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Abstract. In this paper, we present some common fixed point results for a commuting pair of
mappings, including a quasi-nonexpansive single valued mapping and a generalized nonexpansive
multivalued mapping in strictly convex Banach spaces, as well as for a pointwise asymptotically
nonexpansive mapping and a generalized nonexpansive multivalued mapping in uniformly convex
Banach spaces. The results we obtain extend and improve some known results due to Garcia-Falset
et al. (2011), Kirk and Massa (1990), Espinola et al. (2011), Kaewcharoen and Panyanak (2011) as
well as that of Abkar and Eslamian (2010).
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1. INTRODUCTION

The study of fixed points for multivalued contractions and nonexpansive mappings
using the Hausdorff metric was initiated by Markin [17] and Nadler [18]. Since then
the metric fixed point theory of multivalued mappings has been rapidly developed.
Using the Edelstein’s method of asymptotic centers, Lim [16] proved the existence
of fixed points for multivalued nonexpansive mappings in uniformly convex Banach
spaces. Kirk and Massa [15] extended Lim’s theorem to Banach spaces for which
the asymptotic center of a bounded sequence in a bounded closed convex subset is
nonempty and compact.

On the other hand, in 2008, Suzuki [19] introduced a condition on mappings,
called condition (C), which is weaker than nonexpansiveness and stronger than quasi-
nonexpansiveness. He then proved some fixed point and convergence theorems for
such mappings. Motivated by this result, J. Garcia-Falset, E. Llorens-Fuster and T.
Suzuki in [6], introduced two kinds of generalization for the condition (C) and studied
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both the existence of fixed points and their asymptotic behavior. Recently, the current
authors used a modified condition for multivalued mappings, and proved some fixed
point theorems for multivalued mappings satisfying this condition in Banach spaces
[1], as well as in CAT(0) spaces [2]. Very recently, Kaewcharoen and Panyanak [12]
and Espinola, Lorenzo and Nicolae [5] generalized Kirk and Massa’s theorem for
continuous generalized nonexpansive multivalued mappings.

In this paper, we present some new common fixed point theorems for a commuting
pair of mappings, including a quasi-nonexpansive single valued mapping and a gener-
alized nonexpansive multivalued mapping in a strictly convex Banach space, as well
as for a pointwise asymptotically nonexpansive mapping and a generalized nonexpan-
sive multivalued mapping in a uniformly convex Banach space. Our result improves a
number of known results; including that of Lim [16], Kirk and Massa [15], Suzuki [19],
Garcia et al. [6], Abkar and Eslamian [1], Kaewcharoen and Panyanak [12], Espinola
et al. [5] and of Dhompongsa et al. [4].

2. PRELIMINARIES

Let X be a Banach space. X is said to be strictly convex if ||z 4+ y|| < 2 for all
z,y € X, ||z|| = |lyll = 1 and = # y. We recall that a Banach space X is said to
be uniformly convex in every direction (UCED, for short) provided that for every
e € (0,2] and z € X with ||z|| = 1, there exists a positive number ¢ (depending on
e and z) such that for all z,y € X with [jz|| < 1, |ly]| < 1l,and x —y € {tz : t €
[—2,—€] U e, 2]} we have ||z +y| < 2(1—46). X is said to be uniformly convex if X
is UCED and inf{d(e,z) : ||z]] = 1} > 0 for all € € (0,2]. It is rather obvious that
uniform convexity implies UCED, and UCED implies strict convexity.

Definition 2.1 ([14]). Let D be a nonempty subset of a Banach space X. A mapping
T :D — D is called pointwise asymptotically nonexpansive if there exists a sequence
of functions oy, with lim, . ayn(z) =1 and a,(z) > 1 such that

1T (x) =T (W) < en(@)lle —yll,  z,yeD.

Definition 2.2 ([14]). Let D be a bounded closed convex subset of a uniformly convex
Banach space X and T : D — D be a pointwise asymptotically nonexpansive mapping.
Then the set of fized points of T is nonempty, closed and convex.

