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1. Introduction

The study of fixed points for multivalued contractions and nonexpansive mappings
by using the Hausdorff metric was initiated by Markin [11] (see also [13]). Later, an
interesting and rich fixed point theory for such maps was developed which has applica-
tions in control theory, convex optimization, differential inclusion and economics (see
[7] and references cited therein). Approximating fixed points of multivalued mappings
have been studied by many authors. In particular, Sastry and Babu [15] introduced
the analogs of Mann and Ishikawa iterates for multivalued mappings and proved con-
vergence theorems for nonexpansive mappings whose domain is a compact convex
subset of a Hilbert space. Recently, Panyanak [14] generalized results of Sastry and
Babu to uniformly convex Banach spaces. Xu [16] introduced the class of multival-
ued ∗-nonexpansive mappings and showed that ∗-nonexpansiveness is different from
nonexpansiveness for multivalued mappings.

Throughout this paper X denotes a real Banach space and C is a nonempty
bounded closed convex subset of X. Also, CB(X) denotes the set of nonempty
closed bounded subsets of X and K(X) denotes the set of nonempty compact subsets
of X. It is clear that K(X) is included in CB(X). Let H be the Hausdorff metric on
CB(X), i.e.,

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y, A)
}

,
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where A,B ∈ CB(X) and d(x, B) = inf{‖x − y‖ : y ∈ B} is the distance from the
point x to the set B.

A multivalued mapping T : C → CB(X) is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖

for all x, y ∈ C. T is said ∗-nonexpansive if for each x, y ∈ C and ux ∈ Tx with
d(x, Tx) = ‖x− ux‖ there exists uy ∈ Ty with d(y, Ty) = ‖y − uy‖ such that

‖ux − uy‖ ≤ ‖x− y‖.

A point x is called a fixed point of T if x ∈ Tx. We denote the set of all fixed points
of T by F (T ).
The mapping T is said to be demiclosed at y in X if {xn} is a sequence in C which
converges weakly to x and yn ∈ Txn → y; then y ∈ Tx.

It is known that a multivalued nonexpansive mapping T : C → K(C) has a fixed
point if C is nonempty bounded closed convex subset of a uniformly convex Banach
space X [10]. Some recent existence theorems for multivalued mappings can be found
in [1, 8].
Remark 1.1 Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space X and T : C → K(C) be a multivalued ∗-nonexpansive mapping. Then
T has a fixed point. To see this define S : C → K(C) by

Sx = {ux ∈ Tx : ‖x− ux‖ = d(x, Tx)}.

Definition of ∗-nonexpansiveness implies that S is multivalued nonexpansive and by
Lim’s fixed point theorem [10] S and hence T itself has a fixed point.

On the other hand, using the metric projection, Matsushita and Takahashi [12]
introduced an iterative algorithm for single valued nonexpansive mappings in Banach
spaces as follows.

Let C be a nonempty subset of a reflexive, strictly convex and smooth Banach
space X and T : C → C be a mapping with F (T ) 6= ∅. For a given x1 = x ∈ C,
compute the sequence {xn} by the iterative algorithm Cn = co{z ∈ C : ‖z − T z‖ ≤ tn‖xn − T xn‖},

Dn = {z ∈ C : 〈xn − z, J(x− xn)〉 ≥ 0},
xn+1 = PCn∩Dn

x, n ≥ 1,
(1.1)

where coD denotes the convex closure of the set D and {tn} is a sequence in (0, 1)
with limn→∞ tn = 0. They proved that if T is nonexpansive and X is uniformly
convex and smooth, then {xn} generated by (1.1) converges strongly to a fixed point
of T .

Motivated by these facts, we introduce an analog to Matsushita and Takahashi’s
iterative algorithm for multivalued mappings. The algorithm is defined as follows.

