λ ∈ (0, 2

‖A‖2 ). Hence, we have

‖yn − p‖ = ‖(1− βn)(xn − p) + βn[PC(I − λ∇fαn)yn − p]‖
≤ (1− βn)‖xn − p‖+ βn‖PC(I − λ∇fαn

)yn − p‖
= (1− βn)‖xn − p‖+ βn‖PC(I − λ∇fαn

)yn − PC(I − λ∇f)p‖
≤ (1− βn)‖xn − p‖+ βn[‖PC(I − λ∇fαn

)yn − PC(I − λ∇fαn
)p‖

+‖PC(I − λ∇fαn)p− PC(I − λ∇f)p‖]
≤ (1− βn)‖xn − p‖+ βn[‖yn − p‖+ ‖(I − λ∇fαn)p− (I − λ∇f)p‖]
= (1− βn)‖xn − p‖+ βn[‖yn − p‖+ λαn‖p‖],

which implies that

‖yn − p‖ ≤ ‖xn − p‖+
βn

1− βn
λαn‖p‖ ≤ ‖xn − p‖+

b

1− b
λαn‖p‖. (3.11)

Thus, we obtain that

‖xn+1 − p‖ = ‖γn(yn − p) + (1− γn)[SPC(I − λ∇fαn
)xn+1 − p]‖

≤ γn‖yn − p‖+ (1− γn)‖SPC(I − λ∇fαn
)xn+1 − p‖

≤ γn‖yn − p‖+ (1− γn)‖PC(I − λ∇fαn
)xn+1 − p‖

= γn‖yn − p‖+ (1− γn)‖PC(I − λ∇fαn)xn+1 − PC(I − λ∇f)p‖
≤ γn‖yn − p‖+ (1− γn)[‖PC(I − λ∇fαn)xn+1 − PC(I − λ∇fαn)p‖
+‖PC(I − λ∇fαn

)p− PC(I − λ∇f)p‖]
≤ γn‖yn − p‖+ (1− γn)[‖xn+1 − p‖+ ‖(I − λ∇fαn

)p− (I − λ∇f)p‖]
= γn‖yn − p‖+ (1− γn)[‖xn+1 − p‖+ λαn‖p‖],
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which together with (3.11) implies that

‖xn+1 − p‖ ≤ ‖yn − p‖+ 1−γn

γn
λαn‖p‖

≤ ‖xn − p‖+ b
1−bλαn‖p‖+ 1−c

c λαn‖p‖
≤ ‖xn − p‖+ 2 max{ b

1−b ,
1−c

c }λαn‖p‖.

Since
∑∞

n=0 αn < ∞, according to Corollary 2.1 we conclude that

lim
n→∞

‖xn − p‖ exists for each p ∈ Fix(S) ∩ Γ . (3.12)

Therefore, {xn} is bounded and so are {yn}, {∇f(xn)} and {∇f(yn)}.
Step 2. limn→∞ ‖un − xn‖ = limn→∞ ‖xn − yn‖ = limn→∞ ‖vn − Svn‖ =
limn→∞ ‖xn+1−xn‖ = 0, where un = PC(I−λ∇fαn)xn+1 and vn = PC(I−λ∇fαn)yn.

Indeed, observe that

‖yn − p‖2 = ‖(1− βn)(xn − p) + βn(vn − p)‖2
= (1− βn)‖xn − p‖2 + βn‖vn − p‖2 − βn(1− βn)‖xn − vn‖2
≤ (1− βn)‖xn − p‖2 + βn[‖yn − p‖+ λαn‖p‖]2 − βn(1− βn)‖xn − vn‖2
= (1− βn)‖xn − p‖2 + βn‖yn − p‖2 + αnβn(2λ‖p‖‖yn − p‖+ αnλ2‖p‖2)
−βn(1− βn)‖xn − vn‖2,

and hence

‖yn − p‖2 ≤ ‖xn − p‖2 + αn
βn

1−βn
(2λ‖p‖‖yn − p‖+ αnλ2‖p‖2)− βn‖xn − vn‖2

≤ ‖xn − p‖2 + αnM1 − βn‖xn − vn‖2,
(3.13)

where M1 = supn≥0{
βn

1−βn
(2λ‖p‖‖yn − p‖+ αnλ2‖p‖2)} < ∞.

