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Abstract. In this paper, we present some common fixed point results for a commuting pair of

mappings, including a quasi-nonexpansive single valued mapping and a generalized nonexpansive
multivalued mapping in strictly convex Banach spaces, as well as for a pointwise asymptotically

nonexpansive mapping and a generalized nonexpansive multivalued mapping in uniformly convex

Banach spaces. The results we obtain extend and improve some known results due to Garcia-Falset
et al. (2011), Kirk and Massa (1990), Espinola et al. (2011), Kaewcharoen and Panyanak (2011) as

well as that of Abkar and Eslamian (2010).
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1. Introduction

The study of fixed points for multivalued contractions and nonexpansive mappings
using the Hausdorff metric was initiated by Markin [17] and Nadler [18]. Since then
the metric fixed point theory of multivalued mappings has been rapidly developed.
Using the Edelstein’s method of asymptotic centers, Lim [16] proved the existence
of fixed points for multivalued nonexpansive mappings in uniformly convex Banach
spaces. Kirk and Massa [15] extended Lim’s theorem to Banach spaces for which
the asymptotic center of a bounded sequence in a bounded closed convex subset is
nonempty and compact.

On the other hand, in 2008, Suzuki [19] introduced a condition on mappings,
called condition (C), which is weaker than nonexpansiveness and stronger than quasi-
nonexpansiveness. He then proved some fixed point and convergence theorems for
such mappings. Motivated by this result, J. Garcia-Falset, E. Llorens-Fuster and T.
Suzuki in [6], introduced two kinds of generalization for the condition (C) and studied
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both the existence of fixed points and their asymptotic behavior. Recently, the current
authors used a modified condition for multivalued mappings, and proved some fixed
point theorems for multivalued mappings satisfying this condition in Banach spaces
[1], as well as in CAT(0) spaces [2]. Very recently, Kaewcharoen and Panyanak [12]
and Espinola, Lorenzo and Nicolae [5] generalized Kirk and Massa’s theorem for
continuous generalized nonexpansive multivalued mappings.

In this paper, we present some new common fixed point theorems for a commuting
pair of mappings, including a quasi-nonexpansive single valued mapping and a gener-
alized nonexpansive multivalued mapping in a strictly convex Banach space, as well
as for a pointwise asymptotically nonexpansive mapping and a generalized nonexpan-
sive multivalued mapping in a uniformly convex Banach space. Our result improves a
number of known results; including that of Lim [16], Kirk and Massa [15], Suzuki [19],
Garcia et al. [6], Abkar and Eslamian [1], Kaewcharoen and Panyanak [12], Espinola
et al. [5] and of Dhompongsa et al. [4].

2. Preliminaries

Let X be a Banach space. X is said to be strictly convex if ‖x + y‖ < 2 for all
x, y ∈ X, ‖x‖ = ‖y‖ = 1 and x 6= y. We recall that a Banach space X is said to
be uniformly convex in every direction (UCED, for short) provided that for every
ε ∈ (0, 2] and z ∈ X with ‖z‖ = 1, there exists a positive number δ (depending on
ε and z) such that for all x, y ∈ X with ‖x‖ ≤ 1, ‖y‖ ≤ 1, and x − y ∈ {tz : t ∈
[−2,−ε] ∪ [ε, 2]} we have ‖x + y‖ ≤ 2(1 − δ). X is said to be uniformly convex if X
is UCED and inf{δ(ε, z) : ‖z‖ = 1} > 0 for all ε ∈ (0, 2]. It is rather obvious that
uniform convexity implies UCED, and UCED implies strict convexity.
Definition 2.1 ([14]). Let D be a nonempty subset of a Banach space X. A mapping
T : D → D is called pointwise asymptotically nonexpansive if there exists a sequence
of functions αn with limn→∞ αn(x) = 1 and αn(x) ≥ 1 such that

‖Tn(x)− Tn(y)‖ ≤ αn(x)‖x− y‖, x, y ∈ D.

Definition 2.2 ([14]). Let D be a bounded closed convex subset of a uniformly convex
Banach space X and T : D → D be a pointwise asymptotically nonexpansive mapping.
Then the set of fixed points of T is nonempty, closed and convex.

