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NEARLY INVOLUTIONS ON BANACH ALGEBRAS.
A FIXED POINT APPROACH
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Abstract. Using fixed point methods, we investigate the Hyers–Ulam–Rassias stability and super-
stability of involutions on Banach algebras. Moreover, we show that under some conditions on an

approximate involution, the Banach algebra has a C∗−algebra structure.

Key Words and Phrases: Hyers–Ulam–Rassias stability; superstability; involution; C∗−algebra

2010 Mathematics Subject Classification: 46L06,46L05,46L35,39B82

Acknowledgements. The author would like to extend his thanks to referee for
his (her) valuable comments and suggestions which helped simplify and improve the
results of paper.

References

[1] J.A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112(1991),

729–732.
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[15] L.Gǎvruta, Matkowski contractions and Hyers–Ulam stability, Bul. St. Univ. ”Politehnica”
Timisoara, Mat. Fiz., 53(2008), no. 2, 32–35.
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