Also, observe that

‖xn+1 − p‖2 = ‖γn(yn − p) + (1− γn)(Sun − p)‖2
= γn‖yn − p‖2 + (1− γn)‖Sun − p‖2 − γn(1− γn)‖yn − Sun‖2
≤ γn‖yn − p‖2 + (1− γn)‖un − p‖2 − γn(1− γn)‖yn − Sun‖2
≤ γn‖yn − p‖2 + (1− γn)[‖xn+1 − p‖
+λαn‖p‖]2 − γn(1− γn)‖yn − Sun‖2
= γn‖yn − p‖2 + (1− γn)[‖xn+1 − p‖2
+αn(2λ‖p‖‖xn+1 − p‖+ αnλ2‖p‖2)]
−γn(1− γn)‖yn − Sun‖2,

which together with (3.13) yields that

‖xn+1 − p‖2 ≤ ‖yn − p‖2 + αn
1−γn

γn
(2λ‖p‖‖xn+1 − p‖+ αnλ2‖p‖2)

−(1− γn)‖yn − Sun‖2
≤ ‖yn − p‖2 + αnM2 − (1− γn)‖yn − Sun‖2
≤ ‖xn − p‖2 + αnM1 − βn‖xn − vn‖2 + αnM2 − (1− γn)‖yn − Sun‖2
= ‖xn − p‖2 + αn(M1 + M2)− βn‖xn − vn‖2 − (1− γn)‖yn − Sun‖2,

where M2 = supn≥0{
1−γn

γn
(2λ‖p‖‖xn+1 − p‖ + αnλ2‖p‖2)} < ∞. Hence, it follows

that

βn‖xn−vn‖2+(1−γn)‖yn−Sun‖2 ≤ ‖xn−p‖2−‖xn+1−p‖2+αn(M1+M2). (3.14)
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Since limn→∞ αn = 0, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and 0 <
lim infn→∞ γn ≤ lim supn→∞ γn < 1, we deduce from the existence of limn→∞ ‖xn−p‖
that

lim
n→∞

‖xn − vn‖ = lim
n→∞

‖yn − Sun‖ = 0. (3.15)

Thus, utilizing (3.10) we get

lim
n→∞

‖yn − xn‖ = lim
n→∞

βn‖vn − xn‖ = 0,

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

(1− γn)‖Sun − yn‖ = 0.

and so
‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖ → 0 as n →∞.

Furthermore, note that

‖Svn − vn‖ ≤ ‖Svn − Sun‖+ ‖Sun − yn‖+ ‖yn − vn‖
≤ ‖vn − un‖+ ‖Sun − yn‖+ ‖yn − vn‖
= ‖PC(I − λ∇fαn)yn − PC(I − λ∇fαn)xn+1‖
+‖Sun − yn‖+ (1− βn)‖xn − vn‖
≤ ‖yn − xn+1‖+ ‖Sun − yn‖+ (1− βn)‖xn − vn‖.

This implies that
lim

n→∞
‖Svn − vn‖ = lim

n→∞
‖un − vn‖ = 0, (3.16)

and so
‖un − xn‖ ≤ ‖un − vn‖+ ‖vn − xn‖ → 0 as n →∞.

Step 3. ωw(xn) ⊂ Fix(S) ∩ Γ .
Indeed, suppose that x̂ ∈ ωw(xn) and {xnj

} is a subsequence of {xn} such that
xnj

⇀ x̂. Set T = PC(I − λ∇f). Then for each λ ∈ (0, 2
‖A‖2 ), T is nonexpansive.

As a matter of fact, we have seen that ∇f = A∗(I − PQ)A is 1
‖A‖2 -ism and λ∇f =

λA∗(I −PQ)A is 1
λ‖A‖2 -ism. Hence, by Proposition 2.2 (iii) the complement I −λ∇f

is λ‖A‖2
2 -averaged. Therefore, noting that PC is 1

2 -averaged and applying Proposition
2.3 (iv), we know that for each λ ∈ (0, 2

‖A‖2 ), T = PC(I − λ∇f) is α-averaged, with

α =
1
2

+
λ‖A‖2

2
− 1

2
· λ‖A‖2

2
=

2 + λ‖A‖2

4
∈ (0, 1).

