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1. Introduction

For a function f : [0, 1] → R+ (here x ∈ R+ means x ≥ 0), the Bernstein max-
product approximation operator was for the first time defined (and formally studied)
in [7], pp. 325-326, by the formula

B(M)
n (f)(x) =

n∨
k=0

pn,k(x)f
(

k
n

)
n∨

k=0

pn,k(x)
,

where pn,k(x) =
(
n
k

)
xk(1− x)n−k and

∨n
k=0 pn,k(x) = maxk={0,...,n}{pn,k(x)}.

Notice that the Bernstein max-product operator is obtained from the linear Bern-
stein polynomial written in the form

Bn(f)(x) =
∑n

k=0 pn,k(x)f(k/n)∑n
k=0 pn,k(x)

and replacing here the ”sum” operator by the ”maximum” operator.
Surprisingly, with respect to the classical Bernstein polynomials, in the whole class

of continuous functions on [0, 1], the max-product Bernstein operators do not loose
the approximation properties. Moreover, they present the advantage that for large
classes of functions improve the order of approximation to the Jackson-type order.
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In more details, it was proved in [3], [4] that B
(M)
n is a nonlinear (more exactly

sublinear on the space of positive functions) operator, well-defined for all x ∈ R,
and a piecewise rational function on R. Also, in [3] it was proved that B

(M)
n pos-

sesses some interesting direct approximation results and shape preserving properties.
For example, while in general the order of uniform approximation was found to be
ω1(f ; 1/

√
n)[0,1], however, for some subclasses of functions including for example the

class of concave functions and also a subclass of the convex functions, the order of
approximation is essentially better, namely is ω1(f ; 1/n)[0,1]. In addition, in [3] it
was proved that B

(M)
n (f) is continuous for any positive function f , preserves the

monotonicity and the quasiconvexity of f .
For strictly positive functions, improved direct approximation results by the Bern-

stein max-product operator we have obtained in [5].
For the classical Bernstein polynomials Bn(f)(x), in the paper of Rus [11] the well-

known Kelisky–Rivlin’s result in [10] stating that for all f ∈ C[0, 1], x ∈ [0, 1] and
n ∈ N it holds limm→∞Bm

n (f)(x) = f(0) + [f(1) − f(0)]x = B1(f)(x) (here Bm
n (f)

denotes the mth iterate of the sequence of successive approximations), is proved in a
very simple and elegant manner, by using the Banach fixed point theorem. Note here
that B1(f)(x) = f(0) + [f(1)− f(0)]x is a fixed point for the operator Bn.

Also, if m = mn depends on n and if limn→∞
mn

n = 0, then it is known that (see
e.g. [10]) limn→∞Bmn

n (f)(x) = f(x) uniformly in [0, 1].
Similar studies for the iterates of other kinds of Bernstein-type operators were

obtained via fixed point theory in e.g. Agratini [1], Rus [12] and Agratini-Rus [2].
The main aim of the present paper is to make a similar study for the iterates of

the Bernstein max-product operator B
(M)
n . It is worth noting that due to the fact

that B
(M)
n is not a contraction (is only a non-expansive operator), the methods used

in the case of Bernstein polynomials cannot be used for the Bernstein max-product
operators, so that new methods are required.

The plan of the paper goes as follows.
Although the Bernstein max-product operator is not a contraction, as an analogue

of the above mentioned Kelisky–Rivlin’s results for the Bernstein polynomial, in Sec-
tion 2 of the present paper firstly we prove by a direct method that for any fixed
n ∈ N and f : [0, 1] → [0,+∞), the sequence of successive approximations of the
nonlinear operator B

(M)
n , denoted by am

n (f)(x) = [B(M)
n ]m(f)(x), still uniformly con-

verges for m → ∞ to a fixed point of B
(M)
n . Also, the limits of the double sequence

(am
n (f))m,n∈N for other interdependences between m and n are calculated.
In the same section, important subsets of the set of fixed points of the operator

B
(M)
n are concretely determined.
Finally, in Section 3 we study the convergence of so-called Ishikawa iterates for the

operator B
(M)
n .

2. The sequence of successive approximations and fixed points for B
(M)
n

For the proof of the convergence of the sequence of successive approximations of
B

(M)
n , we need the following three auxiliary results.
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The first result obtained one refers to the fact that unlike the classical Bernstein
(linear) operator Bn(f) which is a contraction, the max-product Bernstein (nonlinear)
operator B

(M)
n (f) is only a nonexpansive operator. This means that the Banach fixed

point theorem cannot be applied in this case.
Theorem 2.1. For any n ∈ N, the max-product Bernstein operator B

(M)
n : C+[0, 1] →

C+[0, 1] is nonexpansive, that is

‖B(M)
n (f)−B(M)

n (g)‖ ≤ ‖f − g‖, for all f, g ∈ C+[0, 1],

where C+[0, 1] = {f : [0, 1] → R+; f is continuous on [0, 1]}, R+ = {x ∈ R;x ≥ 0}
and ‖ · ‖ denote the uniform norm in C+[0, 1].
Proof. We easily get

|B(M)
n (f)(x)−B(M)

n (g)(x)| ≤
∨n

k=0 |pn,k(x)f(k/n)− pn,k(x)g(k/n)|∨n
k=0 pn,k(x)

