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Abstract. Using fixed point methods, we investigate the Hyers—Ulam—Rassias stability and super-
stability of involutions on Banach algebras. Moreover, we show that under some conditions on an
approximate involution, the Banach algebra has a C*—algebra structure.
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1. INTRODUCTION

The stability problem of functional equations started with the question concerning
stability of group homomorphisms proposed by S.M. Ulam [34] during a talk before
a Mathematical Colloquium at the University of Wisconsin, Madison. In 1941, Hyers
[18] gave a first affirmative answer to the question of Ulam for Banach spaces as
follows:

If E and E are Banach spaces and f : £ — E'isa mapping for which there is
€ > 0 such that
lf(x+y)— f(z)— f(y)]| <eforall x,y € E, then there is a unique additive mapping
L:E — E such that | f(z) — L(z)|| <& for all z € E.

Hyers’ theorem was generalized by Rassias [30] for linear mappings by considering
an unbounded Cauchy difference.

The paper of Rassias [31] has provided a lot of influence in the development of
what we now call the generalized Hyers—Ulam stability or as Hyers—Ulam—Rassias
stability of functional equations. In 1994, a generalization of the Rassias theorem was
obtained by Gavruta [14] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Rassias’ approach. For more details about the results
concerning such problems, the reader refer to [3]-[23], [27, 28] and [32] .

In 1991 J.A.Baker [1] used the Banach fixed point theorem to give Hyers-Ulam
stability results for a nonlinear functional equation. In 2003, V.Radu [29] applied
the fixed point alternative theorem for Hyers— Ulam—Rassias stability. D. Mihet
[25] applied the Luxemburg—Jung fixed point theorem in generalized metric spaces to
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study the Hyers— Ulam stability for two functional equations in a single variable and L.
Gavruta [15] used the Matkowski’s fixed point theorem to obtain a new general result
concerning the Hyers—Ulam stability of a functional equation in a single variable.
In 2003 Cadariu and Radu applied the fixed point method to the investigation of
the Jensen functional equation [5]. They could present a short and a simple proof
(different of the “direct method” , initiated by Hyers in 1941) for the generalized Hyers—
Ulam stability of Jensen functional equation [5], for Cauchy functional equation [2].

In this paper, by using fixed point methods, we prove that if there is an approx-
imately involution f : A — A on Banach algebra A, then there exists an involution
I : A — A which is near to f. Moreover, under some conditions on f, the algebra A
has a C*—algebra structure with involution I.

Throughout this paper assume that ng € N is a positive integer. Suppose that
T!:={z € C:|z| = 1} and that T!, = {e¥; 0 < 6 < i—:} It is easy to see that

T! = T!. Moreover, we suppose that A is a Banach algebra. For a given mapping
1
f:A— A, we define

D, f(e,y) =28 (5 Y) + 2us (CY) — 2 (uo)

for all p € T and all 7,y € A.

We refer the reader to [26] for more information on C*—algebras.

2. MAIN RESULTS

Before proceeding to the main results, we recall the following theorem by Margolis
and Diaz.

Theorem 2.1. (The alternative of fixed point [24, 33]). Suppose that we are given a
complete generalized metric space (2, d) and a strictly contractive mapping T : Q — Q
with Lipschitz constant L. Then for each given x € ), either

d(T™z, T z) =00 for allm >0,
or other exists a natural number mgy such that
*x d(T™x, T™z) < 0o for all m > mg;
the sequence {T™x} is convergent to a fized point y* of T;
y*is the unique fized point of T in the set A ={y € Q:d(T™°z,y) < co};
d(y,y*) < 25d(y, Ty) for all y € A.

* ot %

Theorem 2.2. Let f : A — A be a mapping, for which there exists a function
¢: A? — [0,00) such that

1D ()| < b2, y), (2.1)
1f(zy) = f(y) ()] < oz, ), 2.2

lim 2~ f(2™ liy{n 27" f(2"x)) =« (2.3)

m



NEARLY INVOLUTIONS ON BANACH ALGEBRAS 119

forallp € TY and allz,y € A. If there exists an L < 1 such that ¢(z,y) < 2Le(5, %)

for all z,y en;l, then there exists a unique involution I : A — A such that

L
17(@) ~ @) < 527 6(x,0) (24)
for all x € A. Moreover, if
llzf (@) = ll2]?| < é(z, ) (2.5)
for all x € A, then A is a C*—algebra with involution x* = I(x) for all x € A.

