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Abstract. In this paper, we will consider the problem of existence of common fixed points for two

mappings T and S on a CAT(0) space X. We will suppose that T and S belong to the class of
mappings satisfying a generalization of Suzuki’s condition (C). Our result improves a number of

very recent results of A. Abkar, M. Eslamian in [2] and, as well as, those of B. Nanjaras et al. in [3].
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1. Introduction

A metric space X is a CAT(0) space if it is geodesically connected, and if every
geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean
plane. It is well known that any complete, simply connected Riemannian manifold
having nonpositive sectional curvature is a CAT(0) space. Other examples are pre-
Hilbert spaces, R-trees, the complex Hilbert ball with a hyperbolic metric.

In 2008, Suzuki [4] introduced a condition which is weaker than nonexpansiveness
and stronger than quasinonexpansiveness. Suzuki’s condition, which was named by
him the condition (C), reads as follows: a mapping T on a subset K of a Banach
space X is said to satisfy the condition (C) if

1
2
‖x− Tx‖ ≤ ‖x− y‖ ⇒ ‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ K.

In [4], Suzuki proved some fixed point and convergence theorems for such mappings.
Motivated by this result, Garcia-Falset et al. in [5] introduced two kinds of gen-

eralizations for the condition (C) and studied both the existence of fixed points and
their asymptotic behavior. Very recently, some authors used a modified Suzuki condi-
tion for multivalued mappings, and proved some fixed point theorems for multivalued
mappings satisfying this condition in Banach spaces [6, 7].

In this paper, we will consider the problem of existence of common fixed points
for two mappings T and S on a CAT(0) space X. We will suppose that T and S
belong to the class of mappings satisfying some conditions, which are generalizations
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of Suzuki’s condition (C). Our result improves a number of very recent results of A.
Abkar, M. Eslamian in [2] and, as well as, those of B. Nanjaras et al. in [3].

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊆ R to X such
that c(0) = x, c(l) = y, and d(c(t), c(t0)) = |t − t0| for all t, t0 ∈ [0, l]. In particular,
c is an isometry and d(x, y) = l. The image α of c is called a geodesic (or metric)
segment joining x and y. When it is unique, this geodesic is denoted by [x, y]. The
space (X, d) is said to be a geodesic space if every two points of X are joined by a
geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining
x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes every
geodesic segment joining any two of its points.
A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points in X (the vertices of 4) and a geodesic segment between each pair of vertices
(the edges of 4). A comparison triangle for a geodesic triangle 4(x1, x2, x3) in
(X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in the Euclidean plane E2 such that
dE2(xi, yj) = d(xi, yj) for i, j ∈ {1, 2, 3}.
A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of
appropriate size satisfy the following comparison axiom:
“Let 4 be a geodesic triangle in X and let 4 be a comparison triangle for 4. Then
4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and all comparison points
x, y ∈ 4,

d(x, y) ≤ dE2(x, y).”
Here we recall some useful lemma which will be used next.

Lemma 2.1. ([8]) Let (X, d) be a CAT(0) space. For x, y ∈ X and t ∈ [0, 1], there
exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y).

We use the notation (1− t)x⊕ ty for the unique point z of the above lemma.

Lemma 2.2. ([8, Lemma 2.4]) Let (X, d) be a CAT(0) space. Then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z),

for x, y, z ∈ X and t ∈ [0, 1].

Lemma 2.3. ([8, Lemma 2.5]) Let (X, d) be a CAT(0) space. Then

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, , z)2 + td(y, z)2 − t(1− t)d(x, y)2,

for all x, y, z ∈ X and t ∈ [0, 1].

In particular by Lemma 2.3 we have

d(z,
1
2
x⊕ 1

2
y)2 ≤ 1

2
d(z, x)2 +

1
2
d(z, y)2 − 1

4
d(x, y)2, for all x, y, z ∈ X,

which is called the (CN) inequality of Bruhat-Tits, as it was shown in [9]. In fact (cf.
[10], p. 163), a geodesic space is a CAT(0) space if and only if it satisfies the (CN)
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inequality.
Let {xn} be a bounded sequence in X and K be a nonempty bounded subset of X.
We associate this sequence with the number

r = r(K, {xn}) = inf{r(x, {xn}) : x ∈ K},
where

r(x, {xn}) = lim sup
n→∞

d(xn, x),

and the set
A = A(K, {xn}) = {x ∈ K : r(x, {xn}) = r}.