≤ ‖f − g‖,
which proves the theorem. �
Remarks. 1) In general, the inequality in Theorem 2.1 is not strict, that is there
exists f, g ∈ C+[0, 1], such that ‖B(M)

n (f)−B
(M)
n (g)‖ = ‖f−g‖. Indeed, let us choose,

for example, f nonincreasing on [0, 1] and g = 0 on [0, 1]. By Corollary 5.6 in [3], it
follows that B

(M)
n (f) is also nonincreasing on [0, 1], which implies that ‖f‖ = f(0),

‖B(M)
n (f)‖ = B

(M)
n (f)(0) and by the obvious relationship B

(M)
n (f)(0) = f(0), it

implies ‖B(M)
n (f)−B

(M)
n (g)‖ = ‖B(M)

n (f)‖ = f(0) = ‖f‖ = ‖f − g‖.
2) Note that Lemma 2.5 in [6] shows that for any bounded f : [0, 1] → R+ and

n ∈ N, B
(M)
n (f) ∈ LipL 1, with L = Cn2‖f‖, C > 0 being a constant independent of

f and n, where

LipL 1 = {f : [0, 1] → R; |f(x)− f(y)| ≤ L|x− y|, for all x, y ∈ [0, 1]}.
In the next result we obtain an explicit value for C in the above Remark 2.

Theorem 2.2. For all f ∈ C+[0, 1] and h ≥ 0 we have

ω1(B(M)
n (f);h) ≤ 6πe2n2‖f‖h,

where ω1(f ;h) = sup{|f(x) − f(y)|;x, y ∈ [0, 1], |x − y| ≤ h} denotes the modulus of
continuity.
Proof. Analysing the proof of Lemma 2.5 in [6], we get ω1(B

(M)
n (f);h) ≤ 1

c2
1
n2‖f‖h,

where it is easy to observe that the constant c1 > 0 (independent of x and n) comes
from Lemma 2.4 in [6] as satisfying the inequality

∨n
k=0 pn,k(x) ≥ c1√

n
, for all x ∈ [0, 1]

and n ∈ N.
Analysing now the proof of Lemma 2.4 in [6], it easily follows that c1 = c2 · 1

e ,
where c2 > 0 is now the constant that appear in the statement of Lemma 2.3 in [6]
as satisfying

min
{

pn,j(
j

n + 1
), pn,j(

j + 1
n + 1

)
}
≥ c2√

n
,

for all n ∈ N, and j ∈ {0, 1, ..., n}, where c2 > 0 is an absolute constant independent
of n and j.
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In continuation, analysing the proof of Lemma 2.3 in [6] and denoting An =
(2nn!)2

(2n)! · 1√
2n+1

, since limn→∞An =
√

π
2 and because it is easy to prove that (An)n is

increasing, we get
2√
3

< An <

√
π

2
, for all n ∈ N.

This immediately implies

(2n)!
4n(n!)2

>

√
2
3π

· 1√
n

, for all n ∈ N.

Therefore, following the lines in the proof of Lemma 2.3 in [6], case (i), we immediately
obtain

pn

(
j

n + 1

)
>

1√
e
·
√

2
3π

· 1√
n

=
√

2√
3πe

· 1√
n

.

Similarly, following the lines in the proof of Lemma 2.3 in [6], case (ii), we get

pn,n1

(
n1 + 1
n + 1

)
=

(2n1)!
4n1(n1)2

· 2n1 + 1
2n1 + 2

>

√
2
3π

· 1√
n
· 1
2

=
1√
6π

· 1√
n

.

Combining the cases (i) and (ii) in the proof of Lemma 2.3 in [6], since
√

2√
3πe

> 1√
6π

,
it follows that the constant c2 in the statement of Lemma 2.3 in [6] can be chosen as
c2 = 1√

6π
.

In conclusion, going back with the values of the constants, we obtain c1 = 1√
6π
· 1

e

and 1
c2
1

= 6πe2, which finish the proof. �

Also, we present:
Lemma 2.3. For any f ∈ C+[0, 1] and n ∈ N we have

B(M)
n [B(M)

n (f)](x) ≥ B(M)
n (f)(x), for all x ∈ [0, 1].

Proof. Let us choose arbitrary j ∈ {0, 1, ..., n}. By relation (4.17) in [3], one has

B(M)
n (f)(x) =

n∨
k=0

fk,n,j(x), x ∈ [j/(n + 1), (j + 1)/(n + 1)], (1)

where

fk,n,j(x) =

(
n
k

)(
n
j

) · ( x

1− x

)k−j

· f(k/n)

for all k ∈ {0, 1, ..., n}. Relation (1) implies B
(M)
n (f)(x) ≥ fk,n,j(x) for all x ∈

[j/(n + 1), (j + 1)/(n + 1)] and k ∈ {0, 1, ..., n}. In particular, for x = j/n ∈
[j/(n + 1), (j + 1)/(n + 1)] and k = j, we get B

(M)
n (f)(j/n) ≥ fj,n,j(j/n) = f(j/n),

j ∈ {0, 1, ..., n}. Therefore, taking into account the relationship of definition for
B