The following definition is due to Suzuki [19].
Definition 2.3 ([19]). Let T be a mapping on a subset D of a Banach space X. T is
said to satisfy condition (C) if

1
Sl =Tzl <o —yll = Tz -Tyll <lo-yll, zyeD.

In [6], J. Garcia-Falset et al. introduced two generalizations of the condition (C)
in a Banach space:
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Definition 2.4 Let T be a mapping on a subset D of a Banach space X and p > 1.
T is said to satisfy condition (E,) if

le =Tyl < plle = Tz| + |z —yll, =yeD.
We say that T satisfies condition (E) whenever T satisfies the condition (E,) for
some p > 1.
Definition 2.5 Let T be a mapping on a subset D of a Banach space X and A € (0,1).
T is said to satisfy condition (Cy) if

Ml =Tz < |z =yl = |Te =Tyl <[lz-yll, zyeD.

Notice that if 0 < A1 < A2 < 1 then the condition (C}, ) implies the condition (Cl, ).
We recall that a mapping 7 : D — D is said to be quasi-nonexpansive provided that
Fiz(T) # () and for each z € D and y € Fiz(T) we have

1T () = yll < [lz =y

It is clear that every mapping T with nonempty fixed point set that satisfies the
condition (Cy) is quasi-nonexpansive.
Theorem 2.6 ([6]). Let D be a nonempty bounded convexr subset of a Banach space
X. Let T : D — D satisfy the condition (Cy) on D for some X € (0,1). Forr € [\, 1)
define a sequence {x,} in D by taking ©1 € D and

Tpt1 =rT(z,) + (1 —1)z) for n>1,
then {x,} is an approzimate fized point sequence for T, that is

lim ||z, — T(z,)] = 0.

Lemma 2.7 ([11]). Let T be a quasi nonexpansive mapping defined on a closed subset
E of a Banach space X. Then Fiz(T) is closed. Moreover, if X is strictly convex and
E is convex, then Fix(T) is also convex.

Let D be a nonempty subset of a Banach space X. For z € X, we write
dist(x, D) =inf{|| x — z ||: z € D}.

We denote by CB(D) and KC(D) the collection of all nonempty closed bounded
subsets, and nonempty compact convex subsets of D, respectively. The Hausdorff
metric H on CB(X) is defined by

H(A, B) := max{sup dist(x, B), sup dist(y, A)},
T€EA yeb

for all A,B € CB(X).
Let T : X — 2% be a multivalued mapping. An element 2 € X is said to be a
fixed point of T', if x € T'(x).
It is rather obvious that if D is a convex subset of a strictly convex Banach space
X, then for x € X, if there exist y,z € D such that
|z =y ||=dist(z,D) =[x — z |

then y = 2.
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Definition 2.8 A multivalued mapping T : X — CB(X) is said to be nonexpansive
provided that

Definition 2.9 ([3]). A multivalued mapping T : X — CB(X) is said to satisfy the
condition (C) provided that

1

Sdist(a, o) < [z —y| = H(Tw,Ty) <z —yl, wyeX.
We now state the multivalued analogs of the conditions (E) and (C)) in the following
manner (see also [2]):
Definition 2.10 A multivalued mapping T : X — CB(X) is said to satisfy condition
(E,) provided that

dist(x,Ty) < pdist(z,Tx) + ||z —y|, z,ye€X.

We say that T satisfies condition (E) whenever T satisfies (E,,) for some p > 1.

Definition 2.11 A multivalued mapping T : X — CB(X) is said to satisfy condition
(Cy) for some A € (0,1) provided that

Adist(x,Tz) < ||zt —y|| = HTz,Ty) <|lz—yl, =zyeX.
It is rather easy to see that every multivalued nonerpansive mapping satisfies the

condition (E).

Lemma 2.12 Let T : X — CB(X) be a multivalued nonexpansive mapping, then T
satisfies the condition (Ey).

We now provide an example of a generalized nonexpansive multivalued mapping
which satisfies the conditions (C) and (E), but it is not nonexpansive.

Example 2.13 We define T on the closed interval [0, 5] by

_J0.5, =#5
T(x)_{{us z=5.