The number r is known as the asymptotic radius of {xn} relative to K. Similarly, set
A is called the asymptotic center of {xn} relative to K.
In the CAT(0) space, the asymptotic center A = A(K, {xn}) of {xn} consists of
exactly one point whenever K is closed and convex. A sequence {xn} in a CAT(0)
space X said to be4-convergent to x ∈ X if x is the unique asymptotic center of every
subsequence of {xn}. Notice that given {xn} ⊂ X such that {xn} is 4-convergent to
x and given y ∈ X with x 6= y,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

So every CAT(0) space X satisfies the Opial property.

Lemma 2.4. ([11]) Every bounded sequence in a complete CAT(0) space has a 4-
convergent subsequence.

Lemma 2.5. ([12]) If K is a closed convex subset of a complete CAT(0) space and
if {xn} is a bounded sequence in K, then the asymptotic center of is in K.

Definition 2.6. ([4]) Let T be a mapping on a subset K of a CAT(0) space (X, d).
Then T said to satisfy condition (C) if

1
2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ K.

Definition 2.7. ([2]) Let T be a mapping on a subset K of a CAT(0) space X and
µ ≥ 1. T is said to satisfy condition (Eµ) if

d(x, Ty) ≤ µd(x, Tx) + d(x, y), x, y ∈ K.

We say that T satisfies condition (E) whenever T satisfies the condition (Eµ) for
some µ ≥ 1.

Definition 2.8. ([2]) Let T be a mapping on a subset K of a CAT(0) space X and
λ ∈ (0, 1). T is said to satisfy condition (Cλ) if

λd(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y), x, y ∈ K.

Notice that if 0 < λ1 < λ2 < 1 then the condition (Cλ1) implies the condition (Cλ2).
The following example shows that the class of mappings satisfying the conditions (E)
and (Cλ) for some λ ∈ (0, 1) is broader than the class of mappings satisfying the
condition (C).
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Definition 2.9. A mapping T on a subset K of a CAT(0) space X is called quasi-
nonexpansive if Fix(T ) 6= ∅ and d(T (x), z) ≤ d(x, z) for all x ∈ K and z ∈ Fix(T ).

Lemma 2.10. ([2, Lemma 2.9]) Assume that a mapping T satisfies the condition (E)
and has a fixed point. Then T is a quasi-nonexpansive mapping.

The converse of the above implication is, in general, not true.

The following lemma is a consequence of Proposition 2 proved by Goebel and Kirk
[13].

Lemma 2.11. Let {xn} and {yn} be bounded sequences in a CAT(0) space X and
let {αn} ⊆ [0, 1) such that

∑∞
n=1 αn = ∞ and lim supn αn < 1. Suppose that

xn+1 = αnyn ⊕ (1 − αn)xn and d(yn+1, yn) ≤ d(xn+1, xn) for all n ∈ N. Then
limn→∞ d(yn, xn) = 0.

Lemma 2.12. ([14]) Let {an} and {bn} be nonnegative real sequences satisfying the
following inequality:

an+1 ≤ (1− λn)an + bn,

where λn ∈ (0, 1), for all n ≥ n0,
∑∞

n=1 λn = ∞, and bn

λn
→ 0 as n → ∞. Then

limn→∞ an = 0.

Lemma 2.13. ([1, Lemma 1]) Suppose that {an} and {bn} are two sequences of
nonnegative numbers such that for some real number N0 ≥ 1,

an+1 ≤ an + bn ∀n ≥ N0.

(a) If
∑∞

n=1 bn < ∞, then, lim an exists.
(b) If

∑∞
n=1 bn < ∞, and {an} has a subsequence converging to zero, then,

lim an = 0.

3. Main results

We generalize first Lemma 2.11 and, then, we will prove a common fixed point
for two mappings which satisfy the conditions (E) and (Cλ). Our result improves a
number of very recent results of A. Abkar, M. Eslamian [2] and B. Nanjaras et al. [3].

