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Abstract. It is shown that E-convex Banach spaces satisfy the so called Prus-Sczepanik condition

which in turn is sufficient for the fixed point property of nonexpansive mappings in Banach spaces.

Moreover, we study the independence between several of these sufficient conditions.
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1. Introduction

Let C be a subset of a Banach space (X, ‖ · ‖). A mapping T : C → X is called
nonexpansive whenever ‖T (x)− T (y)‖ ≤ ‖x− y‖ for all x, y ∈ C.

The space (X, ‖ · ‖) has the fixed point property (FPP) if every nonexpansive self-
mapping of each nonempty bounded closed convex subset C of X has a fixed point.
If the same property holds for every weakly compact convex subset of X we say that
(X, ‖.‖) has the weak fixed point property (WFPP for short).

It has been known from the outset of the study of this property (around the early
sixties of the last century) that it depends strongly on ’nice’ geometrical properties of
the space. For instance, a celebrated result due to W.A. Kirk ([23], 1965) establishes
that the Banach spaces with normal structure (NS) have the (WFPP). In particular,
uniformly convex Banach spaces, and hence Hilbert spaces, have normal structure.
(See definitions below).

The problem of whether every superreflexive Banach spaces enjoys (FPP) is a
classical open question in Fixed Point Theory.

Since 1965 until now a considerable amount of papers dealing with sufficient condi-
tions for (FPP) have been published. It turns out that to check that a given Banach
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space enjoys one of these conditions is not an easy task. Moreover, some links be-
tween these geometrical conditions remained hidden for years. For instance, it was
longtime open the question whether the uniformly non square Banach spaces have
(FPP), but in 2003 it was discovered (see [25, 15]) that all these spaces indeed satisfy
the so called Domı́nguez Benavides’ condition M(X) > 1 (see [3]) (which in reflexive
spaces implies (FPP)) and that it was known nine years before the publication of [15].

The aim of this note is twofold. First, to show one of these relationships, which
seems to be new. Namely, that E-convex Banach spaces (which have (FPP) accord-
ing to [32]) in fact satisfy another of such sufficient conditions for (FPP) due Prus-
Sckepanik [29]. Second, to clarify the independence between several of the remaining
most important sufficient conditions for (FPP).

2. Notations and basic definitions

Throughout this paper we will use the standard notation in Banach space geometry,
as it appears, for instance in [16]. In particular, given a Banach space (X, ‖.‖), we
will denote the closed balls and the spheres as follows: BX := {x ∈ X : ‖x‖ ≤ 1},
SX := {x ∈ X : ‖x‖ = 1} and for r > 0, x ∈ X, B[x, r] = x + rBX . If X∗ is the dual
space of X, then for x ∈ X,

∇(x) := {f ∈ SX∗ : f(x) = ‖x‖}.

The weak convergence of a sequence (xn) in X to x0 ∈ X will be denoted as xn ⇀ x0.
Given the Banach spaces (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and p ∈ [1,∞) the `p direct sum of
X and Y will be denoted as X ⊕p Y . In the same way, X ⊕∞ Y will be the space
X × Y endowed with the norm ‖(x, y)‖ = max{‖x‖X , ‖y‖Y }.

For a bounded sequence (xn) in X we often will use the notation

D(xn) := lim sup
n

(
lim sup

m
‖xn − xm‖

)
.

Recall that the modulus of convexity of (X, ‖ · ‖) is the function δX : [0, 2] → [0, 1]
given by

δX(ε) := inf
{
1−

∥∥ 1
2 (x + y)

∥∥ : x, y ∈ BX , ‖x− y‖ ≥ ε
}

.

The characteristic of convexity of (X, ‖ · ‖), is the real number

ε0(X) := sup{ε ∈ [0, 2] : δX(ε) = 0} .

The space (X, ‖ · ‖) is uniformly convex whenever ε0(X) = 0.
Several sufficient conditions for (FPP) have been stated in terms of some coeffi-

cients. For instance, J. Garćıa-Falset in [11] defined, for a given Banach space (X, ‖·‖)
the coefficient

R(X) := sup{lim inf
n→∞

‖xn + x‖ : x, xn ∈ BX (n = 1, 2, . . .), xn ⇀ 0 }.

Moreover he proved (see [12]) that if R(X) < 2 then (X, ‖ · ‖) has (WFPP). Later on,
T. Domı́guez Benavides in [3] defined for a ≥ 0,

R(a,X) := sup{lim inf ‖x + xn‖},
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where the supremum is taken over all x ∈ X with ‖x‖ ≤ a and all weakly null
sequences (xn) in the unit ball of X such that D(xn) ≤ 1. Moreover, he also defined

M(X) := sup
{

1 + a

R(a,X)
: a ≥ 0

}
.

The main result in [3] that if M(X) > 1 then X has the (WFPP). It turns out that
R(X) < 2 ⇒ M(X) > 1.