It is not difficult to verify that T has the required properties (for details, see [2]).
Finally, we recall the following lemma from [8].
Lemma 2.14 Let {z,} and {w,} be two bounded sequences in a Banach space X,

and let 0 < X\ < 1. If for every natural number n we have z,11 = Aw, + (1 — A)z,
and ||wpt1 — Wl < |2nt1 — 2znl|, then lim, o ||wy, — 24| = 0.
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3. CoMMON FI1XED POINT THEOREMS

Let D be a nonempty bounded closed convex subset of a Banach space X and let
{z} be a bounded sequence in X. We use r(z,{z,}) and A(D,{z,}) to denote the
asymptotic radius and the asymptotic center of {x,} in D, respectively, i.e.

r(D,{zn}) = inf{limsup ||z, — z|| : € D},

A(D,{z,}) = {z € D : limsup ||z, — 2| = 7(D, {z.})}.

n—oo
Obviously, the convexity of D implies that A(D,{x,}) is convex. It is also known
that in a UCED Banach space X, the asymptotic center of a sequence with respect
to a weakly compact convex set is a singleton; the same is true for a sequence in a
bounded closed convex subset of a uniformly convex Banach space X (see [13]).
Definition 3.1 A bounded sequence {xy} is said to be regular with respect to D if
for every subsequence {x},} we have

r(D,{zn}) = r(D,{z},});
further, {x,} is called asymptotically uniform relative to D if

A(D,{zn}) = A(D, {x/,})-

The following lemma was proved by Goebel and Lim.

Lemma 3.2 (see [7] and [16]). Let {x,} be a bounded sequence in X and let D be a
nonempty closed convex subset of X.

(i) then there exists a subsequence of {x,} which is regular relative to D.
(ii) if D is separable, then {x,} contains a subsequence which is asymptotically
uniform relative to D.

As a consequence of Remark 2 and Theorem 8 in [6], we obtain the following result.

Theorem 3.3 Let D be a nonempty closed conver bounded subset of a Banach space
X. Let T : D — D be a single valued mapping satisfying the conditions (E) and (C))
for some A € (0,1). Suppose the asymptotic center relative to D of each sequence in
D is nonempty and compact. Then T has a fized point.

Definition 3.4 Let D be a nonempty subset of a Banach space X. Two mappings
t:D— D and T : D — CB(D) are said to be commuting if t(T(x)) C T(t(zx)) for
allz € D.

We now state and prove the first main result of this paper.

Theorem 3.5 Let D be a nonempty closed convex bounded subset of a strictly convex
Banach space X, t : D — D be a quasi-nonexpansive single valued mapping, and
T:D — KC(D) be a continuous multivalued mapping satisfying the condition (C))
for some X € (0,1), and thatt, T commute. If the asymptotic center relative to Fix(t)
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of each sequence in Fix(t) is nonempty and compact, then there exists a point z € D
such that z =t(z) € T(2).

Proof. According to Lemma 2.7, it follows that Fiz(t) is a closed convex subset of
X. We show that for z € Fiz(t), T(z) N Fix(t) # 0. To see this, let © € Fix(t)
and let y € T'(x) be the unique nearest point to . Since ¢t and T commute, we have
t(y) € T(t(x)) = T(x). Since ¢ is quasi nonexpansive, we have ||¢t(y) — x| < |ly — ||
Now by the uniqueness of y as the nearest point to x, we get t(y) = y. Therefore
T(z) N Fix(t) # 0 for x € Fix(t).
Now we find an approximate fixed point sequence for T in Fixz(t). Take xo €

Fix(t), since T'(xg) N Fixz(t) # 0, we can choose yg € T'(z9) N Fix(t). Define

€T, = (1 — )\){L‘o + Ayo-
Since Fiz(t) is a convex set, we have 1 € F'ixz(t). Let y1 € T(x1) be chosen in such
a way that

lyo — w1l = dist(yo, T'(x1)).
We see that y; € Fiz(t). Indeed, Since t is quasi-nonexpansive, we get
lyo = t(y)ll < [lyo — vl

which contradicts the uniqueness of y; as the unique nearest point to yo (note that
t(y1) € T(x1)). Similarly, put

To = (1 — )\)1’1 + )\yl,
again we choose yo € T(x2) in such a way that

1 — yall = dist(y1, T'(z2)).
By the same argument, we get yo € Fiz(t). In this way we will find a sequence {z,}
in Fiz(t) such that
Tn1 = (1 - )\)xn + AYn,
where y,, € T'(x,) N Fiz(t) and
||yn71 - ynH = diSt(ynflvT(xn))‘
Thus for every natural number n > 1 we have
Mz = ynll = (|20 — Ty ||
from which it follows that
Adist(z,, T(x,)) < M|z — Yull = |Tn — Tpyall, n>1
Our assumption now gives
H(T(20), T(xn41)) < |20 — Tpsall, n>1,
and hence for each n > 1,
lYn — yns1ll = dist(yn, T(xns1)) < H(T(20), T(Tns1))
S ||xn - $n+1||~