Lemma 3.1. Let {yn}, {zn}, {un} and {vn} be bounded sequences in a complete
CAT(0) space X and let {αn} ⊆ (0, 1) such that

∑∞
n=1 αn = ∞ and lim supn αn < 1.

Let {xn} be a sequence in X defined by

xn+1 = αnyn ⊕ (1− αn)zn

and suppose

d(yn+1, un) ≤ d(xn+1, zn)
d(vn, zn+1) ≤ d(xn+1, yn)

d(un, vn) ≤ cn,

for all n ∈ N, where {cn} is a sequence in R+. Then the sequence {xn} is bounded
and

• if
∑∞

n=1 cn < +∞, then limn→∞ d(yn, zn) exists.
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• if d(yn, zn) + cn

αn
→ 0 as n →∞, then limn→∞ d(yn, zn) = 0.

Proof. Since there exist a ∈ X and r > 0 such that d(yn, a) ≤ r and d(zn, a) ≤ r, we
have

d(xn+1, a) ≤ d(xn+1, yn) + d(a, yn)
= (1− αn)d(yn, zn) + d(a, yn)
≤ (1− αn)(d(yn, a) + d(a, zn)) + d(a, yn)
≤ 2hr + r,

where h = lim supn αn < 1. This proves {xn} is bounded.
To prove the convergence of an := d(yn, zn) notice that

an+1 = d(yn+1, zn+1)
≤ d(yn+1, un) + d(un, vn) + d(vn, zn+1)
≤ αnan + cn + (1− αn)an

= an + cn.

Now, by Lemma 2.13, lim an exists.
To prove that an := d(yn, zn) → 0 we observe

an+1 = d(yn+1, zn+1)
≤ d(yn+1, un) + d(un, vn) + d(vn, zn+1)
≤ αnan + cn + (1− αn)an

Now, by Lemma 2.12, an → 0. �

Example 3.2. Let X := R with the usual metric d(x, y) = |x− y|. Put

cn =
1
n2

, αn =
1

n + 1
, zn := k, yn := k + 1, un = vn = k +

n

n + 1
,

where k is real number. So xn+1 = αnyn ⊕ (1− αn)zn = k + 1
n+1 and all conditions

of Lemma 3.1 hold for first case, while limn→∞ d(yn, zn) = 1 exists but d(yn, zn) 6→ 0
as n →∞.
For second part, put

zn =
1√
n

, yn = zn +
1
n

, un = vn = zn+1 +
1

n + 1
.

Thus xn+1 = zn + 1
n(n+1) and all conditions of Lemma 3.1 hold for second case, and

since
d(yn, zn) +

cn

αn
=

1
n

+
n + 1
n2

→ 0,

therefore d(yn, zn) → 0 as n →∞.

Lemma 3.3. Let {yn} and {zn} be bounded sequences in a complete CAT(0) space
X and let {αn} ⊆ (0, 1) such that

∑∞
n=1 αn = ∞ and lim supn αn < 1. Suppose {xn}

be a sequence that defined by xn+1 = αnyn ⊕ (1− αn)zn and

d(yn+1, zn+1) ≤ d(xn+1, zn), (3.1)
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or
d(yn+1, zn+1) ≤ d(xn+1, yn) (3.2)

for all n ∈ N. Then the sequence {xn} is bounded and limn→∞ d(yn, zn) = 0.

Proof. By the relation (3.1), we have

an+1 = d(yn+1, zn+1) ≤ d(xn+1, zn) = αnd(yn, zn) = αnan.

Therefore
0 ≤ an+1 ≤ αnan ≤ an, (3.3)

namely {an} is bounded bellow and decreasing sequence which make it to be con-
vergence to l, i.e. an → l as n → ∞. It is clear that l ≥ 0. Now by (3.3) we
have

l = lim sup
n→∞

an+1 ≤ lim sup
n→∞

(αnan) = lim sup
n→∞

(αn)l

and since lim supn→∞(αn) < 1 we get that l = 0.
Now if the relation (3.2) takes place, we have

an+1 = d(yn+1, zn+1) ≤ d(xn+1, yn) = (1− αn)d(yn, zn) = (1− αn)an.