3. E-convexity implies Prus-Szczepanik condition

3.1. Prus-Szczepanik condition (PSz). It was introduced by S. Prus and M.
Szczepanik in 2005 [29]. Given a Banach space X, for x ∈ X and ε > 0 put

d(ε, x) = inf
(ym)∈NX

lim sup
m→∞

‖x + εym‖ − ‖x‖,

and

b1(ε, x) = sup
(ym)∈MX

lim inf
m→∞

‖x + εym‖ − ‖x‖.

where

NX := {(xn) : xn ∈ SX , n = 1, 2, . . . , xn ⇀ 0X}

and

MX := {(xn) : D(xn) ≤ 1, xn ∈ BX , n = 1, 2, . . . , xn ⇀ 0X}.

Definition 3.1. Let (X, ‖ · ‖) be a non-Schur Banach space. If there exists ε ∈ (0, 1)
such that for every x ∈ SX it is the case that b1 (1, x) < 1 − ε or d (1, x) > ε we say
that (X, ‖ · ‖) satisfies the Prus-Szczepanik condition.

The main result in [29] is the following.

Theorem 3.2. Let X be a Banach space without the Schur property. If X satisfies
the Prus-Szczepanik condition then X has the (WFPP).

Properties which are stronger than (PSz) condition are, among others, the following.

(1) Uniform noncreasyness (introduced by S. Prus in 1997) (see [28]) and its
generalizations. (See [14, 8, 7]).

(2) Property M(X) > 1. (See [3]). In particular this last condition covers all the
uniformly nonsquare Banach spaces. (See [25, 15]). Other reflexive Banach
spaces X with M(X) > 1 are those which satisfy R(X) < 2. (See [12]).

3.2. Conditions depending on the dual space. Very recently, in 2008, P.N. Dowl-
ing, B. Randrianantoanina and B. Turett [6], solved a question posed by S. Saejung in
[31], showing that (superreflexive) spaces with O-convex dual have the (FPP). They
presented this result also as a generalization of the above referred Eva Mazcuñán’s
result of 2003 (see [25], [15]).
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That is, we have that:

ε0(X) < 2 ⇒ M(X) > 1 ⇒ (PSz) ⇒ (FPP )
⇓
X∗O − convex
⇓
(FPP )

We will recall a bit more details about this last result.

For η ∈ (0, 2), a subset A of X is said to be symmetrically η-separated if the
distance between any two distinct points of A∪ (−A) is at least η and a Banach space
X is O-convex if the unit ball BX contains no symmetrically (2− ε)-separated subset
of cardinality n for some ε > 0 and some n ∈ N. In other words,

Definition 3.3. A Banach space X is O-convex if there exists ε ∈ (0, 1) and a positive
integer n ≥ 2 such that for every x1, x2, . . . xn ∈ SX , there exist i, j ∈ {1, . . . .n} with
i < j such that

min{‖xi − xj‖, ‖xi + xj‖} ≤ 2− ε.

Since ε0(X) < 2 if and only if ε0(X∗) < 2, uniformly nonsquare Banach spaces
have O-convex dual.

Naidu and Sastry in [26] also characterized the dual property of O-convexity. For
ε > 0, a convex subset A of BX is an ε-flat if A ∩ (1 − ε)BX = ∅. A collection D of
ε-flats is jointly complemented (jcc in short) if, for each distinct ε-flats A and B in
D, the sets A ∩B and A ∩ (−B) are nonempty. For a positive integer n define

E(n, X) = inf{ε > 0 : BX contains a jcc of ε− flats of cardinality n}.

Definition 3.4. A Banach space X is said to be E-convex if E(n, X) > 0 for some
n ∈ N.

It turns out that a Banach space X is O-convex if and only if its dual space X∗ is
E-convex, and that E-convex Banach spaces are superreflexive. The main result in
[6] is the following.

Theorem 3.5. Every E-convex Banach space enjoys (FPP).

The main goal of this section is to show that E-convex Banach spaces enjoy the
Prus-Sczepanik condition.

Lemma 3.6. Let X be a Banach space. Suppose that for every ε ∈ (0, 1) there exists
xε ∈ SX such that b1(1, xε) ≥ 1 − ε. Then, given ε ∈ (0, 1), there exists a point
xε ∈ SX and a weakly null sequence (zn) in BX such that for every pair (m,n) of
positive integers,

‖zn − zm‖ ≤ 1 + 2ε and ‖xε + zn‖ > 2− 2ε.

Proof. Fix ε ∈ (0, 1). Since there exists xε ∈ SX such that b1(1, xε) ≥ 1 − ε then
there exists (zn) ∈ MX such that

sup
n
{ inf

k≥n
‖xε + zk‖} = lim inf

n→∞
‖xε + zn‖ > 2− 2ε.
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Therefore, there exists a positive integer L0 such that,

inf
k≥L0

‖xε + zk‖ > 2− 2ε

and then, for every k ≥ L0

‖xε + zk‖ > 2− 2ε. (3.1)

The weakly null sequence (zn) satisfies D(zn) ≤ 1, or, in other words,

inf
n

sup
k≥n

(
lim sup

m
‖zk − zm‖

)
≤ 1.