Let C and X be as in (1.1), T : C → K(C) be a mapping with F (T ) 6= ∅,
x1 = x ∈ C and compute the sequence {xn} by the iterative algorithm Cn = co{z ∈ C : d(z, Tz) ≤ tnd(xn, Txn)},

Dn = {z ∈ C : 〈xn − z, J(x− xn)〉 ≥ 0},
xn+1 = PCn∩Dn

x, n ≥ 1,
(1.2)
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where {tn} is a sequence in (0, 1) with limn→∞ tn = 0 and PCn∩Dn is the metric
projection from X onto Cn ∩Dn.

For a single valued mapping T , the algorithm (1.2) reduces to (1.1). Note that
d(z, {Tz}) = ‖z − Tz‖.

The purpose of this paper is to establish strong convergence theorem of the iterative
algorithm (1.2) for multivalued ∗-nonexpansive mappings in a uniformly convex and
smooth Banach space.

2. Preliminaries

When {xn} is a sequence in X, we denote strong convergence of {xn} to x ∈ X
by xn → x and weak convergence by xn ⇀ x. A Banach space X is said to have
Kadec-Klee property if for every sequence {xn} in X, xn ⇀ x and ‖xn‖ → ‖x‖ imply
that xn → x. Every uniformly convex Banach space has the Kadec-Klee property [2].
Let Br denotes the open ball of radius r centered at 0. A Banach space X is said to
have convex approximation property if for each ε > 0 there exists a positive integer p
such that for every bounded subset M of X,

coM ⊂ copM + Bε. (2.1)

where coM denotes the convex hull of M and copM denotes the set of convex combi-
nation of no more than p elements of M ; or in other words, each convex combination
of elements of M can be approximated by a convex combination of no more than p
elements of M . It is known that every uniformly convex Banach space has the convex
approximation property [5].

Let X∗ be the dual of X. We denote the value of x∗ ∈ X∗ at x ∈ X by 〈x, x∗〉.
The normalized duality mapping J from X to 2X∗

is defined by

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for all x ∈ X. It is known that a Banach space X is smooth if and only if the
normalized duality mapping J is single valued. Some properties of duality mapping
have been given in [2, 6]. Let C be a nonempty closed convex subset of a reflexive,
strictly convex and smooth Banach space X. Then for any x ∈ X there exists a
unique point x0 ∈ C such that

‖x0 − x‖ = min
y∈C

‖y − x‖.

The mapping PC : X → C defined by PCx = x0 is called the metric projection from
X onto C. Let x ∈ X and u ∈ C. Then, it is known that u = PCx if and only if

〈u− y, J(x− u)〉 ≥ 0 (2.2)

for all y ∈ C (see [2, 3]).

3. Demiclosed principle

In this section, we shall obtain demiclosed principle for ∗-nonexpansive mappings.
To proceed in this direction, we first prove some Zarantonello-type inequalities for
multivalued ∗-nonexpansive mappings. For classical and contemporary developments
related to the Zarantonello’s inequality, see [5, 9] where further references are provided.
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Consistently with [4], we denote by Γ the set of strictly increasing, continuous
and convex functions γ : [0,∞) → [0,∞) with γ(0) = 0. A multivalued mapping
T : C → K(C) is said to be of type (γ) if γ ∈ Γ and

γ (d (λx + (1− λ)y, T (λx + (1− λ)y))) ≤ max{d(x, Tx), d(y, Ty)} (3.1)

for all x, y ∈ C and λ ∈ [0, 1].
Lemma 3.1 If X is uniformly convex then there exists γ ∈ Γ such that every ∗-
nonexpansive mapping T : C → K(C) is of type (γ). Moreover, γ can be chosen to
depend only on the diameter of C and not on T .
Proof. Let δ be the modulus of uniform convexity of X. We know that δ : [0, 2] → [0, 1]
is continuous increasing with δ(0) = 0, δ(t) > 0 for t > 0 and