Therefore
0 ≤ an+1 ≤ (1− αn)an ≤ an, (3.4)

so an → l as n →∞ for some l. Now by (3.4) we have

l = lim inf
n→∞

an+1 ≤ lim inf
n→∞

((1− αn)an) = (1− h)l,

and since h = lim supn→∞(αn) < 1 we get again that l = 0. �

Example 3.4. Let X; = R with the usual metric d(x, y) = |x− y|. Put

αn =
1

n + 1
, zn :=

1
n!

, yn :=
k

n!
,

where 1 6= k ∈ R. So xn+1 = αnyn ⊕ (1 − αn)zn = k+n
(n+1)! and all the conditions of

Lemma 3.3 with relation (3.1) hold, and we have

lim
n→∞

d(yn, zn) = lim
n→∞

|k − 1|
(n + 1)!

= 0.

For relation (3.2) from Lemma 3.3, put

αn =
1

n + 1
, zn :=

1√
n

, yn := zn +
1
n

,

so xn+1 = αnyn⊕ (1−αn)zn = zn + 1
n(n+1) and all the conditions of Lemma 3.3 with

relation (3.2) hold, and we have again limn→∞ d(yn, zn) = limn→∞
1
n = 0.

Our first main result is the following.



FIXED POINTS AND COMMON FIXED POINTS OF MAPPINGS ON CAT(0) SPACES 35

Theorem 3.5. Let K be a nonempty closed convex bounded subset of a complete
CAT(0) space X. Suppose that T, S : K → K satisfy the condition (Cλ) for some
λ ∈ (0, 1) and TS = ST . Let x1 ∈ K and define

xn+1 = αnTxn ⊕ (1− αn)Sxn, for n ≥ 1.

Let {αn} ⊆ [λ, 1) such that
∑∞

n=1 αn = ∞ and lim supn αn < 1 and suppose that

αnd(xn, Txn) ≤ d(xn+1, Sxn),

αnd(xn, Sxn) ≤ d(xn+1, Txn).
Then limn→∞ d(Txn, Sxn) exists.

Proof. Put an := d(Txn, Sxn), un := TSxn and vn = STxn. It follows that

λd(xn, Txn) ≤ αnd(xn, Txn) ≤ d(xn+1, Sxn) = αnan

λd(xn, Sxn) ≤ αnd(xn, Sxn) ≤ d(xn+1, Txn) = (1− αn)an

By condition (Cλ), we have

d(Txn+1, TSxn) ≤ αnan

d(Sxn+1, STxn) ≤ (1− αn)an

d(un, vn) = d(STxn, TSxn) = 0.

Now according to Lemma (3.1) we get that limn→∞ d(Txn, Sxn) exists. �

Remark 3.6. If an := d(yn, zn) and d(un, vn) ≤ cn, then, in the conditions of Lemma
3.1, we have

d(un, vn) ≤ d(un, yn+1) + d(yn+1, zn+1) + d(zn+1, vn)
≤ αnan + an+1 + (1− αn)an

= an + an+1.

Corollary 3.7. ([3, Lemma 3.6]) Let K be a nonempty bounded and convex subset of
a complete CAT(0) space X and suppose T : K → K satisfies condition (C). Define
a sequence {xn} by x1 ∈ K and

xn+1 = αnTxn ⊕ (1− αn)xn, for all n ≥ 1,

where {αn} ⊂ [ 12 , 1) is such that
∑∞

n=1 αn = ∞ and lim supn αn < 1.
Then limn→∞ d(Txn, xn) exists.

Proof. It is enough that we take Sx = x and λ = 1
2 . Then αnd(xn, Txn) = d(xn+1, xn)

and all the conditions from Theorem 3.5 hold. �

Our second main result is the following.

Theorem 3.8. Let K be a nonempty closed convex bounded subset of a complete
CAT(0) space X. Suppose T, S : K → K satisfy the conditions (E) and (Cλ) for
some λ ∈ (0, 1), TS = ST and the relations

λd(xn, Txn) ≤ d(xn+1, Sxn), λd(xn, Sxn) ≤ d(xn+1, Txn), (3.5)

hold for some sequence {xn} in K.
Then limn→∞ d(Txn, Sxn) exists and if, additionally limn→∞ d(Txn, Sxn) = 0, then
T and S have a common fixed point in K.
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Proof. Let x1 ∈ K and define xn+1 = λTxn ⊕ (1 − λ)Sxn. By relation (3.5) and
Theorem 3.5, we obtain that limn→∞ d(Txn, Sxn) exists. Notice that

d(xn+1, Sxn) = λd(Txn, Sxn), d(xn+1, Txn) = (1− λ)d(Txn, Sxn). (3.6)

When limn→∞ d(Txn, Sxn) = 0 we can show that

lim sup
n→∞

d(Txn, xn) = lim sup
n→∞

d(Sxn, xn) = 0.