(M)
n (f)(x) in Introduction, we immediately get the statement of the lemma. �
We are now in position to prove the first main result of this section.
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Theorem 2.4. For a fixed f ∈ C+[0, 1], let us consider the iterative sequence of
successive approximations a

(n)
m (f)(x) = [B(M)

n ]m(f)(x), m,n ∈ N, x ∈ [0, 1]. Here
[B(M)

n ]2(f)(x) = B
(M)
n [B(M)

n (f)](x) and so on.
(i) For any fixed n ∈ N, there exists fn : [0, 1] → R+, such that fn ∈ C+[0, 1],

fn ∈ LipL 1 with L = 6πe2n2‖f‖, fn(0) = f(0), fn(1) = f(1),

lim
m→+∞

a(n)
m (f) = fn, uniformly in [0, 1],

B
(M)
n (fn)(x) = fn(x) for all x ∈ [0, 1] (that is fn is a fixed point for the operator

B
(M)
n ) and

B(M)
n (f)(x) = a

(n)
1 (f)(x) ≤ a(n)

m (f)(x) ≤ a
(n)
m+1(f)(x) ≤ fn(x) ≤ ‖f‖,

for all x ∈ [0, 1], m ∈ N;
(ii) For all m,n ∈ N and x ∈ [0, 1], we have the estimate

|[B(M)
n ]m(f)(x)− f(x)| ≤ 12 · ω1

(
f ;

m√
n + 1

)
,

where ω1(f ; δ) = sup{|f(x)− f(y)|; |x− y| ≤ δ};
(iii) For any fixed m ∈ N we have limn→∞ a

(n)
m (f)(x) = f(x), uniformly in [0, 1];

(iv) Let m = mn depending on n such that limn→∞
mn√

n
= 0. Then we have

limn→∞ a
(n)
mn(f)(x) = f(x), uniformly in [0, 1];

(v) Suppose, in addition, that f ∈ LipL 1 and that it is strictly positive on [0, 1].
Then, for all m,n ∈ N we have the estimate

‖[B(M)
n ]m(f)− f‖ ≤ m

n
· L

(
L

mf
+ 4

)
,

where mf = inf{f(x);x ∈ [0, 1]} > 0;
(vi) Suppose that f ∈ LipL 1 and that it is strictly positive on [0, 1]. Let m =

mn depending on n such that limn→∞
mn

n = 0. Then uniformly on [0, 1] we have
limn→∞ a

(n)
mn(f)(x) = f(x).

(vii) Suppose that f ∈ C+[0, 1] is such that for any n ∈ N, the function B
(M)
n (f)

is a fixed point for the operator B
(M)
n . Then, for any sequence of natural numbers,

(mn)n∈N, the sequence of iterates a
(n)
mn(f) = [B(M)

n ]mn(f) converges uniformly on [0, 1]
to f , as n →∞.
Proof. (i) From the above Lemma 2.3, easily follow the inequalities

0 ≤ B(M)
n (f)(x) = a

(n)
1 (f)(x) ≤ ... ≤ a(n)

m (f)(x) ≤ a
(n)
m+1(f)(x) ≤ ... ≤ ‖f‖,

for all m,n ∈ N. The last inequality follows from the obvious inequality 0 ≤
B

(M)
n (f)(x) ≤ ‖f‖.
Fixing n ∈ N and x ∈ [0, 1], the sequence of positive numbers (a(n)

m (f)(x))m∈N
is bounded and monotonically nondecreasing, which implies, for m → +∞, its con-
vergence to a limit, denote it by fn(x). Since B

(M)
n (f)(x) ≤ ‖f‖, we easily obtain

a
(n)
m (f)(x) ≤ ‖f‖, for all m, that is the sequence (a(n)

m (f))m∈N is uniformly bounded.
Passing to limit with m → +∞ we get fn(x) ≤ ‖f‖ for all x ∈ [0, 1], n ∈ N.
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Also, since it is easy to check that B
(M)
n (f)(0) = f(0) and B

(M)
n (f)(1) = f(1),

it is immediate that a
(n)
m (f)(0) = f(0) and a

(n)
m (f)(1) = f(1) for all m ∈ N, which

therefore implies that fn(0) = f(0), fn(1) = f(1).
Now, from ‖Bn(f)‖ ≤ ‖f‖ and applying successively Theorem 2.2, we easily ob-

tain that a
(n)
m (f) = [B(M)

n ]m(f) ∈ LipL1, for all m ∈ N. Therefore, the sequence
(of functions of successive approximation) (a(n)

m (f))m∈N clearly is equicontinuous,
which combined with the fact that the sequence is uniformly bounded, by the Arzela-
Ascoli theorem implies that it contains a subsequence (a(n)

mk(f))k∈N, uniformly con-
vergent. Because the whole sequence is pointwise convergent to fn(x), we get that
limk→∞a

(n)
mk(f) = fn uniformly in [0, 1] and as a consequence, it immediately follows

that fn ∈ C+[0, 1], in fact moreover, that fn ∈ LipL 1 with L = 6πe2n2‖f‖.
Applying now the well-known Dini’s theorem to the pointwise convergent mono-

tone sequence of continuous functions (a(n)
m (f))m∈N, it follows that in fact we have

limm→∞a
(n)
m (f) = fn uniformly in [0, 1].