2 min{λ, (1− λ)}δ (‖v − w‖) ≤ 1− ‖λv + (1− λ)w‖
for each λ ∈ [0, 1] and v, w ∈ C with ‖v‖ ≤ 1 and ‖w‖ ≤ 1. Define

α(t) =
1
2

∫ t

0

δ(s)ds, (0 ≤ t ≤ 2),

and α(t) = α(2) + 1
2δ(2)(t − 2) whenever t > 2. It is easy to verify that α ∈ Γ,

α(t) ≤ δ(t) for 0 ≤ t ≤ 2 and

2λ(1− λ)α (‖v − w‖) ≤ 1− ‖λv + (1− λ)w‖
for each λ ∈ [0, 1] and v, w ∈ C with ‖v‖ ≤ 1 and ‖w‖ ≤ 1. Note that λ(1 − λ) ≤
min{λ, (1−λ)}. Since Tx is compact, then d(x, Tx) = ‖x−ux‖ for some ux ∈ Tx. By
the ∗-nonexpansiveness of T there exist uz ∈ Tz with d(z, Tz) = ‖z−uz‖ and uy ∈ Ty
with d(y, Ty) = ‖y − uy‖ such that ‖ux − uz‖ ≤ ‖x − z‖ and ‖uz − uy‖ ≤ ‖z − y‖
and therefore ‖ux − uy‖ ≤ ‖x− y‖ where z = λx + (1− λ)y. The case that x = y or
λ = 0, 1 is trivial. Now, take

v = (uy − uz)/λ‖x− y‖ and w = (uz − ux)/(1− λ)‖x− y‖.
Noting that the function s → α(s)/s is increasing and λ(1 − λ)‖x − y‖ ≤ d/4 for
d = diam(C), we conclude that

d

2
α

(
4
d
‖λux + (1− λ)uy − uz‖

)
≤ ‖x− y‖ − ‖ux − uy‖.

Put β(t) = (d/2)α(4t/d). Taking t = max{d(x, Tx), d(y, Ty)} and considering

‖x− y‖ − ‖ux − uy‖ ≤ ‖x− ux‖+ ‖y − uy‖ ≤ 2t,

we have

β (‖λux + (1− λ)uy − uz‖) ≤ 2t.

As β−1 is increasing, we obtain

d(z, Tz) = ‖z − uz‖ ≤ ‖λux + (1− λ)uy − uz‖+ ‖z − λux − (1− λ)uy‖
≤ β−1(2t) + λ‖x− ux‖+ (1− λ)‖y − uy‖
≤ β−1(2t) + t.

If γ denotes the inverse function t → β−1(2t) + t, we get the assertion. �



DEMICLOSED PRINCIPLE AND CONVERGENCE OF A HYBRID ALGORITHM 111

Lemma 3.2 Suppose γ ∈ Γ. Then for each positive integer p there exists γp ∈ Γ such
that for any T : C → K(C) of type (γ), any x1, . . . , xp in C and any positive real
numbers λ1, . . . , λp with λ1 + · · ·+ λp = 1,

γp

(
d

(
p∑

i=1

λixi, T

(
p∑

i=1

λixi

)))
≤ max

1≤i≤p
d(xi, Txi). (3.2)

Proof. We prove lemma by induction on p. We set γ2 = γ and suppose γp ∈ Γ has
been chosen. Define the function γp+1 : [0,∞) → [0,∞) by γp+1(t) = γ2(γp(t)). It
is easy to see that γp+1 ∈ Γ. We must verify (3.2) for p + 1. Let T : C → K(C)
be of type (γ) and fix x1, . . . , xp+1 in C and positive real numbers λ1, . . . , λp+1 with
λ1+· · ·+λp+1 = 1. The case λp+1 = 1 is trivial. We take ui = (1−λp+1)xi+λp+1xp+1

and µi = λi/(1 − λp+1) for all i ∈ {1, 2, . . . , p}. Then
∑p

i=1 µi = 1 and
∑p

i=1 µiui =∑p+1
i=1 λixi. Since T is of type (γ), we have

γ2(d(ui, Tui)) ≤ max{d(xi, Txi), d(xp+1, Txp+1)}. (3.3)

It follows from the induction hypothesis that

γp

(
d

(
p∑

i=1

µiui, T

(
p∑

i=1

µiui

)))
≤ max

1≤i≤p
d(ui, Tui).