We now apply Lemma 2.13 to conclude that lim,, .o |[|Zn—yn| = 0, where y,, € T'(zy,).
From Lemma 3.2, by passing to a subsequence, we may assume that {z,} is regular
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asymptotically uniform relative to Fix(t). Let r = r(Fiz(t),{z,}). Now, we show
that Tz N A(Fix(t),{zn}) # 0 for x € A(Fiz(t),{z,}). If r = 0, then we have
T, — . Then by the continuity of T" we have
dist(x, Tx) < ||l — x| + dist(xy, Txy) + H(Txy, Tx) — 0
which implies that = € T'(z). In the other case, if r > 0, there exists a natural number
ng such that for every n > ny,
Mdist(zy, Txy,) < ||z, — 2|
and hence from our assumption we have
H(T(x,),T(z)) < ||@xn — x|, Yn > ng.
The compactness of T'(z) implies that for each n > 1 we can find z, € T'(z) such that
lyn — 2all = dist(ya, T(x).
Also we have
[yn = 2nll = dist(yn, T(x)) < H(T(2,),T(z)) < ||l2n —2l|,  Vn = no.

Since T'(x) is compact, the sequence {z,} has a convergent subsequence {z,, } with
limg_,00 2, = 2z € T'(x). Note that

2, = 2l < ll2n, = Yyl + 1Yn, = 20, || + 20, — 2]l
< Nn, = Ynill + ll2n, — 2l + 20, — 2],
for ng > ng. This implies that

limsup ||z, — z|| < limsup ||z, — | <7

k—o00 k—o0
Since {z,} is regular asymptotically uniform relative to Fiz(t), it follows that

z € A(Fix(t),{zn, }) = A(Fiz(t), {zn}),
therefore

z € T(x)NA(Fiz(t), {zn}),
which in turn implies that T'(z) N A(Fiz(t),{z,}) # 0 for x € A(Fiz(t),{z,}). Now
we define the mapping
T : A(Fiz(t), {z,}) — KC(A(Fiz(t),{z,}))

by T(z) = A(Fiz(t),{x,}) N T(z). From Proposition 2.45 in [10] we know that the
mapping 7T is upper semicontinuous. Since A(Fix(t), {z,})NT(z) is a compact convex
set, we can apply the Kakutani-Bohnenblust-Karlin Theorem to obtain a fixed point
v for T (see [9]). This means that v is a common fixedpoint of 7" and ¢.

As a result, we obtain the following theorem.

Theorem 3.6 Let D be a nonempty closed convex bounded subset of a strictly conver
Banach space X. Lett : D — D, and T : D — KC(D) be two nonexpansive
mappings. Assume that t, T commute. Suppose the asymptotic center relative to
Fixz(t) of each sequence in Fix(t) is nonempty and compact. Then there exists a
point z € D such that z =1t(z) € T(z).
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Proof. Since T is nonexpansive, we conclude that T satisfies the condition (C) for
all A € (0,1). Hence the result follows from Theorem 3.5.

Theorem 3.7 Let D be a nonempty compact convex subset of a strictly convexr Banach
space X, t : D — D be a single valued mapping satisfying the conditions (E) and
(Cy) for some A € (0,1), and T : D — KC(D) be a continuous multivalued mapping
satisfying the condition (C) for some A € (0,1), and that t, T commute. Then there
exists a point z € D such that z =t(z) € T(2).

Proof. By Theorem 3.3 the mapping ¢ has a nonempty fixed point set Fiz(t) which is
a closed convex subset of X (by Lemma 2.7). Since D is compact, we conclude that
Fiz(t) is compact too. Since X is strictly convex, we infer that the asymptotic center
relative to Fiz(t) of each sequence in F'iz(t) is nonempty and compact. Therefore,
by Theorem 3.5, T" and t have a common fixed point.

By the same argument as in the proof of Theorem 3.4 in [2] we obtain the following
theorem.

Theorem 3.8 Let D be a nonempty closed convex bounded subset of a strictly convex
Banach space X, t : D — D be a quasi-nonexpansive single valued mapping, and
T:D — KC(D) be a multivalued mapping satisfying the conditions (E) and (C)) for
some X € (0,1), and that t, T commute. If the asymptotic center relative to Fix(t) of
each sequence in Fix(t) is nonempty and singleton, then there exists a point z € D
such that z = t(z) € T(z).