The following definition is due to Suzuki [19].
Definition 2.3 ([19]). Let T be a mapping on a subset D of a Banach space X. T is
said to satisfy condition (C) if

1
2
‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ D.

In [6], J. Garcia-Falset et al. introduced two generalizations of the condition (C)
in a Banach space:
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Definition 2.4 Let T be a mapping on a subset D of a Banach space X and µ ≥ 1.
T is said to satisfy condition (Eµ) if

‖x− Ty‖ ≤ µ‖x− Tx‖+ ‖x− y‖, x, y ∈ D.

We say that T satisfies condition (E) whenever T satisfies the condition (Eµ) for
some µ ≥ 1.
Definition 2.5 Let T be a mapping on a subset D of a Banach space X and λ ∈ (0, 1).
T is said to satisfy condition (Cλ) if

λ‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ D.

Notice that if 0 < λ1 < λ2 < 1 then the condition (Cλ1) implies the condition (Cλ2).
We recall that a mapping T : D → D is said to be quasi-nonexpansive provided that
Fix(T ) 6= ∅ and for each x ∈ D and y ∈ Fix(T ) we have

‖T (x)− y‖ ≤ ‖x− y‖.
It is clear that every mapping T with nonempty fixed point set that satisfies the
condition (Cλ) is quasi-nonexpansive.
Theorem 2.6 ([6]). Let D be a nonempty bounded convex subset of a Banach space
X. Let T : D → D satisfy the condition (Cλ) on D for some λ ∈ (0, 1). For r ∈ [λ, 1)
define a sequence {xn} in D by taking x1 ∈ D and

xn+1 = rT (xn) + (1− r)xn for n ≥ 1,

then {xn} is an approximate fixed point sequence for T , that is

lim
n→∞

‖xn − T (xn)‖ = 0.

Lemma 2.7 ([11]). Let T be a quasi nonexpansive mapping defined on a closed subset
E of a Banach space X. Then Fix(T) is closed. Moreover, if X is strictly convex and
E is convex, then Fix(T) is also convex.

Let D be a nonempty subset of a Banach space X. For x ∈ X, we write

dist(x,D) = inf{‖ x− z ‖: z ∈ D}.
We denote by CB(D) and KC(D) the collection of all nonempty closed bounded
subsets, and nonempty compact convex subsets of D, respectively. The Hausdorff
metric H on CB(X) is defined by

H(A,B) := max{sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)},

for all A,B ∈ CB(X).
Let T : X → 2X be a multivalued mapping. An element x ∈ X is said to be a

fixed point of T , if x ∈ T (x).
It is rather obvious that if D is a convex subset of a strictly convex Banach space

X, then for x ∈ X, if there exist y, z ∈ D such that

‖ x− y ‖= dist(x,D) =‖ x− z ‖
then y = z.
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Definition 2.8 A multivalued mapping T : X → CB(X) is said to be nonexpansive
provided that

H(Tx, Ty) ≤ ‖x− y‖, x, y ∈ X.

Definition 2.9 ([3]). A multivalued mapping T : X → CB(X) is said to satisfy the
condition (C) provided that

1
2
dist(x, Tx) ≤ ‖x− y‖ =⇒ H(Tx, Ty) ≤ ‖x− y‖, x, y ∈ X.

We now state the multivalued analogs of the conditions (E) and (Cλ) in the following
manner (see also [2]):

Definition 2.10 A multivalued mapping T : X → CB(X) is said to satisfy condition
(Eµ) provided that

dist(x, Ty) ≤ µdist(x, Tx) + ‖x− y‖, x, y ∈ X.

We say that T satisfies condition (E) whenever T satisfies (Eµ) for some µ ≥ 1.

Definition 2.11 A multivalued mapping T : X → CB(X) is said to satisfy condition
(Cλ) for some λ ∈ (0, 1) provided that

λ dist(x, Tx) ≤ ‖x− y‖ =⇒ H(Tx, Ty) ≤ ‖x− y‖, x, y ∈ X.

It is rather easy to see that every multivalued nonexpansive mapping satisfies the
condition (E1).