Also, the monotonicity of the sequence (a(n)
m )m∈N implies a

(n)
m (f)(x) ≤ fn(x) for

all x ∈ [0, 1], m,n ∈ N.
Finally, since a

(n)
m+1(f) = B

(M)
n [a(n)

m (f)] and limm→∞a
(n)
m+1(f) = fn uniformly in

[0, 1], taking also into account that by Theorem 2.1, B
(M)
n is nonexpansive, for any

fixed n it follows that for all m ∈ N we have

‖B(M)
n (fn)− fn‖ ≤ ‖B(M)

n (fn)− a
(n)
m+1(f)‖+ ‖a(n)

m+1(f)− fn‖

≤ ‖fn − a(n)
m (f)‖+ ‖a(n)

m+1(f)− fn‖.

Passing here with m →∞, we get ‖B(M)
n (fn)−fn‖ = 0, that is B

(M)
n (fn)(x)−fn(x) =

0, for all x ∈ [0, 1].
(ii) For any fixed m ∈ N and n ∈ N variable, it is easy to see that the sequence

([B(M)
n ]m(f))n∈N satisfies the Corollary 2.4 in [3], that is for all δ > 0 we get

|[B(M)
n ]m(f)(x)− f(x)| ≤

[
1 +

1
δ
[B(M)

n ]m(ϕx)(x)
]

ω1(f ; δ), x ∈ [0, 1],

where ϕx(t) = |t− x|, for all t ∈ [0, 1].
In what follows we prove by mathematical induction that [B(M)

n ]m(ϕx)(x) ≤ 6 ·
m√
n+1

, for all m,n ∈ N, x ∈ [0, 1], which replaced in the above estimate and by
choosing then δ = 6 · m√

n+1
, will immediately imply

|[B(M)
n ]m(f)(x)− f(x)| ≤ 12 · ω1

(
f ;

m√
n + 1

)
.

Indeed, denoting

mk,n,j(x) =

(
n
k

)(
n
j

) (
x

1− x

)k−j

,
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by [3], relationship (4.17), we can write

B(M)
n (f)(x) =

n∨
k=0

mk,n,j(x)f
(

k

n

)
, for all x ∈ [j/(n + 1), (j + 1)/(n + 1)].

This immediately implies

[B(M)
n ]2(f)(x) =

n∨
k=0

mk,n,j(x)B(M)
n (f)(k/n)

=
n∨

k=0

mk,n,j(x)

[
n∨

i=0

mi,n,k(k/n)f(i/n)

]
.

Replacing here f(t) = |t − x| = ϕx(t) with x fixed, and taking into account the
inequality ∣∣∣∣ i

n
− x

∣∣∣∣ ≤ ∣∣∣∣ i

n
− k

n

∣∣∣∣ +
∣∣∣∣kn − x

∣∣∣∣ ,

for all x ∈ [j/(n + 1), (j + 1)/(n + 1)] we get

[B(M)
n ]2(ϕx)(x) =

n∨
k=0

mk,n,j(x)

[
n∨

i=0

mi,n,k(k/n)
∣∣∣∣ i

n
− x

∣∣∣∣
]

≤
n∨

k=0

mk,n,j(x)

[
n∨

i=0

mi,n,k(k/n)
∣∣∣∣kn − i

n

∣∣∣∣
]

+
n∨

k=0

mk,n,j(x)

[
n∨

i=0

mi,n,k(k/n)
∣∣∣∣kn − x

∣∣∣∣
]

=
n∨

k=0

mk,n,j(x)

[
n∨

i=0

mi,n,k(k/n)
∣∣∣∣kn − i

n

∣∣∣∣
]

+
n∨

k=0

mk,n,j(x)
∣∣∣∣kn − x

∣∣∣∣
[

n∨
i=0

mi,n,k(k/n)

]

≤ 6 · 1√
n + 1

+ 6 · 1√
n + 1

= 6 · 2√
n + 1

.

For the last estimate we used the inequalities which follow from the relationship (4.6)
in the proof of Theorem 4.1 in [3]

mk,n,j(x)
∣∣∣∣kn − x

∣∣∣∣ ≤ 6√
n + 1

, mi,n,k(k/n)
∣∣∣∣kn − i

n

∣∣∣∣ ≤ 6√
n + 1

and the inequalities obtained from Lemma 3.2 in [3]

mk,n,j(x) ≤ 1, mi,n,k(k/n) ≤ 1.

Similarly, taking into account that for all x ∈ [j/(n+1), (j +1)/(n+1)] we can write

[B(M)
n ]3(f)(x)
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=
n∨

k=0

mk,n,j(x)

[
n∨

i=0

mi,n,k(k/n)

[
n∨

l=0

ml,n,i(i/n)f(l/n)

]]
,

replacing here f(t) = |t− x| = ϕx(t), taking into account the inequality∣∣∣∣ l

n
− x

∣∣∣∣ ≤ ∣∣∣∣ l

n
− i

n

∣∣∣∣ +
∣∣∣∣ i

n
− k

n

∣∣∣∣ +
∣∣∣∣kn − x

∣∣∣∣ ,

and reasoning exactly as in the case of [B(M)
n ]2, we easily obtain

[B(M)
n ]3(ϕx)(x) ≤ 6 · 3√

n + 1
, x ∈ [j/(n + 1), (j + 1)/(n + 1)],

valid for all j = 0, 1, ..., n. Therefore, the above inequality is in fact valid for all
x ∈ [0, 1].