Hence there exists a positive integer N0 such that

sup
k≥N0

(
lim sup

m
‖zk − zm‖

)
≤ 1 + ε

and consequently, for every k ≥ N0,

inf
m

sup
l≥m

‖zk − zl‖ = lim sup
m

‖zk − zm‖ ≤ 1 + ε .

Thus, for every k ≥ N0 there exists a positive integer M = M(k) such that for every
l ≥ M ,

‖zk − zl‖ ≤ 1 + 2ε. (3.2)

In particular for k = N0, according with (3.2) there exists a positive integer M0 such
that, for every l ≥ max{M0, N0}, one has

‖zN0 − zl‖ ≤ 1 + 2ε.

Choose a positive integer N1 > max{M0, N0}. Then, for every l ≥ N1,

‖zN0 − zl‖ ≤ 1 + 2ε (3.3)

and hence ‖zN0 − zN1‖ ≤ 1 + 2ε.
Taking k = N1, again according with (3.2) there exists a positive integer M1 such

that, for every l ≥ max{M1, N1}, one has

‖zN1 − zl‖ ≤ 1 + 2ε.

Choose a positive integer N2 > max{M1, N1}. Then, for every l ≥ N2,

‖zN1 − zl‖ ≤ 1 + 2ε, (3.4)

and hence ‖zN1 − zN2‖ ≤ 1 + 2ε. From (3.3) ‖zN0 − zN2‖ ≤ 1 + 2ε also holds.
In this way we inductively can get a subsequence (zNi

) of (zn) such that for every
pair (i, j) of positive integers

‖zNi
− zNj

‖ ≤ 1 + 2ε.

Finally we can find a positive integer i0 such that Ni0 ≥ L0. Then, according with
(3.1), for every i ≥ i0,

‖xε + zNi
‖ > 2− 2ε.

Thus, the subsequence (zNi)i≥i0 of (zn) satisfies the required conditions.
�
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Theorem 3.7. If X is an E-convex Banach space then there exists ε ∈ (0, 1) such
that for every x ∈ SX , b1(1, x) < 1− ε.

Proof. Let X be an E-convex Banach space. We shall argue by contradiction. Suppose
that for all ε ∈ (0, 1) there exists xε ∈ SX such that b1(1, xε) ≥ 1− ε.

Then, if we fix ε ∈
(
0, 1

3

)
, from the above lemma we know that there exist xε ∈ SX

and a sequence (zn) in SX such that for every pair (m,n) of positive integers,

‖zn − zm‖ ≤ 1 + 2ε and ‖xε + zn‖ > 2− 2ε.

Take fn ∈ ∇(xε + zn) for n = 1, 2, . . .. Since fn(xε + zn) = ‖xε + zn‖ > 2− 2ε, then
for every positive integer n, fn(zn) > 1−2ε and fn(xε) > 1−2ε. Since X is E-convex
then it is reflexive and the unit ball BX∗ is weakly compact. For a subsequence of
(fn) (which we will denote again (fn)), one has that there exists f ∈ BX∗ such that
fn ⇀ f . Since zn ⇀ 0X there exists a positive integer k1 > 1 such that, for every
k ≥ k1,

|f1(zk)| < ε, |f(zk)| < ε

2
and |(fk − f)(z1)| <

ε

2
.

Analogously, there exists a positive integer k2 > k1 such that, for every k ≥ k2,

|fk1(zk)| < ε, |f(zk)| < ε

2
and |(fk − f)(zk1)| <

ε

2
.

By a simple induction we obtain a strictly increasing sequence of positive integers (ki)
such that, for 1 ≤ i < j,

|fki
(zkj

)| < ε, |f(zki
)| < ε

2
and |(fkj

− f)(zki
)| < ε

2
, (3.5)

which, in turn implies that for 1 ≤ i < j,

|fkj (zki)| <
ε

2
+ |f(zki)| < ε. (3.6)

Then, for i 6= j,
‖fki

+ fkj
‖ ≥ (fki

+ fkj
)(xε) > 2− 4ε

and from (3.5) and (3.6) one follows also that

‖fki
− fkj

‖ ≥ (fki
− fkj

)
(

zki
−zkj

‖zki
−zkj

‖

)
≥ 1

‖zki
−zkj

‖ (fki
(zki

) + fkj
(zkj

)− fki
(zkj

)− fkj
(zki

))

≥ 1
1+2ε (fki

(zki
) + fkj

(zkj
)− fki

(zkj
)− fkj

(zki
))

> 2−6ε
1+2ε = 2− 10ε

1+2ε .

This means that given η ∈ (0, 1) and n ≥ 2 we have f1, . . . , fn ∈ SX∗ which are
symmetrically 2 − η separated, or, in other words, that the dual space X∗ is not
O-convex, a contradiction to the fact that X is E-convex.

�

Corollary 3.8. Every E-convex Banach space satisfies the Prus-Sczepanik condition.