Lemma 2.12 Let T : X → CB(X) be a multivalued nonexpansive mapping, then T
satisfies the condition (E1).

We now provide an example of a generalized nonexpansive multivalued mapping
which satisfies the conditions (Cλ) and (E), but it is not nonexpansive.

Example 2.13 We define T on the closed interval [0, 5] by

T (x) =

{
[0, x

5 ], x 6= 5
{1} x = 5.

It is not difficult to verify that T has the required properties (for details, see [2]).

Finally, we recall the following lemma from [8].

Lemma 2.14 Let {zn} and {wn} be two bounded sequences in a Banach space X,
and let 0 < λ < 1. If for every natural number n we have zn+1 = λwn + (1 − λ)zn

and ‖wn+1 − wn‖ ≤ ‖zn+1 − zn‖, then limn→∞ ‖wn − zn‖ = 0.
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3. Common Fixed Point Theorems

Let D be a nonempty bounded closed convex subset of a Banach space X and let
{xn} be a bounded sequence in X. We use r(x, {xn}) and A(D, {xn}) to denote the
asymptotic radius and the asymptotic center of {xn} in D, respectively, i.e.

r(D, {xn}) = inf{lim sup
n→∞

‖xn − x‖ : x ∈ D},

A(D, {xn}) = {x ∈ D : lim sup
n→∞

‖xn − x‖ = r(D, {xn})}.

Obviously, the convexity of D implies that A(D, {xn}) is convex. It is also known
that in a UCED Banach space X, the asymptotic center of a sequence with respect
to a weakly compact convex set is a singleton; the same is true for a sequence in a
bounded closed convex subset of a uniformly convex Banach space X (see [13]).
Definition 3.1 A bounded sequence {xn} is said to be regular with respect to D if
for every subsequence {x′n} we have

r(D, {xn}) = r(D, {x′n});
further, {xn} is called asymptotically uniform relative to D if

A(D, {xn}) = A(D, {x′n}).

The following lemma was proved by Goebel and Lim.

Lemma 3.2 (see [7] and [16]). Let {xn} be a bounded sequence in X and let D be a
nonempty closed convex subset of X.

(i) then there exists a subsequence of {xn} which is regular relative to D.
(ii) if D is separable, then {xn} contains a subsequence which is asymptotically

uniform relative to D.

As a consequence of Remark 2 and Theorem 8 in [6], we obtain the following result.

Theorem 3.3 Let D be a nonempty closed convex bounded subset of a Banach space
X. Let T : D → D be a single valued mapping satisfying the conditions (E) and (Cλ)
for some λ ∈ (0, 1). Suppose the asymptotic center relative to D of each sequence in
D is nonempty and compact. Then T has a fixed point.

Definition 3.4 Let D be a nonempty subset of a Banach space X. Two mappings
t : D → D and T : D → CB(D) are said to be commuting if t(T (x)) ⊂ T (t(x)) for
all x ∈ D.

We now state and prove the first main result of this paper.

Theorem 3.5 Let D be a nonempty closed convex bounded subset of a strictly convex
Banach space X, t : D → D be a quasi-nonexpansive single valued mapping, and
T : D → KC(D) be a continuous multivalued mapping satisfying the condition (Cλ)
for some λ ∈ (0, 1), and that t, T commute. If the asymptotic center relative to Fix(t)
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of each sequence in Fix(t) is nonempty and compact, then there exists a point z ∈ D
such that z = t(z) ∈ T (z).

Proof. According to Lemma 2.7, it follows that Fix(t) is a closed convex subset of
X. We show that for x ∈ Fix(t), T (x) ∩ Fix(t) 6= ∅. To see this, let x ∈ Fix(t)
and let y ∈ T (x) be the unique nearest point to x. Since t and T commute, we have
t(y) ∈ T (t(x)) = T (x). Since t is quasi nonexpansive, we have ‖t(y)− x‖ ≤ ‖y − x‖.
Now by the uniqueness of y as the nearest point to x, we get t(y) = y. Therefore
T (x) ∩ Fix(t) 6= ∅ for x ∈ Fix(t).