Theorem 3.9 Let D be a nonempty weakly compact convex subset of a UCED Banach
space X. Lett : D — D be a single valued maping, and T : D — KC(D) be a
multivalued mapping, both of them satisfying the conditions (E) and (C)) for some
A€ (0,1). If t, T commute, then there exists a point z € D such that z = t(z) € T(z).

Proof. By Theorem 3.3, t has a nonempty fixed point set Fiz(t) which is a closed
convex subset of X (by Lemma 2.7). Since D is weakly compact, it follows that Fiz(t)
is weakly compact as well. Since X is UCED, we conclude that the asymptotic center
relative to Fiz(t) of each sequence in Fiz(t) is nonempty and singleton. Therefore,
by Theorem 3.8, T" and ¢ have a common fixed point.

Corollary 3.10 Let D be a nonempty closed convex bounded subset of a uniformly
convex Banach space X, t : D — D be a single valued, and T : D — KC(D) be a
multivalued mapping, both satisfying the conditions (E) and (Cy) for some A € (0,1).
Ift, T commute, then there exists a point z € D such that z = t(z) € T(z).

Finally, we state the second main result of this paper.

Theorem 3.11 Let D be a nonempty closed convex bounded subset of a uniformly
convex Banach space X. Let f : D — D be a pointwise asymptotically nonexpansive
mapping, and let T : D — KC(D) be a multivalued mapping satisfying the conditions
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(E) and (Cy) for some A € (0,1). If f and T are commuting, then they have a
common fized point, i.e. there exists a point z € D such that z = f(z) € T(z).

Proof. Using Theorem 2.2, it follows that Fiz(f) is a nonempty closed convex subset
of D. We show that for each x € Fiz(f), T(z) N Fiz(f) # 0. To see this, let
x € Fix(f), since f and T are commuting, we have f(y) € T(x) for each y € T'(x).
Therefore T'(x) is invariant under f for each x € Fiz(f). Since T'(z) is a bounded
closed convex subset of the uniformly convex Banach space X, by Theorem 2.2 we
conclude that f has a fixed point in T'(z) and therefore T'(x) N Fiz(f) # 0 for x €

Now we find an approximate fixed point sequence for T in Fiz(f). Take zg €
Fiz(f), since T'(xo) N Fiz(f) # 0, we can choose yo € T(z) N Fiz(f). Define

z1 = (1= XNz + \yo.

Since Fixz(f) is convex, we have z1 € Fix(f). Let y; € T(z1) be chosen in such a
way that

lvo — y1ll = dist(yo, T'(x1)).
Next we show that y1 € Fiz(f). Indeed, we consider the sequence {f"(y1)}. Since T
and f commute, we know that f"(y1) € T'(z1) for any n. Since T'(21) is compact, the
sequence {f™(y1)} has a convergent subsequence with

lm f () = 2 € Ta),
so that
Iz = woll =l [[f**(y1) = woll = lim {If™*(y1) = f*(yo)l
< klggo an,, (Y0) ly1 — voll < dist(yo, T(z1)) = [lyo — v1ll-

Now by the uniqueness of y; as the nearest point to yg, we have z = y;, consequently
limg 00 ™ (y1) = y1 and so f(y1) = y1. In this way we will find a sequence {z,} in
Fix(f) such that z,1 = (1 — N, + Ay, where y,, € T(x,) N Fiz(f) and

[yn—1 = ynll = dist(yn—1,T(zn))-
Therefore for every natural number n > 1 we have
Mz = ynll = [0 — 2na |
from which it follows that
Adist(Xp, T(xr)) < M|Zn — Ynll = [|Tn — Tngall, n>1
Our assumption now gives
H(T(xn), T (2n11)) < [l2n = Zpiall, n=1,
and hence for each n > 1,
lyn = yniall = dist(yn, T(zns1)) < H(T(20), T(2n11))