Example 4.8 below shows that the converse of the above corollary is not true.
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4. Separation between sufficient conditions for (FPP)

In this section we will be concerned with the following geometrical properties which
are, in some sense, maximal.

(1) Asymptotic normal structure.
(2) Orthogonal convexity.
(3) Weak orthogonality.
(4) Prus-Szczepanik condition.

We begin with some further comments about properties (1) (2) and (3) of this list.

4.1. Asymptotic normal structure (ANS). After Kirk’s above mentioned result
of 1965 several researchers obtained a wide range of sufficient conditions for (NS),
for instance, uniform convexity (Edelstein, 1963), ε0(X) < 1 (Goebel, 1970), uni-
form convexity in every direction (Zizler, 1971), Opial condition (Gossez and Lami
Dozo, 1972), k-uniform convexity (Sullivan, 1979), near uniform convexity (Van Dulst,
1981), uniform smoothness, (Turett, 1982).

However, in 1981 J.B. Baillon and R. Schöneberg, (see [1]) properly generalized
(NS) as follows.

Definition 4.1. A Banach space (X, ‖·‖) has (ANS) if each nonempty bounded closed
and convex subset C of X with diam(C) > 0 has the following property:

For every sequence (xn) in C with ‖xn − xn+1‖ → 0 there exists a point p ∈ C
such that lim inf ‖p− xn‖ < diam (C).

They also showed the following.

Theorem 4.2. If X is a reflexive Banach space with (ANS) then it has (FPP).

For further information about (ANS) see also [4].

4.2. Orthogonal convexity. (See [17, 18]). This is a generalization of the uniform
convexity. It was introduced by A. Jiménez-Melado in 1988. In order to give the
definition of this concept, we need some further notation.

Let x, y ∈ X, and β > 0. Mβ(x, y) := B[x, 1+β
2 d(x, y)]

⋂
B[y, 1+β

2 d(x, y)].
If A is a nonempty bounded subset of X, |A| := sup{‖x‖ : x ∈ A}.

Definition 4.3. A Banach space (X, ‖.‖) is orthogonally convex (OC) if for every
weakly null sequence (xn) with D(xn) > 0, there exists β > 0 such that

lim sup
n

(lim sup
m

∣∣Mβ(xn, xm)
∣∣) < D(xn).

Every uniformly convex Banach space is (OC) but this notion is independent on
(NS). Many Banach spaces as, for instance, c0, `1, and the classical James space J are
(OC) in spite of their very different geometry. In [22] was shown that (OC) Banach
spaces have the Banach-Saks property.

Theorem 4.4. Every (OC) Banach space enjoys (WFPP).
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4.3. Property WORTH.

Definition 4.5. A Banach space has the (WORTH) property (Rosenthal, 1983; Sims
1988) if limn

∣∣‖xn − x‖ − ‖xn + x‖
∣∣ = 0 for all x ∈ X and all weakly null sequence

(xn) in X.

The classical spaces `p for 1 ≤ p < ∞ and c0 have this property. For reflexive
spaces, (WORTH) and R(X) < 2 imply that X has (NS). (Sims, 1994). In [19] a
coefficient which in some sense quantifies how far a Banach space is to enjoy (WORTH)
was defined. This coefficient is

µ(X) := inf{r > 0 : lim sup ‖xn + x‖ ≤ r lim sup ‖xn − x‖ : xn ⇀ 0X x ∈ X}.
Obviously µ(X) = 1 ⇔ X has (WORTH) and 1 ≤ µ(X) ≤ 3. The problem of whether
reflexive spaces with (WORTH) property have (FPP) was raised by B. Sims. Many
partial affirmative answers were obtained (see, for instance [11]). Very recently in
2010, H. Fetter and B. Gamboa, [9] solved this problem.

Theorem 4.6. If X is reflexive and µ(X) = 1, then X enjoys (FPP).

4.4. Independence of these sufficient conditions for (FPP). Next, we shall
prove that these geometrical properties are pairwise independent, in the sense that
each one of these properties neither is implied by, nor implies, the other. To do
this, we will consider several examples. Many of them are established in `2, the
classical real space of all sequences x = (xn) =

(
x(n)

)
for which

∑∞
n=1 x2

n < ∞.
The Euclidean norm ‖x‖2 :=

√∑∞
n=1 x2

n is associated to the ordinary inner product
〈x, y〉 =

∑∞
n=1 xnyn. Also the ”sup” norm ‖x‖∞ = sup{|x(n)| : n = 1, . . .} will be

sometimes considered. The standard Schauder basis of (`2, ‖.‖2) will be denoted by
(en).

Example 4.7. The James Eβ spaces. For β ≥ 1, let Eβ be the space `2 endowed
with the norm

|x|β := max{‖x‖2, β‖x‖∞}.
Some well known properties of these spaces are the following.