Now we find an approximate fixed point sequence for T in Fix(t). Take x0 ∈
Fix(t), since T (x0) ∩ Fix(t) 6= ∅, we can choose y0 ∈ T (x0) ∩ Fix(t). Define

x1 = (1− λ)x0 + λy0.

Since Fix(t) is a convex set, we have x1 ∈ Fix(t). Let y1 ∈ T (x1) be chosen in such
a way that

‖y0 − y1‖ = dist(y0, T (x1)).
We see that y1 ∈ Fix(t). Indeed, Since t is quasi-nonexpansive, we get

‖y0 − t(y1)‖ ≤ ‖y0 − y1‖
which contradicts the uniqueness of y1 as the unique nearest point to y0 (note that
t(y1) ∈ T (x1)). Similarly, put

x2 = (1− λ)x1 + λy1,

again we choose y2 ∈ T (x2) in such a way that

‖y1 − y2‖ = dist(y1, T (x2)).

By the same argument, we get y2 ∈ Fix(t). In this way we will find a sequence {xn}
in Fix(t) such that

xn+1 = (1− λ)xn + λyn,

where yn ∈ T (xn) ∩ Fix(t) and

‖yn−1 − yn‖ = dist(yn−1, T (xn)).

Thus for every natural number n ≥ 1 we have

λ‖xn − yn‖ = ‖xn − xn+1‖
from which it follows that

λ dist(xn, T (xn)) ≤ λ‖xn − yn‖ = ‖xn − xn+1‖, n ≥ 1.

Our assumption now gives

H(T (xn), T (xn+1)) ≤ ‖xn − xn+1‖, n ≥ 1,

and hence for each n ≥ 1,

‖yn − yn+1‖ = dist(yn, T (xn+1)) ≤ H(T (xn), T (xn+1))

≤ ‖xn − xn+1‖.
We now apply Lemma 2.13 to conclude that limn→∞ ‖xn−yn‖ = 0, where yn ∈ T (xn).
From Lemma 3.2, by passing to a subsequence, we may assume that {xn} is regular
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asymptotically uniform relative to Fix(t). Let r = r(Fix(t), {xn}). Now, we show
that Tx ∩ A(Fix(t), {xn}) 6= ∅ for x ∈ A(Fix(t), {xn}). If r = 0, then we have
xn → x. Then by the continuity of T we have

dist(x, Tx) ≤ ‖x− xn‖+ dist(xn, Txn) + H(Txn, Tx) → 0

which implies that x ∈ T (x). In the other case, if r > 0, there exists a natural number
n0 such that for every n ≥ n0,

λ dist(xn, Txn) ≤ ‖xn − x‖
and hence from our assumption we have

H(T (xn), T (x)) ≤ ‖xn − x‖, ∀n ≥ n0.

The compactness of T (x) implies that for each n ≥ 1 we can find zn ∈ T (x) such that

‖yn − zn‖ = dist(yn, T (x)).

Also we have

‖yn − zn‖ = dist(yn, T (x)) ≤ H(T (xn), T (x)) ≤ ‖xn − x‖, ∀n ≥ n0.

Since T (x) is compact, the sequence {zn} has a convergent subsequence {znk
} with

limk→∞ znk
= z ∈ T (x). Note that

‖xnk
− z‖ ≤ ‖xnk

− ynk
‖+ ‖ynk

− znk
‖+ ‖znk

− z‖
≤ ‖xnk

− ynk
‖+ ‖xnk

− x‖+ ‖znk
− z‖,

for nk ≥ n0. This implies that

lim sup
k→∞

‖xnk
− z‖ ≤ lim sup

k→∞
‖xnk

− x‖ ≤ r.

Since {xn} is regular asymptotically uniform relative to Fix(t), it follows that

z ∈ A(Fix(t), {xnk
}) = A(Fix(t), {xn}),

therefore
z ∈ T (x) ∩A(Fix(t), {xn}),

which in turn implies that T (x) ∩A(Fix(t), {xn}) 6= ∅ for x ∈ A(Fix(t), {xn}). Now
we define the mapping

T̃ : A(Fix(t), {xn}) → KC(A(Fix(t), {xn}))
by T̃ (z) = A(Fix(t), {xn}) ∩ T (z). From Proposition 2.45 in [10] we know that the
mapping T̃ is upper semicontinuous. Since A(Fix(t), {xn})∩T (z) is a compact convex
set, we can apply the Kakutani-Bohnenblust-Karlin Theorem to obtain a fixed point
v for T̃ (see [9]). This means that v is a common fixedpoint of T and t.