This together with (3.3) and definition of γp+1 implies that

γp+1

(
d

(
p+1∑
i=1

λixi, T

(
p+1∑
i=1

λixi

)))
= γp+1

(
d

(
p∑

i=1

µiui, T

(
p∑

i=1

µiui

)))
≤ max

1≤i≤p
γ2(d(ui, Tui))

≤ max
1≤i≤p+1

d(xi, Txi).

This completes the proof. �
Theorem 3.3 If X is uniformly convex then there exists a strictly increasing con-
tinuous convex function γ : [0,∞) → [0,∞) with γ(0) = 0 depending only on the
diameter of C such that

γ

(
d

(
n∑

i=1

λixi, T

(
n∑

i=1

λixi

)))
≤ max

1≤i≤n
d(xi, Txi)

holds for any ∗-nonexpansive mapping T : C → K(C), any elements x1, . . . , xn in C
and any numbers λ1, . . . , λn ≥ 0 with λ1 + · · ·+λn = 1. (Note that γ does not depend
on T .)
Proof. Since T is ∗-nonexpansive, it follows from Lemma 3.1 that T is of type (α)
for some α ∈ Γ. Then we can determine γp ∈ Γ for p = 2, 3, . . . by Lemma 3.2.
Let t > 0 be arbitrary. Since every uniformly convex Banach space has the convex
approximation property and C is bounded, there exists q ≥ 2 such that

coM ⊂ coqM + Bt (3.4)
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for all M ⊆ C. We put δ(t) = 2t + γ−1
q (t) and suppose x1, . . . , xn ∈ C satisfy

max1≤i≤n d(xi, Txi) ≤ t. By taking M = {x1, . . . , xn} in (3.4), it follows that for each
numbers λ1, . . . , λn ≥ 0 with λ1 + · · · + λn = 1 there exist numbers µ1, . . . , µq ≥ 0
with µ1 + · · ·+ µq = 1 and i1, . . . , iq ∈ {1, 2, . . . , n} such that∥∥∥∥∥∥

n∑
i=1

λixi −
q∑

j=1

µjxij

∥∥∥∥∥∥ ≤ t.

Put y =
∑n

i=1 λixi and z =
∑q

j=1 µjxij
. Since Ty is compact, there exists uy ∈ Ty

such that d(y, Ty) = ‖y − uy‖. It follows from ∗-nonexpansiveness of T that there
exists uz ∈ Tz with d(z, Tz) = ‖z − uz‖ such that ‖uy − uz‖ ≤ ‖y − z‖. Hence

d

(
n∑

i=1

λixi, T

(
n∑

i=1

λixi

))
= ‖y − uy‖ ≤ ‖y − z‖+ ‖z − uz‖+ ‖uz − uy‖

≤ 2t + d

 q∑
j=1

µjxij
, T

 q∑
j=1

µjxij


≤ 2t + γ−1

q (t) = δ(t).

We may suppose that δ : (0,∞) → (0,∞) is strictly increasing. If not, we would pass
to δ′ where

δ′(t) = inf
η∈[t,∞)

δ(η) + t.

Let β(t) = min{t, δ−1(t)}. Thus β : (0,∞) → (0,∞) is strictly increasing and
limt→0+ β(t) = 0. Moreover, we may assume that β is continuous by passing to
β′ where

β′(t) =
1
t

∫ t

0

β(s)ds, (t > 0).