(1) For all β ≥ 1, µ(Eβ) = 1 [32].
(2) The spaces Eβ have (ANS) if and only if 1 ≤ β < 2, and they have (NS) if

and only if 1 ≤ β <
√

2. (See [1]).
(3) For every β ≥ 1 one has that the space Eβ is (OC). (See [18]).
(4) For all β ≥ 1 one has that M(Eβ) > 1. (See [5]). Hence all the Eβ spaces

satisfy (PSz) condition.

Proposition 4.8. For β ≥
√

2, the space Eβ fails to be E-convex.

Proof. From a result due to S. Saejung,([31], Theorem 5), every E-convex Banach
space X with µ(X) = 1 has normal structure.

Since µ(Eβ) = 1, and Eβ fails to have (NS) for β ≥
√

2, we would have a contra-
diction if Eβ was E-convex for some β ≥

√
2. �

Notice that ε0(Eβ) < 2 for 1 ≤ β <
√

2 (see [16], pag. 58) and hence the spaces
Eβ are E convex if and only if β ∈ [1,

√
2).
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Example 4.9. Let Y be the space `2 endowed with the norm

‖x‖ := max{‖x‖2,M(x)},
where for x ∈ `2, M(x) := sup{|x(i)|+ |x(j)| : 1 ≤ i < j}.
It is straightforward to check that Y has (WORTH) property, that is, that µ(Y ) = 1.

Proposition 4.10. Y fails (OC).

Proof. For n, m ∈ N, n 6= m, ‖en‖ = 1, ‖en + em‖ = ‖en − em‖ = 2 . Then,
D(en) = 2. For z = en + em one has ‖z‖ = 2 and

1 = ‖z − en‖ = ‖z − em‖ =
1
2
‖en − em‖.

Thus, ∀β > 0, z ∈ Mβ(em, en) if m 6= n, and

|Mβ(em, en)| ≥ ‖z‖ = 2.

which implies
lim sup

n
(lim sup

m
|Mβ(en, em)|) ≥ 2 = D(en).

Thus, Y is not (OC). �

Example 4.11. Let VD be the real space `2 endowed with the norm

|x| := max{1
3
‖x‖2, sup{|x1 + xn + xn+1| : n ≥ 2}}.

This space was introduced in 1982 by D. van Dulst. It is (OC) (see [18]), but it fails
to have asymptotic normal structure [30].

Proposition 4.12. The van Dulst space fails (PSz) condition

Proof. Take xn = (0, . . . , 0,
4n+1

1
2 , 1

2 , 0, . . .). Note that |xn| = 1 and that, for m > n,

|xm − xn| = |(0, . . . , 0,−1
2
,−1

2
, 0, . . . , 0,

1
2
,
1
2
, 0 . . .)| = 1.

Then, (xn) ∈ MV D. Moreover, e1 ∈ SV D, and for every n ≥ 1,

|e1 + xn| = |(1, 0, . . . , 0,
1
2
,
1
2
, . . .)| = 2.

Therefore, for every ε ∈ (0, 1),

b1(1, e1) := sup
(yn)∈MV D

lim inf
n

|e1 + yn| − |e1| ≥ lim inf
n

|e1 + xn| − |e1| = 2− 1 > 1− ε.

In the same way, it is clear that (−xn) ∈ NV D. For n > 1,

|e1 + (−xn)| = |(1, 0, . . . , ,−1
2
,−1

2
, 0, . . .)| = max{1

3

√
3
2
, 1} = 1,

and

d(1, e1) := inf
(yn)∈NV D

lim sup
n

|e1 + yn| − |e1| ≤ lim sup
n

|e1 − xn| − |v| = 1− 1 = 0 < ε.

�

Proposition 4.13. µ(V D) ≥ 2.
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Proof. Take xn :=
(
0, . . . , 0,

(2n+1)
1
2 , 1

2 , 0, . . .
)
, one has xn ⇀ 0`2 and |xn| = 1 (n =

1, 2, . . .). Since e1 ∈ SV D, and for n > 1,

|e1 + xn| =
∣∣(1, 0, . . . , 0, 1

2 , 1
2 , 0, . . .

)∣∣ = 2.

|e1 − xn| =
∣∣(1, 0, . . . , 0, −1

2 , −1
2 , 0, . . .

)∣∣ = 1 .

It follows that µ(V D) ≥ 2. �

Example 4.14. The Banach space `2 ⊕1 `2.
This space is (UNC) and hence it satisfies the (PSz) condition (See [28]).

Proposition 4.15. The space `2 ⊕1 `2 is E-convex but it fails to be (OC).

Proof. (See [10]). Indeed, (`2, ‖ · ‖2) is P-convex, and from Theorem 1.5 in [2] P-
convexity is preserved under `∞-direct sums. Then, `2⊕1 `2 = (`2⊕1 `2)∗ is P-convex
and hence O-convex. To see that this space fails to be (OC), for k positive integer
put

v2k = (0`2 , e2k), v2k+1 = (e2k+1, 0`2).
It is obvious that the sequence (vn) is weakly convergent to (0`2 , 0`2), and that ‖vn‖ =
1 for n = 1, 2, . . ..