As a result, we obtain the following theorem.

Theorem 3.6 Let D be a nonempty closed convex bounded subset of a strictly convex
Banach space X. Let t : D → D, and T : D → KC(D) be two nonexpansive
mappings. Assume that t, T commute. Suppose the asymptotic center relative to
Fix(t) of each sequence in Fix(t) is nonempty and compact. Then there exists a
point z ∈ D such that z = t(z) ∈ T (z).
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Proof. Since T is nonexpansive, we conclude that T satisfies the condition (Cλ) for
all λ ∈ (0, 1). Hence the result follows from Theorem 3.5.

Theorem 3.7 Let D be a nonempty compact convex subset of a strictly convex Banach
space X, t : D → D be a single valued mapping satisfying the conditions (E) and
(Cλ) for some λ ∈ (0, 1), and T : D → KC(D) be a continuous multivalued mapping
satisfying the condition (Cλ) for some λ ∈ (0, 1), and that t, T commute. Then there
exists a point z ∈ D such that z = t(z) ∈ T (z).

Proof. By Theorem 3.3 the mapping t has a nonempty fixed point set Fix(t) which is
a closed convex subset of X (by Lemma 2.7). Since D is compact, we conclude that
Fix(t) is compact too. Since X is strictly convex, we infer that the asymptotic center
relative to Fix(t) of each sequence in Fix(t) is nonempty and compact. Therefore,
by Theorem 3.5, T and t have a common fixed point.

By the same argument as in the proof of Theorem 3.4 in [2] we obtain the following
theorem.

Theorem 3.8 Let D be a nonempty closed convex bounded subset of a strictly convex
Banach space X, t : D → D be a quasi-nonexpansive single valued mapping, and
T : D → KC(D) be a multivalued mapping satisfying the conditions (E) and (Cλ) for
some λ ∈ (0, 1), and that t, T commute. If the asymptotic center relative to Fix(t) of
each sequence in Fix(t) is nonempty and singleton, then there exists a point z ∈ D
such that z = t(z) ∈ T (z).

Theorem 3.9 Let D be a nonempty weakly compact convex subset of a UCED Banach
space X. Let t : D → D be a single valued maping, and T : D → KC(D) be a
multivalued mapping, both of them satisfying the conditions (E) and (Cλ) for some
λ ∈ (0, 1). If t, T commute, then there exists a point z ∈ D such that z = t(z) ∈ T (z).

Proof. By Theorem 3.3, t has a nonempty fixed point set Fix(t) which is a closed
convex subset of X (by Lemma 2.7). Since D is weakly compact, it follows that Fix(t)
is weakly compact as well. Since X is UCED, we conclude that the asymptotic center
relative to Fix(t) of each sequence in Fix(t) is nonempty and singleton. Therefore,
by Theorem 3.8, T and t have a common fixed point.

Corollary 3.10 Let D be a nonempty closed convex bounded subset of a uniformly
convex Banach space X, t : D → D be a single valued, and T : D → KC(D) be a
multivalued mapping, both satisfying the conditions (E) and (Cλ) for some λ ∈ (0, 1).
If t, T commute, then there exists a point z ∈ D such that z = t(z) ∈ T (z).

Finally, we state the second main result of this paper.

Theorem 3.11 Let D be a nonempty closed convex bounded subset of a uniformly
convex Banach space X. Let f : D → D be a pointwise asymptotically nonexpansive
mapping, and let T : D → KC(D) be a multivalued mapping satisfying the conditions
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(E) and (Cλ) for some λ ∈ (0, 1). If f and T are commuting, then they have a
common fixed point, i.e. there exists a point z ∈ D such that z = f(z) ∈ T (z).