Reasoning now by mathematical induction, we get the desired estimate in the
statement for arbitrary m ∈ N.

(iii) It is immediate by passing to limit with n → ∞ in the inequality from the
above point (ii).

(iv) It is immediate by replacing m with mn in the estimate in (ii), by passing to
limit with n →∞ and taking into account that limn→∞

mn√
n+1

= 0.
(v) We obviously can write

‖[B(M)
n ]m(f)− f‖ ≤

m∑
j=1

‖[B(M)
n ]j(f)− [B(M)

n ]j−1(f)‖,

where by convention [B(M)
n ]0(f)(x) = f(x).

But by applying successively Theorem 2.1, we easily get that

‖[B(M)
n ]j(f)− [B(M)

n ]j−1(f)‖ ≤ ‖[B(M)
n ]j−1(f)− [B(M)

n ]j−2(f)‖

≤ ... ≤ ‖[B(M)
n ](f)− (f)‖ ≤ ω1

(
f ;

1
n

)
·
[
n · ω1(f ; 1/n)

mf
+ 4

]
,

where for the last estimate above we used Theorem 4.6 in [5], valid for strictly positive
functions only.

Now, taking into account that f ∈ LipL 1, from the above estimate we get

‖[B(M)
n ]j(f)− [B(M)

n ]j−1(f)‖ ≤ 1
n

[
L

(
L

mf
+ 4

)]
,

for all j = 1, ...,m, which finally implies

‖[B(M)
n ]m(f)− f‖ ≤ m

n

[
L

(
L

mf
+ 4

)]
.

(vi) It is immediate by taking m = mn and passing to limit in the estimate from
the above point (v).

(vii) By hypothesis, we have B
(M)
n [B(M)

n (f)] = B
(M)
n (f), for all n ∈ N, and there-

fore it easily follows that [B(M)
n ]mn(f) = B

(M)
n (f), for all n ∈ N. Consequently, by

Theorem 4.1 in [3], we obtain

‖[B(M)
n ]mn(f)(x)− f(x)| = |B(M)

n (f)(x)− f(x)| ≤ 12 · ω1(f ; 1/
√

n + 1),
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and passing to limit with n →∞, we immediately get the desired conclusion. �
Remarks. 1) In the class of Lipschitz, strictly positive functions, Theorem 2.4,
(vi), is more general than Theorem 2.4, (iv). Indeed, while limn→∞

mn√
n

= 0 implies
limn→∞

mn

n = 0, the converse is not true. Note that the case of Theorem 2.4, (vi), is
similar with what happens in the case of the iterates of Bernstein polynomials.

2) As a consequence of the well-known Trotter’s approximation result in the theory
of the semigroups of linear operators (see e.g. [9]), it is known that in the case of
Bernstein polynomials Bn(f)(x), if f is twice differentiable and limn→∞

mn

n = t > 0,
then limn→∞Bmn

n (f)(x) = etA(x), where A(x) = x(1−x)f ′′(x)
2 , for all x ∈ [0, 1].

It remains as an interesting open question what happens with the iterates
[B(M)

n ]mn(f), when limn→∞
mn

n = t > 0. Let us first observe that by Theorem
2.4, (vii), if f satisfies the hypothesis there, then [B(M)

n ]mn(f) uniformly converges
to f on [0, 1]. It is worth mentioning that by the next Theorems 2.5 and 2.6, we
put in evidence large classes of functions f satisfying the hypothesis in Theorem 2.4,
(vii). Therefore, the above mentioned open problem for the Bernstein max-product
operator, gets a sense only if f does not satisfy the hypothesis in Theorem 2.4, (vii).
Also, notice here that the Bernstein max-product operator [B(M)

n ]mn is not linear.
3) If f is a fixed point of B

(M)
n , i.e. f(x) = B

(M)
n (f)(x) for all x ∈ [0, 1], we easily

get a
(n)
m (f)(x) = B

(M)
n (f)(x), for all m ∈ N, x ∈ [0, 1], therefore in this case it is

trivial in Theorem 2.4, (i), that fn(x) = B
(M)
n (f)(x), for all x ∈ [0, 1].

4) According to Theorem 2.4, (i), for each fixed n ∈ N it is important to determine
the set of the fixed points for B

(M)
n . In this sense, we present the following results.

Theorem 2.5. (i) If f : [0, 1] → [0,∞) is nondecreasing and such that the function
g : (0, 1] → [0,∞), g(x) = f(x)

x is nonincreasing, then for any n ∈ N, B
(M)
n (f) is a

fixed point for the operator B
(M)
n , that is B

(M)
n [B(M)

n (f)](x) = B
(M)
n (f)(x), for all

x ∈ [0, 1];
(ii) If f : [0, 1] → [0,∞) is nonincreasing and such that the function h : [0, 1) →

[0,∞), h(x) = f(x)
1−x is nondecreasing, then for any n ∈ N, B

(M)
n (f) is a fixed point for

the operator B
(M)
n , that is B

(M)
n [B(M)

n (f)](x) = B
(M)
n (f)(x), for all x ∈ [0, 1].