For n < m one has that ‖vn − vm‖ = 2 whenever n and m have different par-
ity while ‖vn − vm‖ =

√
2 if m and n have the same parity. Thus, D(vn) =

lim supm[lim supn ‖vm − vn‖] = 2. If β > 0 and m,n have different parity, since

‖(vm + vn)− vn‖ = 1 =
1
2
‖vm − vn‖, ‖(vm + vn)− vm‖ = 1 =

1
2
‖vm − vn‖,

we have that wm,n = vm + vn ∈ Mβ(vn, vm). Given that ‖wm,n‖ = ‖vn + vm‖ =
‖en‖2 + ‖em‖2 = 2, then

|Mβ(vn, vm)| ≥ ‖wm,n‖ = 2

and therefore for every β > 0,

lim sup
m

[lim sup
n

|Mβ(vn, vm)|] ≥ 2 = D(vn),

which implies that `2 ⊕1 `2 fails to be (OC). �

Example 4.16. The Bynum spaces. For x ∈ `2 let

‖x‖2,1 := ‖x+‖2 + ‖x−‖2, ‖x‖2,∞ := max{‖x+‖2, ‖x−‖2}.
The spaces `2,1 := (`2, ‖ · ‖2,1) and `2,∞ := (`2, ‖ · ‖2,∞) were introduced by L.E.
Bynum.

Well known features of these spaces are the following.
(1) `∗2,1 = `2,∞. The space `2,1 has (NS) (and hence (ANS)) [16]. But `2,∞ fails

to have (ANS). (L. Bynum, private communication).
(2) ε0(`2,∞) = 1. Hence M(`2,∞) > 1 and this space satisfy (PSz) condition.

ε0(`2,∞) = 1 also directly implies that `2,∞ is E-convex.
(3) `2,∞ is (OC) (See [17]).
(4) µ(`2,1) = µ(`2,∞) =

√
2. (See [20]).
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Example 4.17. The Banach space Z := (`2, | · |Z) where

|x|Z := max{‖x‖2,M(x)}+
∞∑

i=1

2−i|x(i)|

satisfies Opial condition (see [17]). Since it is reflexive, then it has normal structure,
and hence (ANS). On the other hand, for the sequence (en) of unit vectors in `2 we
have that it is weakly null and that D(en) = Aλ[(en)] for all λ > 0, what shows that
Z fails (OC).

Example 4.18. Let V be the space `2 endowed with the norm

‖x‖V := max{‖x‖2,
√

2A(x)}.
where A(x) := sup{|x1 + xn| : n ≥ 2}.

Proposition 4.19. The space V fails (PSz) condition.

Proof. For each positive integer n put vn := 1√
2
en. Note that ‖vn‖V = 1 and that,

for m > n > 1, ‖vm − vn‖V = 1. Then (vn) ∈ MV .
Moreover, v1 ∈ SV , and for every n ≥ 1, ‖v1 + vn‖V = 2. Therefore, for every

ε ∈ (0, 1),

b1(1, v1) := sup(yn)∈MV
lim infn ‖v1 + yn‖V − ‖v1‖V

≥ lim infn ‖v1 + vn‖V − ‖v1‖V = 2− 1 > 1− ε.

In the same way, since (−vn) ∈ NV , and for n ≥ 2,

‖v1 + (−vn)‖V = ‖( 1√
2
, 0, . . . , 0,− 1√

2
, 0, . . .)‖V = max{1,

√
2

1√
2
} = 1

and
d(1, v1) := inf(yn)∈NV

lim supn ‖v1 + yn‖V − ‖v1‖V

≤ lim supn ‖v1 + (−vn)‖V − ‖v1‖V = 0 < ε.

�
To prove that the space V has asymptotic normal structure, we closely will follow

Lemma 3 in [1]. First, we need the following result, also from [1].

Lemma 4.20. Let K a closed bounded and convex subset of `2 and let (xn) be a
sequence in K. Then, there exists a unique point z ∈ K (called the ‖ · ‖2-asymptotic-
center of (xn) in K) which minimizes the functional x 7→ lim supn→∞ ‖xn−x‖2. This
point satisfies

(a)
lim sup

n→∞
‖xn − z‖22 + ‖z − x‖22 ≤ lim sup

n→∞
‖xn − x‖22

for all x ∈ K, and
(b)

2 lim sup
n→∞

‖xn − z‖22 ≤ lim sup
p→∞

(
lim sup

n→∞
‖xn − xp‖22

)
.

Proposition 4.21. V has asymptotic normal structure.
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Proof. Assume for a contradiction that there exists a closed, bounded and convex
subset K of `2, with diam‖·‖V

(K) = d > 0 and a sequence (xn) in K, with xn−xn+1 →
0`2 , and such that for every x ∈ K

‖xn − x‖V → d.

Since K is weakly compact we can suppose, passing to a subsequence if necessary,
that xn ⇀ x ∈ K. Let z ∈ K be the ‖ · ‖2-asymptotic-center of (xn) in K. We claim
that z = x.