Proof. Using Theorem 2.2, it follows that Fix(f) is a nonempty closed convex subset
of D. We show that for each x ∈ Fix(f), T (x) ∩ Fix(f) 6= ∅. To see this, let
x ∈ Fix(f), since f and T are commuting, we have f(y) ∈ T (x) for each y ∈ T (x).
Therefore T (x) is invariant under f for each x ∈ Fix(f). Since T (x) is a bounded
closed convex subset of the uniformly convex Banach space X, by Theorem 2.2 we
conclude that f has a fixed point in T (x) and therefore T (x) ∩ Fix(f) 6= ∅ for x ∈
Fix(f).

Now we find an approximate fixed point sequence for T in Fix(f). Take x0 ∈
Fix(f), since T (x0) ∩ Fix(f) 6= ∅, we can choose y0 ∈ T (x0) ∩ Fix(f). Define

x1 = (1− λ)x0 + λy0.

Since Fix(f) is convex, we have x1 ∈ Fix(f). Let y1 ∈ T (x1) be chosen in such a
way that

‖y0 − y1‖ = dist(y0, T (x1)).

Next we show that y1 ∈ Fix(f). Indeed, we consider the sequence {fn(y1)}. Since T
and f commute, we know that fn(y1) ∈ T (x1) for any n. Since T (x1) is compact, the
sequence {fn(y1)} has a convergent subsequence with

lim
k→∞

fnk(y1) = z ∈ T (x1),

so that

‖z − y0‖ = lim
k→∞

‖fnk(y1)− y0‖ = lim
k→∞

‖fnk(y1)− fnk(y0)‖

≤ lim
k→∞

αnk
(y0)‖y1 − y0‖ ≤ dist(y0, T (x1)) = ‖y0 − y1‖.

Now by the uniqueness of y1 as the nearest point to y0, we have z = y1, consequently
limk→∞ fnk(y1) = y1 and so f(y1) = y1. In this way we will find a sequence {xn} in
Fix(f) such that xn+1 = (1− λ)xn + λyn where yn ∈ T (xn) ∩ Fix(f) and

‖yn−1 − yn‖ = dist(yn−1, T (xn)).

Therefore for every natural number n ≥ 1 we have

λ‖xn − yn‖ = ‖xn − xn+1‖

from which it follows that

λ dist(xn, T (xn)) ≤ λ‖xn − yn‖ = ‖xn − xn+1‖, n ≥ 1.

Our assumption now gives

H(T (xn), T (xn+1)) ≤ ‖xn − xn+1‖, n ≥ 1,

and hence for each n ≥ 1,

‖yn − yn+1‖ = dist(yn, T (xn+1)) ≤ H(T (xn), T (xn+1))

≤ ‖xn − xn+1‖.
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We now apply Lemma 2.13 to conclude that limn→∞ ‖xn − yn‖ = 0, where yn ∈
T (xn). From Lemma 3.2, by passing to a subsequence, we may assume that {xn}
is regular with respect to Fix(f). Since Fix(f) is a closed convex bounded subset
of a uniformly convex Banach space X, it follows that the asymptotic center of the
sequence {xn} with respect to Fix(f) is singleton. Let A(Fix(f), {xn}) = {z}. Since
T (z) is compact, for each n ≥ 1, we can choose zn ∈ T (z) such that ‖xn − zn‖ =
dist(xn, T (z)). Moreover zn ∈ Fix(f) for all natural numbers n ≥ 1. Indeed, for any
n ≥ 1, we consider the sequence {fm(zn)}. Since T and f commute, and z ∈ Fix(f)
we have f(zn) ∈ f(T (z)) ⊂ T (f(z)) = T (z), and hence fm(zn) ∈ T (z) for any m.
Since T (z) is compact, the sequence {fm(zn)} has a convergent subsequence with

lim
k→∞

fmk(zn) = v ∈ T (z),

so that

‖v − xn‖ = lim
k→∞

‖fmk(zn)− xn‖ = lim
k→∞

‖fmk(zn)− fmk(xn)‖

≤ lim
k→∞

αmk
(xn)‖zn − xn‖ ≤ dist(xn, T (z)) = ‖xn − zn‖.