Proof. (i) From the relations (4.46) and (4.47) in the proof of Corollary 4.7 in [3], for
all x ∈ [j/(n + 1), (j + 1)/(n + 1)] and j ∈ {0, 1, ..., n− 1} we can write

B(M)
n (f)(x) = max{fj,n,j(x), fj+1,n,j(x)}

and

B(M)
n (f)(x) = f(1), for x ∈ [n/(n + 1), 1],

where

fk,n,j(x) =

(
n
k

)(
n
j

) · ( x

1− x

)k−j

· f(k/n).

Taking above x = j/n, by simple calculation we obtain

B(M)
n (f)(j/n) = max{f(j/n), f [(j + 1)/n] · j/(j + 1)},
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which by the property of the auxiliary function g in hypothesis, implies f(j/n) ≥
j

j+1f [(j + 1)/n], which replaced in the above equality gives B
(M)
n (f)(j/n) = f(j/n).

But it is clear that if for f ∈ C+[0, 1] we have B
(M)
n (f)(j/n) = f(j/n) for all

j ∈ {0, 1, ..., n}, then g = B
(M)
n (f) is a fixed point for B

(M)
n , which implies the desired

conclusion.
(ii) From the relations (4.49) and (4.50) in the proof of Corollary 4.7 in [3], for all

x ∈ [j/(n + 1), (j + 1)/(n + 1)] and j ∈ {1, ..., n} we can write

B(M)
n (f)(x) = max{fj−1,n,j(x), fj,n,j(x)},

and
B(M)

n (f)(x) = f(0), for x ∈ [0, 1/(n + 1)].
Taking above x = j/n, by simple calculation we obtain

B(M)
n (f)(j/n) = max{f [(j − 1)/n] · (n− j)/(n− j + 1), f(j/n)},

which by the property of the auxiliary function g in hypothesis, implies f(j/n) ≥
n−j

n−j+1f [(j−1)/n], which replaced in the above equality gives B
(M)
n (f)(j/n) = f(j/n).

Therefore, we again get the desired conclusion. �
Remarks. 1) According to Remark 4.8 in [3], if f : [0, 1] → [0,∞) is a convex,
nondecreasing function satisfying f(x)

x ≥ f(1) for all x ∈ [0, 1], or if f : [0, 1] → [0,∞)
is a convex, nonincreasing function satisfying f(x)

1−x ≥ f(0), then again f satisfies
the hypothesis in Theorem 2.5, (i) and (ii), respectively, and consequently we get
B

(M)
n [B(M)

n (f)](x) = B
(M)
n (f)(x), for all x ∈ [0, 1].

2) Denote by S[0, 1] the class of all functions f which satisfy the hypothesis in the
statement of Theorem 2.5 (i), or of Theorem 2.5 (ii), or in the above Remark 1. Also,
for any fixed arbitrary n ∈ N, let us denote

T (M)
n [0, 1] = B(M)

n (S[0, 1])

= {F ∈ C+[0, 1];∃f ∈ S[0, 1] such that F (x) = B(M)
n (f)(x), ∀x ∈ [0, 1]}.

Then if we denote by

F (M)
n [0, 1] = {F : [0, 1] → [0,+∞);B(M)

n (F )(x) = F (x), for all x ∈ [0, 1]}

the set of all fixed points of the operator B
(M)
n : C+[0, 1] → C+[0, 1], the statement

of Theorem 2.5 together with the above Remark 1 means that we have T (M)
n [0, 1] ⊂

F (M)
n [0, 1].
3) By Lemma 4.6 in [3], any nondecreasing concave function satisfies the hypothesis

of Theorem 2.5, (i), and any nonincreasing concave function satisfies the hypothesis
of Theorem 2.5, (ii). Therefore, the class of all positive, monotone and concave
functions on [0, 1] denoted by MK+[0, 1], has the property MK+[0, 1] ⊂ S[0, 1], that
is the function H = B

(M)
n (f) satisfies B

(M)
n (H)(x) = H(x), for all x ∈ [0, 1].

4) It is easy to consider concrete examples of functions in S[0, 1] (others than the
constant functions which obviously are fixed points for B

(M)
n ), like

x, ex, 1 + x2, sin(x), cos(x), ln(1 + x), e−x, 1 + x3.
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Indeed, it is easy to check that x, ex and 1 + x2 satisfy the first type of hypothesis
in the above Remark 1, sin(x), cos(x) and ln(1 + x) belong to the class MK+[0, 1]
defined in the above Remark 3, while e−x satisfy the second type of hypothesis in the
above Remark 1. Therefore, for any f in this remark we have B

(M)
n [B(M)

n (f)](x) =
B

(M)
n (f)(x), for all x ∈ [0, 1] and n ∈ N.
The results expressed by the above Remark 3 can be generalized to the whole class

of concave functions, as follows.
Theorem 2.6. If f : [0, 1] → [0,∞) is a continuous concave function then we have
B

(M)
n

[
B

(M)
n (f)

]
= B

(M)
n (f) for all n ∈ N.