Indeed, for every positive integer n we have that

‖xn − z‖22 = ‖xn − x‖22 + ‖x− z‖22 − 2〈xn − x, x− z〉.

Since xn − x ⇀ 0

lim sup
n→∞

‖xn − z‖22 = lim sup
n→∞

‖xn − x‖22 + ‖x− z‖22. (4.1)

On the other hand, from Lemma 4.20(a) we have that

lim sup
n→∞

‖xn − z‖22 + ‖x− z‖22 ≤ lim sup
n→∞

‖xn − x‖22.

Bearing in mind (4.1) from this last inequality we get that

lim sup
n→∞

‖xn − z‖22 + ‖x− z‖22 ≤ lim sup
n→∞

‖xn − x‖22 − ‖x− z‖22

and hence ‖x− z‖2 = 0, that is, z = x as we claimed.
By Lemma 4.20(b) we have that lim supn→∞ ‖xn−z‖22 ≤ d2

2 and since ‖xn−z‖2V →
d2 we have that [

√
2 A(xn − z)]2 → d2, that is,

sup
j≥2

∣∣x(1) + xn(j)− z(1)− z(j)
∣∣ → d√

2
.

Given that xn, z ∈ `2, we have that the above supremum is attained, that is, for each
positive integer n there exists a positive integer jn such that

A(xn − z) =
∣∣x(1) + xn(jn)− z(1)− z(jn)

∣∣.
Since xn − z ⇀ 0`2 , and hence xn(1)− z(1) → 0, and xn − xn+1 → 0`2 ,

A(xn − z)2 − 2|xn(1)− z(1)|.|xn(jn)− z(jn)|

+
(
A(xn+1 − z)−A(xn − xn+1)− |xn(1)− z(1)|

)2 −→ d2.

Therefore, given r ∈ (d2

2 , d2) there exists a positive integer n0 such that for every
n ≥ n0 we have that

‖xn − z‖22 ≤ r

A(xn+1 − z)−A(xn − xn+1)− |xn(1)− z(1)| ≥ 0

A(xn − z)2 − 2 |xn(1)− z(1)| |xn(jn)− z(jn)|
+

(
A(xn+1 − z)−A(xn − xn+1)− |xn(1)− z(1)|

)2
> r

 .
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Put k = jn0 . We claim that jn = k for every n ≥ n0. Otherwise there exists n ≥ n0

such that jn 6= jn+1 and then

r ≥ ‖xn − z‖22
≥ |xn(1)− z(1)|2 + |xn(jn)− z(jn)|2 + |xn(jn+1)− z(jn+1)|2

≥ |xn(1)− z(1) + xn(jn)− z(jn)|2 − 2|xn(1)− z(1)||xn(jn)− z(jn)|
+|xn(jn+1)− z(jn+1)|2

= |xn(1)− z(1) + xn(jn)− z(jn)|2 − 2|xn(1)− z(1)||xn(jn)− z(jn)|
+|xn+1(jn+1)− z(jn+1) + xn+1(1)− z(1)+

+xn(jn+1)− xn+1(jn+1) + xn(1)− xn+1(1)− xn(1) + z(1)|2
(4.2)

Since A(xn+1 − z)−A(xn − xn+1)− |xn(1)− z(1)| ≥ 0, that is∣∣x(1)+xn+1(jn+1)−z(1)−z(jn+1)
∣∣−∣∣x(1)+xn(jn)−z(1)−z(jn)

∣∣−∣∣xn(1)−z(1)
∣∣ ≥ 0

then,

0 ≤
∣∣x(1) + xn+1(jn+1)− z(1)− z(jn+1)

∣∣
−

∣∣x(1) + xn(jn)− z(1)− z(jn)
∣∣− ∣∣xn(1)− z(1)

∣∣
≤

∣∣x(1) + xn+1(jn+1)− z(1)− z(jn+1)
∣∣

−
∣∣(x(1) + xn(jn)− z(1)− z(jn)

)
+

(
xn(1)− z(1)

)∣∣
≤

∣∣x(1) + xn+1(jn+1)− z(1)− z(jn+1)

−
(
x(1) + xn(jn)− z(1)− z(jn)

)
−

(
xn(1)− z(1)

)∣∣
and hence

0 ≤
(∣∣x(1) + xn+1(jn+1)− z(1)− z(jn+1)

∣∣
−

∣∣x(1) + xn(jn)− z(1)− z(jn)
∣∣− ∣∣xn(1)− z(1)

∣∣)2

≤
∣∣x(1) + xn+1(jn+1)− z(1)− z(jn+1)

−
(
x(1) + xn(jn)− z(1)− z(jn)

)
−

(
xn(1)− z(1)

)∣∣2.
Bearing this in mind, it follows from (4.2) that

r ≥ |xn(1)− z(1) + xn(jn)− z(jn)|2 − 2|xn(1)− z(1)||xn(jn)− z(jn)|
+|xn+1(jn+1)− z(jn+1) + xn+1(1)− z(1)+

+xn(jn+1)− xn+1(jn+1) + xn(1)− xn+1(1)− xn(1) + z(1)|2

≥ |xn(1)− z(1) + xn(jn)− z(jn)|2 − 2|xn(1)− z(1)||xn(jn)− z(jn)|
+

(∣∣x(1) + xn+1(jn+1)− z(1)− z(jn+1)
∣∣

−
∣∣x(1) + xn(jn)− z(1)− z(jn)

∣∣− ∣∣xn(1)− z(1)
∣∣)2

= |xn(1)− z(1) + xn(jn)− z(jn)|2 − 2|xn(1)− z(1)||xn(jn)− z(jn)|
+

(
A(xn+1 − z)−A(xn − xn+1)− |xn(1)− z(1)|

)2
> r,

a contradiction which proves our claim.