Consequently, it is clear that T is nonexpansive.
Now observe that
‖xn − Txn‖ ≤ ‖xn − un‖+ ‖un − Txn‖

= ‖xn − un‖+ ‖PC(I − λ∇fαn
)xn+1 − PC(I − λ∇f)xn‖

≤ ‖xn − un‖+ ‖PC(I − λ∇fαn
)xn+1 − PC(I − λ∇fαn

)xn‖
+‖PC(I − λ∇fαn

)xn − PC(I − λ∇f)xn‖
≤ ‖xn − un‖+ ‖xn+1 − xn‖+ λαn‖xn‖.

So, from ‖xn − un‖ → 0, ‖xn+1 − xn‖ → 0, αn → 0 and the boundedness of {xn} it
follows that

lim
n→∞

‖xn − Txn‖ = 0. (3.17)
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Taking into account xnj ⇀ x̂ and utilizing Lemma 2.1, we obtain x̂ ∈ Fix(T ). But
Fix(T ) = Γ ; we therefore have x̂ ∈ Γ . Furthermore, since xnj

⇀ x̂ and limn→∞ ‖un−
xn‖ = limn→∞ ‖un − vn‖ = limn→∞ ‖Svn − vn‖ = 0, it is known that vnj

⇀ x̂ and
limn→∞ ‖Svnj

− vnj
‖ = 0. Thus, from Lemma 2.1 we get x̂ ∈ Fix(S). Therefore, we

have x̂ ∈ Fix(S) ∩ Γ . This shows that there holds the relation

ωw(xn) ⊂ Fix(S) ∩ Γ . (3.18)

Step 4. Both the sequences {xn} and {yn} converge weakly to an element z ∈
Fix(S) ∩ Γ .

Indeed, according to (3.12) and (3.18) we apply Proposition 2.4 to Fix(S) ∩ Γ
to show that {xn} converges weakly to a point z ∈ Fix(S) ∩ Γ . Moreover, from
‖xn − yn‖ → 0 it follows that yn ⇀ z. This completes the proof. �
Remark 3.3. Theorem 3.2 improves, extends and develops [30] (Theorem 5.7) in the
following aspects:

(a) The iterative algorithm in [30] (Theorem 5.7) is extended to develop the Mann’s
type implicit extragradient-like algorithm in Theorem 3.2.

(b) The technique of proving weak convergence in Theorem 3.2 is very different
from that in [30] (Theorem 5.7) because our technique depends on the demiclosedness
principle for nonexpansive mappings in Hilbert spaces.

(c) The problem of finding an element of Fix(S) ∩ Γ is more general than the one
of finding a solution of the SFP in [30] (Theorem 5.7).

4. Concluding remarks

In this paper, we considered the split feasibility problem (SFP) in infinite-
dimensional Hilbert spaces, and studied the relaxed implicit extragradient-like meth-
ods for finding a common element of the solution set Γ of the SFP and the set Fix(S)
of fixed points of a nonexpansive mapping S. Two implicit iterative algorithms for
finding an element of Fix(S)∩ Γ which are combinations of Mann’s implicit iterative
method and Korpelevich’s extragradient method are presented. Whenever S ≡ I
(the identity mapping), strong convergence of one algorithm to the minimum-norm
solution of the SFP is obtained under very appropriate conditions. Whenever S 6= I,
weak convergence of the other algorithm is also obtained under quite mild conditions.
As mentioned, in this paper, Γ = Fix(T ), where T = PC(I − λ∇f) is a nonexpan-
sive mapping. Thus finding a point in Fix(S) ∩ Γ is equivalent to finding a point in
Fix(S) ∩ Fix(T ) for two nonexpansive mappings S and T . On the other hand, Xu
and Ori [27] introduced an implicit iteration process for finding a common fixed point
of a finite family of nonexpansive mappings in infinite-dimensional Hilbert spaces.
Subsequently, Zeng and Yao [32] proposed another implicit iteration scheme with
perturbed mapping for the approximation of common fixed points of a finite family of
nonexpansive mappings in infinite-dimensional Hilbert spaces. Obviously, the relaxed
implicit extragradient-like methods of this paper are superior to the two implicit iter-
ative algorithms in [27], [32] because the relaxed implicit extragradient-like methods
under consideration comprises one predictor step and another corrector step and thus
are quite reasonable in the practical implementation.
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