Proof. By the proof of Corollary 4.6. in [3] we get

B(M)
n (f)(x) = max{fj−1,n,j(x), fj,n,j(x), fj+1,n,j(x)}

for all x ∈ [j/(n + 1), (j + 1)/(n + 1)] and j ∈ {1, ..., n− 1},

B(M)
n (f)(x) = max{f0,n,0(x), f0,n,1(x)} for all x ∈ [0, 1/(n + 1)]

and

B(M)
n (f)(x) = max{fn,n,n−1(x), fn,n,n(x)}, for all x ∈ [n/(n + 1), 1].

Here recall that

fk,n,j(x) =

(
n
k

)(
n
j

) · ( x

1− x

)k−j

· f(k/n).

Since j/n ∈ [j/(n + 1), (j + 1)/(n + 1)], replacing x = j/n in the above formulas for
B

(M)
n (f)(x), we easily obtain (see the reasonings in the proof of Theorem 2.5, (i) and

(ii)) that B
(M)
n (f)(j/n) = f(j/n) for all j ∈ {0, 1, ..., n}, which form the formula of

definition of B
(M)
n (f)(x) easily implies the desired conclusion. �

Remarks. 1) Theorems 2.5 and 2.6 put in evidence large classes of functions f ∈
C+[0, 1], with the property that B

(M)
n (f) is a fixed point for the operator B

(M)
n , for

all n ∈ N.
The following example of f is that of a function for which there exists n ∈ N (in fact

an infinity of such of n) such that B
(M)
n (f) is not anymore fixed point for the operator

B
(M)
n . Indeed, let f : [0, 1] → [0,∞) be defined by f(x) = 1/2− x if x ∈ [0, 1/2] and

f(x) = x− 1/2 if x ∈ (1/2, 1]. For n = 5, by the formula of definition of B
(M)
n (f)(x)

in Introduction, we easily get

B
(M)
5 (f)(0) = B

(M)
5 (f)(1) = 1/2,

B
(M)
5 (f)(1/5) = B

(M)
5 (f)(4/5) = 2/5,

B
(M)
5 (f)(2/5) = B

(M)
5 (f)(3/5) = 9/40,

and
B

(M)
5 (B(M)

5 (f))(2/5) = 3/10.

Therefore, it follows B
(M)
5 (B(M)

5 (f))(2/5) 6= B
(M)
5 (f)(2/5), which clearly implies

that B
(M)
5 (f) is not a fixed point for the operator B

(M)
5 .
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In fact, by using for example MATLAB, one can easily show that for many other
values of n (sufficiently large), again we get the same conclusion.

2) Theorem 2.6 is also useful to show that the method in the case of Bernstein
polynomials in [11] cannot be use here, because for any a, b ∈ R+, the operator B

(M)
n

cannot be a contraction on the subspace Ua,b = {f ∈ C+[0, 1]; f(0) = a , f(1) = b}.
In this sense, we can prove that for any natural number n, there exist two contin-

uous functions f, g : [0, 1] → [0,∞) satisfying f(0) = g(0) = a, f(1) = g(1) = b and
such that

∥∥∥B
(M)
n (f)−B

(M)
n (g)

∥∥∥ = ‖f − g‖ .

Indeed, let us define as y = f(x) the equation of the straight line passing through
the points (0, a) and (1, b) and let g be the function whose graph is the polygonal line
passing through the points (0, a), (1/2, c) and (1, b), where the value c can be any real
number which satisfies c > f(1/2). (Note that the graphs of both functions f and g
form a triangle.)

By simple geometrical reasonings we get that ‖f − g‖ = g(1/2)− f(1/2).
Firstly, we suppose that n is even. Since f and g are concave functions, by

the proof of the above Theorem 2.6, we get B
(M)
n (f)(j/n) = f(j/n) and similarly,

B
(M)
n (g)(j/n) = g(j/n) for all j ∈ {0, 1, ..., n}. Therefore, taking j(n) = n/2, we

obtain that B
(M)
n (f)(1/2) = f(1/2) and B

(M)
n (g)(1/2) = g(1/2). In conclusion, we

have
g(1/2)− f(1/2) = ‖f − g‖ ≥

∥∥∥B(M)
n (f)−B(M)

n (g)
∥∥∥

≥
∣∣∣B(M)

n (f)(1/2)−B(M)
n (g)(1/2)

∣∣∣ = g(1/2)− f(1/2),

which implies
∥∥∥B

(M)
n (f)−B

(M)
n (g)

∥∥∥ = ‖f − g‖, for any even natural number n.

The reasoning is similar in the case when n is and odd natural number, because it
suffices to replace the pair (1/2, c) in the definition of g with (n0/(2n0 + 1), c) where
n = 2n0 + 1.

3. Ishikawa Iterations for B
(M)
n

The results in this section are based on the following two well-known results.
Theorem 3.1. (Ishikawa [8]) Let C be a compact convex subset of a Banach space
(X, ‖ · ‖) and T : C → C be nonexpansive. For (λm)m∈N a sequence in [0, b] with
b < 1 and such that

∑∞
m=0 λm = +∞, let us define the iterates in X by

xm+1 := (1− λm)xm + λmT (xm).