138 ENRIQUE LLORENS-FUSTER AND OMAR MUÑIZ-PÉREZ

Then jn = k for every n ≥ n0. Since xn − z ⇀ 0 we have that xn(1) − z(1) → 0
and xn(k)− z(k) → 0 as n →∞. By the above we get that

d2

2 = limn→∞A(xn − z)2

= limn→∞ |xn(1) + xn(jn)− z(1)− z(jn)|2

= limn→∞ |xn(1) + xn(k)− z(1)− z(k)|2 = 0.

Consequently, d = 0, which contradicts our assumption. �

Example 4.22. Let 1 < p < ∞ and β ≥ 1. Let us consider the Banach space
Xp,β :=

(
R⊕1 Eβ

)
⊕∞ `p.

Proposition 4.23. For 1 < p < ∞ and β ≥
√

2 the space Xp,β enjoys property
(WORTH) but it fails (PSz) condition.

Proof. For the sequence (wn) in Eβ given by wn = 1
β en, take the sequences

(
zm

)
and(

ym

)
in SXp,β

defined as

zm =
(
(0, wm), 0`p

)
, ym =

(
(0, 0Eβ

), em

)
,

where
(
em

)
m

is the standard basis of `p. For x =
(
(1, 0Eβ

), 0`p

)
∈ SXp,β

and positive
integers m,n we have that

‖x + zm‖Xp,β
= ‖

(
(1, wm), 0`p

)
‖Xp,β

= max
{
1 + |wm|(β), 0

}
= 2,

‖x + ym‖Xp,β
= ‖

(
(1, 0Eβ

), em

)
‖Xp,β

= max
{
1, ‖em‖p

}
= 1,

‖zn − zm‖Xp,β
= ‖

(
(0, wm − wn), 0`p

)
‖Xp,β

= |wn − wm|β = 1.

Since zm ⇀ 0Xp,β
and ym ⇀ 0Xp,β

we get that (zn) ∈ MXp,β
and (yn) ∈ NXp,β

.
Therefore we have for every ε ∈ (0, 1) that

d(1, x) = inf
(ξn)∈NX

lim sup
n→∞

‖x + ξn‖Xp,β
− 1 ≤ lim sup

n→∞
‖x + yn‖Xp,β

− 1 = 0 ≤ ε

and

b1(1, x) = sup
(ξn)∈MX

lim inf
n→∞

‖x + ξn‖Xp,β
− 1 ≥ lim inf

n→∞
‖x + zn‖Xp,β

− 1 = 1 ≥ 1− ε.

Thus, Xp,β fails condition (PSz).
On the other hand, Xp,β has property (WORTH) because it is well known that

the spaces `p and Eβ have property (WORTH) and Kato and Tamura proved in [21]
that this property is preserved under `n

q -direct sums for 1 ≤ q ≤ ∞. �

4.5. Summary. Next, we summarize the above results in the following table:

fails ↑
←has X

ANS OC PS WORTH

ANS * Z V `2,1

OC V D * V D `2,∞

PS `2,∞ `2 ⊕1 `2 * `2,∞

WORTH Eβ , β ≥ 2 Y Xp,β *
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5. Final remarks

All the above examples are either equivalent renormings of `2 or isometric to such
renormings, that is, they are Banach spaces of the form (`2, ‖.‖) with ‖ · ‖2 ≤ ‖ · ‖ ≤
b‖ · ‖2. The problem if such spaces (`2, ‖ · ‖) have the (FPP) remains open. In these

framework, it is known that (`2, ‖ · ‖) enjoys (FPP) provided that b <

√
5+
√

17
2 . It

is easy to give examples showing that this condition nor implies nor is implied by
(ANS), (PSz), (WORTH) and (OC).

It is worth noting that one can find in the literature several sufficient conditions for
(FPP) which we not considered here. Because of its complexity, we have omitted in
our study those which are not directly depending on the geometry of the underlying
space. For instance, some of these conditions are specific for spaces with a suitable
basis, and they are stated in terms of certain constants depending on such a basis.
For similar reasons, we have not payed attention to those sufficient conditions for
(WFPP) which are stated in terms of the properties of the ultrapowers of the Banach
space where the fixed point problem is considered (as, for example, the so called super
fixed point property, or property (AMC) in [13]).
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