Since

d(xn, Txn) ≤ d(xn, Sxn) + d(Sxn, Txn)
d(xn, Sxn) ≤ d(xn, Txn) + d(Txn, Sxn),

we obtain

lim sup
n→∞

d(xn, Txn) ≤ lim sup
n→∞

d(xn, Sxn)

lim sup
n→∞

d(xn, Sxn) ≤ lim sup
n→∞

d(xn, Txn).

Thus, from (3.6) we get that

lim sup
n→∞

d(Txn, xn) = lim sup
n→∞

d(Sxn, xn) = 0.

Let A({xn}) = {x0}. By Lemma 2.5 we have x0 ∈ K. Since T and S satisfy the
condition (E) we have

d(xn, Tx0) ≤ µ1d(xn, Txn) + d(xn, x0)
d(xn, Sx0) ≤ µ2d(xn, Sxn) + d(xn, x0),

for some µ1, µ2 ≥ 1. Hence by taking limit superior on both sides in above inequalities,
we obtain

lim sup
n→∞

d(xn, Tx0) ≤ lim sup
n→∞

d(xn, x0)

lim sup
n→∞

d(xn, Sx0) ≤ lim sup
n→∞

d(xn, x0).

By the uniqueness of the asymptotic center, we obtain Tx0 = Sx0 = x0.�

Corollary 3.9. ([2, Theorem 3.2]) Let K be a nonempty closed convex bounded subset
of a complete CAT(0) space X. Suppose T : K → K satisfies the conditions (E) and
(Cλ) for some λ ∈ [0, 1). If limn→∞ d(Txn, xn) = 0, then T has a fixed point in K.

Proof. Put Sx = x so λd(xn, Txn) = d(xn+1, xn) for all n ≥ 1. By Theorem 3.8 we
have Tx = x for some x ∈ K. �

Our last main result is the following.

Theorem 3.10. Let K be a nonempty bounded closed convex subset of a complete
CAT(0) space X and let T, S : K → K be two mappings which satisfy the conditions
(E) and (Cλ) and TS = ST . Consider x1 ∈ K and define

xn+1 = αnTxn ⊕ (1− αn)Sxn, for all n ≥ 1,



FIXED POINTS AND COMMON FIXED POINTS OF MAPPINGS ON CAT(0) SPACES 37

where (for some λ ∈ (0, 1)) {αn} ⊆ [λ, 1) is such that
∑∞

n=1 αn = ∞ and
lim supn αn < 1. Suppose that the following relations hold

αnd(xn, Txn) ≤ d(xn+1, Sxn),

αnd(xn, Sxn) ≤ d(xn+1, Txn).
If limn→∞ d(Txn, Sxn) = 0, then limn→∞ d(xn, p) exists, for each p ∈ Fix(T ) ∩
Fix(S).

Proof. By Theorem 3.8, Fix(T )∩Fix(S) 6= ∅. Given p ∈ Fix(T )∩Fix(S), by Lemma
2.2 and Lemma 2.10 we have

d(xn+1, p) = d(αnTxn ⊕ (1− αn)Sxn, p)
≤ αnd(Txn, p) + (1− αn)d(Sxn, p)
= d(xn, p).

Thus d(xn+1, p) ≤ d(xn, p). So the sequence {d(xn, p)} which is bounded bellow and
decreasing, which completes the proof. �

Corollary 3.11. ([3, Lemma 5.1]) Let K be a nonempty bounded closed convex subset
of a complete CAT(0) space X and let T : K → K be a mapping satisfying condition
(C). Define a sequence {xn} by x1 ∈ K and xn+1 = αnTxn ⊕ (1 − αn)xn where
{αn} ⊆ [ 12 , 1). Then limn→∞ d(xn, p) exists, for each p ∈ Fix(T ).
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