Then for any starting point x0 ∈ C, the sequence (xm)m∈N converges to a fixed point
of T.
Theorem 3.2. (Ishikawa [8]) Let C be a closed bounded convex subset of a Banach
space (X, ‖ · ‖) and T : C → C be nonexpansive. Let (λm)m be as in Theorem 3.1.
Then for any starting point x0 ∈ C, the following sequence, (‖xm − T (xm)‖)m∈N,
converges to 0 (i.e. (xm)n is a so-called approximate fixed-point sequence).

Now, in order to can apply to our case the above Theorems 3.1 and 3.2, firstly we
need to identify bounded closed convex and compact convex subsets in C+[0, 1]. For
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example, it is easy to check that the subset

C+
K [0, 1] = {f ∈ C+[0, 1]; ‖f‖ ≤ K},

is bounded, closed and convex. Also, it is easy to check that the subset CL,K =
C+

K [0, 1]
⋂

LipL 1 is bounded, closed, convex and equicontinuous, which by the Arzela-
Ascoli theorem implies that CL,K is a convex compact subset in C+[0, 1] endowed with
the uniform norm.

Another important hypothesis in the Theorems 3.1 and 3.2 is the invariance prop-
erty of T . In our case, we need this invariance property for the Bernstein max-product
operator. For this purpose, we will make use of the Theorem 2.2 in Section 2.

We have:
Theorem 3.3. (i) If f ∈ C+

K [0, 1] then for all n ∈ N we have B
(M)
n (f) ∈ C+

K [0, 1];
(ii) Let K > 0 and L ≥ 6πe2K be fixed constants and denote CL,K =

C+
K [0, 1]

⋂
LipL 1. Then, for all n ∈ N satisfying the inequality n2 ≤ L

6πe2K , the
invariance property B

(M)
n (CL,K) ⊂ CL,K holds.

Proof. (i) Since 0 ≤ f(k/n) ≤ ‖f‖ for all n ∈ N and k = 0, 1, ..., n, it is immediate by
the formula of definition of B

(M)
n (f)(x), because we easily get |B(M)

n (f)(x)| ≤ ‖f‖,
for all x ∈ [0, 1], which implies ‖B(M)

n ‖ ≤ ‖f‖ ≤ K, for all n ∈ N.
(ii) Let f ∈ CL,K . By (i) it follows that ‖B(M)

n (f)‖ ≤ K for all n ∈ N and by
(i) it follows that B

(M)
n (f) ∈ Lip6πe2n2‖f‖ 1 ⊂ Lip6πe2n2K 1, for all n ∈ N. Then, by

n2 ≤ L
6πe2K we get B

(M)
n (f) ∈ Lip6πe2n2K 1 ⊂ LipL 1, which leads to the conclusion

that B
(M)
n (f) ∈ CL,K for n satisfying n2 ≤ L

6πe2K . �
As immediate consequences of the above considerations, we get the following two

results.
Corollary 3.4. Let K > 0 and L ≥ 6πe2K be fixed constants and CL,K =
C+

K [0, 1]
⋂

LipL 1. Also, let (λm)m∈N be sequence in [0, b] with b < 1 and such that∑∞
m=0 λm = +∞. For any n ∈ N and fn,1 ∈ CL,K fixed, let us define the iterated

sequence of functions

fn,m+1(x) = (1− λm)fn,m(x) + λm ·B(M)
n (fn,m)(x), m ∈ N, x ∈ [0, 1].

Then, for any fixed n ∈ N satisfying the inequality n2 ≤ L
6πe2K , the sequence of

functions (fn,m(x))m∈N converges as m → ∞ in the uniform norm, to a fixed point
of the operator B

(M)
n .

Proof. Firstly, it is clear that C+[0, 1] endowed with the uniform norm is a Banach
space. By Theorem 2.1, by the comments between the statements of the Theorems 3.2
and 3.3 and by Theorem 3.3, (ii), the operator B

(M)
n : CL,K → CL,K is nonexpansive

on the compact convex set CL,K . Then the corollary is an immediate consequence of
Theorem 3.1. �
Corollary 3.5. Let K > 0 and C+

K [0, 1] = {f ∈ C+[0, 1]; ‖f‖ ≤ K}. Also, let (λm)m

and the iterated sequence (fn,m+1(x))m∈N be defined as in the statement of Corollary
3.4. Then, for any n ∈ N and fn,1 ∈ C+

K [0, 1] fixed, we have

lim
m→∞

‖fn,m −B(M)
n (fn,m)‖ = 0,
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where ‖ · ‖ denotes the uniform norm.
Proof. By Theorem 2.1, by the comments between the statements of the Theorems
3.2 and 3.3 and by Theorem 3.3, (i), the operator B

(M)
n : C+

K [0, 1] → C+
K [0, 1] is

nonexpansive on the bounded, closed and convex subset C+
K [0, 1]. Then the corollary

is an immediate consequence of Theorem 3.2. �
Remark. The methods in this paper can be extended to other max-product operators
of Bernstein-type.
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