Now by the uniqueness of zn as the nearest point to xn, we have v = zn, consequently
limk→∞ fmk(zn) = zn and so f(zn) = zn, i.e., zn ∈ Fix(f). Since T (z) is compact, the
sequence {zn} has a convergent subsequence {znk

} with limk→∞ znk
= w ∈ Tz. Since

znk
∈ Fix(f) for all k, and Fix(f) is closed, we obtain w ∈ Fix(f). By assumption

there exists µ ≥ 1 such that

dist(xnk
, T z) ≤ µdist(xnk

, T (xnK
)) + ‖xnk

− z‖.

Note that

‖xnk
− w‖ ≤ ‖xnk

− znk
‖+ ‖znk

− w‖
≤ µdist(xnk

, T (xnk
)) + ‖xnk

− z‖+ ‖znk
− w‖.

This entails
lim sup

k→∞
‖xnk

− w‖ ≤ lim sup
k→∞

‖xnk
− z‖.

We conclude that z = w, hence z = f(z) ∈ T (z).

Finally, we supply an example to illustrate the main result of this paper.

Example 3.12. Suppose that X = R and D = [0, 7
2 ]. Define T and f by

T (x) =

{
[0, x

7 ], x 6= 7
2

{1} x = 7
2 .

and

f(x) =


0, x ∈ [0, 3]
4x− 12, x ∈ [3, 13

4 ]
−4x + 14, x ∈ [ 134 , 7

2 ].
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First we show that f is a pointwise asymptotically nonexpansive mapping. To this
end, we put α1(x) = 4 and αn(x) = 1 for n ≥ 2. Since fn(x) = 0 for all n ≥ 2, it
suffices to show that |f(x)− f(y)| ≤ 4|x− y|, for all x, y ∈ D.

Let x ∈ [0, 3] and y ∈ [3, 13
4 ], then we must have

|f(x)− f(y)| = 4y − 12 ≤ 4y − 4x = 4|x− y|.

Let x ∈ [0, 3] and y ∈ [ 134 , 7
2 ], then we need to have

|fx− fy| = −4y + 14 ≤ 4y − 4x,

or equivalently 14 + 4x ≤ 8y which holds. Now if x ∈ [3, 13
4 ] and y ∈ [ 134 , 7

2 ], we have
to verify that

|4(x + y)− 26| ≤ 4y − 4x.

If |4(x + y)− 26| = 4(x + y)− 26, then

4(x + y)− 26 ≤ 4y − 4x

is equivalent to 8x ≤ 26 which holds. If |4(x + y)− 26| = 26− 4(x + y), then

26− 4(x + y) ≤ 4y − 4x

is equivalent to 26 ≤ 8y which holds. Therefore for all x, y ∈ D we have |f(x)−f(y)| ≤
4|x− y|. But f is not nonexpansive. Indeed, let x = 3 and y = 13

4 then we have

|f(x)− f(y)| = 1 >
1
4

= |x− y|.

Now we show that T satisfies the conditions (E) and (Cλ). Let x, y ∈ [0, 7
2 ), then we

have
H(Tx, Ty) = |x− y

7
| ≤ |x− y|.

If x ∈ (0, 5
2 ] and y = 7

2 , we have

H(Tx, Ty) = 1 ≤ 7
2
− x.

In case that x ∈ ( 5
2 , 7

2 ) and y = 7
2 , we have dist(x, Tx) = 6x

7 . Therefore

1
2
dist(x, Tx) =

6x

14
>

30
28

> 1 > |x− y|.

Moreover
1
2
dist(y, Ty) =

5
4

> 1 > |x− y|.

These inequalities show that the mapping T satisfies the condition (Cλ) for λ = 1
2 .

Also for all x, y ∈ D we have

dist(x, Ty) ≤ 3d(x, Tx) + |x− y|,

so that T satisfies the condition (E). Now we shall see that the mapping T is not
nonexpansive. To see this we take x = 7

2 and y = 3. Then we have

H(Tx, Ty) = 1 >
1
2

= |x− y|.
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It is not difficult to see that T and f commute. It then follows from Theorem 3.11
that T and f have a common fixed point. We observe that 0 is a common fixed point
of f and T .
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