< Hxn - $n+1||-
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We now apply Lemma 2.13 to conclude that lim, ., ||z, — yn| = 0, where y,, €
T(x,). From Lemma 3.2, by passing to a subsequence, we may assume that {z,}
is regular with respect to Fiz(f). Since Fiz(f) is a closed convex bounded subset
of a uniformly convex Banach space X, it follows that the asymptotic center of the
sequence {x,,} with respect to Fix(f) is singleton. Let A(Fiz(f),{zn}) = {z}. Since
T(z) is compact, for each n > 1, we can choose z, € T(z) such that ||z, — z,| =
dist(zy,T(z)). Moreover z, € Fiz(f) for all natural numbers n > 1. Indeed, for any
n > 1, we consider the sequence {f™(z,)}. Since T' and f commute, and z € Fiz(f)
we have f(z,) € f(T(z)) C T(f(z)) = T(z), and hence f™(z,) € T(z) for any m.
Since T'(z) is compact, the sequence {f™(z,)} has a convergent subsequence with

klim " (zn) = v € T(2),
so that

v —@nll = lim [[f™*(z2n) = @pll = Hm [ (2) — f™* (@n)]]
k—o0 k—o0
< klggo Uy, (Tn) |20 — @n|| < dist(w,, T(2)) = |20 — 20|
Now by the uniqueness of z, as the nearest point to x,,, we have v = z,, consequently
limg o0 ™ (2n) = 2z, and so f(2n) = 2p, L.€., 2, € Fiz(f). Since T'(z) is compact, the
sequence {z,} has a convergent subsequence {z,, } with limy_,o 2, = w € T'z. Since

Zn,, € Fiz(f) for all k, and Fiz(f) is closed, we obtain w € Fiz(f). By assumption
there exists p > 1 such that

diSt(znkaTz) < /LdiSt(znkaT(wnx)) + Hxnk - ZH
Note that
e = Wl < 2w, = 2l + 2, = ]
< pdist(n,, T(n,)) + 20, — 2] + 20, — w]l
This entails

lim sup ||z, — w|| < limsup ||z,, — z||.
— 00 — 00
We conclude that z = w, hence z = f(2) € T(2).

Finally, we supply an example to illustrate the main result of this paper.

Example 3.12. Suppose that X =R and D = [0, %] Define T and f by

0%, a2 #7
T(x) = {{1}7 . 2
and
0, x € (0,3
13

fley=<¢4zx—-12, =x€]3,
—4dz+14, ze L3 1]
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First we show that f is a pointwise asymptotically nonexpansive mapping. To this
end, we put o3(x) = 4 and a,(x) = 1 for n > 2. Since f™(z) = 0 for all n > 2, it
suffices to show that |f(x) — f(y)| < 4|z — y|, for all z,y € D.

Let x € [0,3] and y € [3, 23], then we must have

[f(@) = f(y)| =4y — 12 < dy — 4z = 4|z — yl.
Let z € [0,3] and y € [12, I], then we need to have
|fo — fy| = —4y + 14 < 4y — 4z,

or equivalently 14 + 4z < 8y which holds. Now if z € [3,23] and y € [12, 7], we have
to verify that

[4(x +y) — 26| < 4y — 4x.
If |4(x + y) — 26| = 4(z + y) — 26, then

4(z +y) — 26 < 4y — 4x
is equivalent to 8z < 26 which holds. If |4(z + y) — 26| = 26 — 4(x + y), then

26 —4(zx +y) <4y — 4o

is equivalent to 26 < 8y which holds. Therefore for all z,y € D we have |f(z)— f(y)| <

4|z — y|. But f is not nonexpansive. Indeed, let z = 3 and y = 12 then we have

7@~ f@) =15 = el

Now we show that 7T satisfies the conditions (E) and (Cy). Let z,y € [0, 1), then we
have

T—y
H(Tz,Ty) = \TI <lz -yl

If 2 € (0,5] and y = I, we have

, we have dist(z,Tz) = %. Therefore

636 30
28

In case that = € (3,1) and y =
>1>|z—yl|

Moreover

1 5)
§dist(y,Ty) =1 1> |z -yl

These inequalities show that the mapping T satisfies the condition (C)) for A = %
Also for all z,y € D we have

dist(z,Ty) < 3d(z,Tx) + |z — yl,

so that T satisfies the condition (E). Now we shall see that the mapping T is not
nonexpansive. To see this we take x = % and y = 3. Then we have

1
H(Tz, Ty)—1>f |z —yl.
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It is not difficult to see that T" and f commute. It then follows from Theorem 3.11
that T and f have a common fixed point. We observe that 0 is a common fixed point
of fand T.
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