Proof. Putting p =1,y =0 in (2.1), we get
14£(5) = 2/ @)l < $(a,0) (2.6)

for all x € A. Hence,

Nis

I54(2x) ~ F@)] < $6(2,0) < Zo(z,0) (27)

for all z € A. Consider the set X := {g | g : A — B} and introduce the generalized
metric on X:

d(h,g) :=inf{C € R" : ||g(z) — h(z)|| < C¢p(z,0) for all x € A}.
It is easy to show that (X, d) is complete. Now we define mapping J : X — X by

!
)

for all x € A. By definition of d and inequality ¢(x,y) < 2Lé(5, %), one can show
that

J(h)(z) = ~h(2z)

Latg.n)

A (9). (W) < 5

for all g, h € X. It follows from (2.7) that

S

a(f, J(f) <

By Theorem 2.1, J has a unique fixed point in the set X; := {I € X : d(f,I) < o0}.
Let I be the fixed point of J. Also, we have lim,, d(J"(f),I) = 0. It follows that

lim %f(?”x) = I(z) (2.8)
for all € A. It follows from d(f,I) < —Ld(f, J(f)) that

L
1-3

L
d(f, 1) < ——.
(1)< 50
This implies the inequality (2.4). By inequality ¢(z,y) < 2L¢(5, %), we have

lim 279 (27w, 27y) = 0 (2.9)
J
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for all z,y € A. It follows from (2.1), (2.8) and (2.9) that

m+y>+2l(3:;

= lim 27\\1(7“”_1(33 +y) + 12" (@ —y) — 1(2"2)]|

H2I Yy _ 2](3:)“

1
< lim 2—n¢>(2”z, 2"y) =0

for all z,y € A. So

ZI(x;ry) o1t Y = 21(2)

for all z,y € A. Hence, I is Cauchy additive. By putting y = x in (2.1), we have

_ .2z
287 (%) — 2 ()] < 6z, 2)
for all x € A. This implies that
1 1
I1(22) — 21 (2)| = lim | F(202") — 2 (2"0)| < lim - 62", 2"2) = 0

for all p € T! a1, T € A. It follows by the last equation and additivity of I that
I(pz) = Gl (x) for all p € Tll and all z € A. Now, we show that [ is conjugate linear.

We have to show that I()\:B) = M(z) for all A € C, # € X. To this end, let \ € C.

If X belongs to T!, then there exists 6 € [0, 2] such that A = . We set A\; = e"o
thus \; belongs to TY, and I(\x) = I(\}°x) = A/ I(x) = M (x) for all 2 € X.

no

If A belongs to nT! = {nz ; z € T'} for some n € N, then by additivity of I,
I(\x) = M(z) for all z € X.

Let t € (0,00) then by archimedean property of C, there exists a positive real number
n such that the point (¢,0) lies in the interior of circle with center at origin and radius
n. Putting ¢ := t + vn? =12 i, to := t — v/n?> — 2 i. Then we have t = 452 and
ti,to € nTL. It follows that

It )7I(t1 +t2

T = %I(x) + %I(m) — () = tI()

for all z € X.
On the other hand, there exists 6 € [0, 27] such that A\ = |A|e?’. It follows that

I(\x) = I(|\e®z) = A I(e?z) = |Ae I(x) = N (x)
for all z € X. Hence I : A — A is conjugate C—linear. It follows from (2.2) that
1 (zy) — I(y)I ()]l
= tim || 5 1(2"0)y) — (1) 1)
< lign 22%(;5(2”% 2"z) < li7rln 2%¢(2"x, 2"x)
=0
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for all z,y € A. This means that
I(zy) = I(y)I(x)
for all z,y € A. On the other hand by (2.3)
I(I(x)) =lim 2™ f(2" lim 27" f(2"z)) =«
m n
for all z € A. Hence I : A — A is an involution satisfying (2.4). To prove the

uniqueness property of I, let I’ : A — A be an involution satisfies (2.4). according to
(2.4),

1 1 1 L
() = @) = lim 5 £2") = 3T (2")]| < i o (52 )6(22,0) = 0
for all z,y € A. This means that [ = I'.
Now, suppose I satisfies (2.5). Then we have
w2 ()] = ]
. 11, 1
—lim| || 55 (2"0) 55/ 2"0)|| - 55 1272

1 1

< lign Sin (2"x,2"x) < liTan Q—n(b(Z"x, 2"x)
=0

for all z € A. Hence A is a C*—algebra with involution z* = I(x) for allz € A. O

We prove the following Hyers—Ulam—Rassias stability problem for involutions on
Banach algebras.

Corollary 2.3. Let p € (0,1) and 6 € [0,00) be real numbers. Suppose f : A — A
with f(1) =1, satisfies

Dy f (z,9) | < Oll=l” + [lyll”),
1f (zy) = f)f (@)l < 6l=l” + llyl*),
linrln 27m (2™ 1i7rln 27" f(2"x)) ==
for all p € TY, and all z,y € A. Then there erists a unique involution I : A — A
such that !
2r—1g
[f(x) = I(z)] < WII%II”
for all x € A. Moreover, if
o f @) = llz]?| < 26]|[|”
for all x € A, then A is a C*—algebra with involution I.

Proof. Tt follows from Theorem 2.2 by putting ¢(z,y) := 0(||z||P + ||y||P) for all z,y €
A, and L =2r— 1L O

As a consequence of Theorem 2.2, we obtain the superstability of involutions on
Banach algebras as follow.
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Corollary 2.4. Let p € (0,1) and 0 € [0,00) be real numbers. Suppose f : A — A
satisfies

1D f(x,y)ll < 0ll=]P[lyP),
I1f(@y) = f)f (@) < olz[”llylI"),
lim 27" f(2" im 27" f(2"2)) = @

for all p € T, and all x,y € A. Then f is an involution on A. Moreover, if

lllzf @)l = ll]*] < 0ll||*

for all x € A, then A is a C*—algebra with involution f.
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