Now, we define the function γ : [0,∞) → [0,∞) by γ(0) = 0 and

γ(t) =
1
d

∫ t

0

β(s)ds, (t > 0),

where d is the diameter of C. It is easy to verify that γ ∈ Γ and γ(t) ≤ β(t) ≤ δ−1(t)
for all t ∈ [0, d]. By taking t = max1≤i≤n d(xi, Txi) we obtain

γ

(
d

(
n∑

i=1

λixi, T

(
n∑

i=1

λixi

)))
≤ t = max

1≤i≤n
d(xi, Txi).

This completes the proof. �
Theorem 3.4 (Demiclosed principle) Let C be a nonempty bounded closed convex
subset of a uniformly convex Banach space X and T : C → K(C) be a ∗-nonexpansive
mapping. Then (I − T ) is demiclosed at 0.
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Proof. Let {xn} be a sequence in C such that xn ⇀ x and xn − yn → 0, where
yn ∈ Txn. Thus for each ε > 0 there exist positive integers n0 and n1, . . . , nk ≥ n0

and real numbers λ1, . . . , λk ≥ 0 with λ1 + · · ·+ λk = 1 such that∥∥∥∥∥x−
k∑

i=1

λixni

∥∥∥∥∥ ≤ ε and d (xni
, Txni

) ≤ ‖xni
− yni

‖ ≤ ε for all i = 1, . . . , k.

Suppose z =
∑k

i=1 λixni
and d(x, Tx) = ‖x − ux‖ for some ux ∈ Tx. Since T is

∗-nonexpansive there exists uz ∈ Tz with d(z, Tz) = ‖z − uz‖ such that ‖uz − ux‖ ≤
‖z − x‖. It follows from Theorem 3.3 that

d(x, Tx) = ‖x− ux‖ ≤ ‖x− z‖+ ‖z − uz‖+ ‖uz − ux‖
≤ 2ε + γ−1(ε).

Since Tx is closed it follows x ∈ Tx. �
Using Lemma 3.1 and Theorem 3.4 we obtain following result related to the struc-

ture of F (T ).
Corollary 3.5 Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space X and T : C → K(C) be a ∗-nonexpansive mapping. Then
F (T ) is convex and closed.

4. Strong convergence theorem

In this section, we study the iterative algorithm (1.2) for finding fixed points of mul-
tivalued ∗-nonexpansive mappings in a uniformly convex and smooth Banach space.
We first prove that the sequence {xn} generated by (1.2) is well-defined. Then, we
prove that {xn} converges strongly to PF (T )x, where PF (T ) is the metric projection
from X onto F (T ).
Lemma 4.1 Let X be a reflexive, strictly convex and smooth Banach space, C ⊆ X
and let T : C → K(C) be a ∗-nonexpansive mapping. If F (T ) 6= ∅, then the sequence
{xn} generated by (1.2) is well-defined.
Proof. It is easy to check that Cn ∩Dn is closed and convex and F (T ) ⊂ Cn for each
n ∈ N. Moreover D1 = C and so F (T ) ⊂ C1 ∩ D1. Suppose F (T ) ⊂ Ck ∩ Dk for
k ∈ N. Since xk+1 = PCk∩Dk

x, it follows from (2.2) that

〈xk+1 − y, J(x− xk+1)〉 ≥ 0,

for all y ∈ Ck ∩ Dk and so for all y ∈ F (T ), that is F (T ) ⊂ Ck+1 ∩ Dk+1. By
mathematical induction, we obtain that F (T ) ⊂ Cn ∩ Dn for all n ∈ N. Therefore,
{xn} is well-defined. �

In order to prove our main result, the following lemma is needed.
Lemma 4.2 Let C be a nonempty bounded closed convex subset of a uniformly convex
and smooth Banach space X, let T : C → K(C) be a ∗-nonexpansive mapping and let
{xn} be the sequence generated by (1.2). Then,

lim
n→∞

d(xn, Txn) = 0.
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Proof. Since xn+1 = PCn∩Dnx, then xn+1 ∈ Cn. Since tn > 0, there exist y1, . . . , ym ∈
C and λ1, . . . , λm ≥ 0 with λ1 + · · ·+ λm = 1 such that∥∥∥∥∥xn+1 −

m∑
i=1

λiyi

∥∥∥∥∥ < tn, (4.1)

and d(yi, T yi) ≤ tnd(xn, Txn) for all i ∈ {1, . . . ,m}. Put q = PF (T )x and r0 =
2 supn≥1 ‖xn − q‖. Since q ∈ Tq and T is ∗-nonexpansive, there exists uxn

∈ Txn

with d(xn, Txn) = ‖xn − uxn
‖ such that ‖q − uxn

‖ ≤ ‖q − xn‖. It follows from
boundedness of C that

d(yi, T yi) ≤ tnd(xn, Txn) = tn‖xn − uxn
‖ ≤ tn(‖xn − q‖+ ‖q − uxn

‖) ≤ r0tn, (4.2)

for all i ∈ {1, . . . ,m}. Let z =
∑m

i=1 λiyi and uxn+1 ∈ Txn+1 with d(xn+1, Txn+1) =
‖xn+1 − uxn+1‖. There exists uz ∈ Tz with d(z, Tz) = ‖z − uz‖ such that

‖uz − uxn+1‖ ≤ ‖z − xn+1‖.
It follows from Theorem 3.3, (4.1) and (4.2) that

d (xn+1, Txn+1) = ‖xn+1 − uxn+1‖

≤

∥∥∥∥∥xn+1 −
m∑

i=1

λiyi

∥∥∥∥∥+ d

(
m∑

i=1

λiyi, T

(
m∑

i=1

λiyi

))
+ ‖uz − uxn+1‖

≤ 2tn + γ−1

(
max

1≤i≤m
d(yi, T yi)

)
≤ 2tn + γ−1(r0tn).

Since limn→∞ tn = 0, it follows from the last inequality that limn→∞ d(xn, Txn) = 0.
This completes the proof. �
Theorem 4.3 Let C be a nonempty bounded closed convex subset of a uniformly
convex and smooth Banach space X, let T : C → K(C) be a ∗-nonexpansive mapping
and let {xn} be the sequence generated by (1.2). Then {xn} converges strongly to the
element PF (T )x of F (T ).
Proof. Put q = PF (T )x. Since F (T ) ⊂ Cn ∩Dn and xn+1 = PCn∩Dn

x, we have that

‖x− xn+1‖ ≤ ‖x− q‖ (4.3)

for all n ∈ N. Since {xn} is bounded, there exists {xni
} ⊂ {xn} such that xni

⇀ p. It
follows from Lemma 4.2 and Lemma 3.4 (demiclosedness of (I − T )) that p ∈ F (T ).
From the weakly lower semicontinuity of norm and (4.3), we obtain

‖x− q‖ ≤ ‖x− p‖ ≤ lim inf
i→∞

‖x− xni‖ ≤ lim sup
i→∞

‖x− xni‖ ≤ ‖x− q‖.

This together with the uniqueness of PF (T )x, implies q = p, and hence xni
⇀ q.

Therefore, we obtain xn ⇀ q. By using the same argument as in proof above, we
have

lim
n→∞

‖x− xn‖ = ‖x− q‖.

Since X is uniformly convex, using the Kadec-Klee property, we have that x− xn →
x− q. It follows that xn → q. This completes the proof. �
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Since every single valued nonexpansive mapping can be viewed as a multivalued
∗-nonexpansive mapping, we obtain the strong convergence theorem of the iterative
algorithm (1.1) due to Matsushita and Takahashi [12, Theorem 3.1].
Corollary 4.4 Let C be a nonempty bounded closed convex subset of a uniformly
convex and smooth Banach space X, let T be a nonexpansive self-mapping of C, and
let {xn} be the sequence generated by (1.1). Then {xn} converges strongly to the
element PF (T )x of F (T ).
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