Fixed Point Theory, 13(2012), No. 2, 659-668 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

ULAM-HYERS-RASSIAS STABILITY FOR SET INTEGRAL EQUATIONS

F.A. TIŞE AND I.C. TIŞE*

Babeş-Bolyai University of Cluj-Napoca, Romania E-mail: ti_camelia@yahoo.com

Abstract. The purpose of this paper is to study different kinds of Ulam stabilities for set integral equations: Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability.

Key Words and Phrases: Ulam-Rassias stability, Ulam-Hyers-Rassias stability, fixed point equation, set integral equation.

2010 Mathematics Subject Classification: 45M10, 47H10, 47H04.

1. INTRODUCTION AND PRELIMINARIES

In this paper we will study the following aspects concerning a set integral equation: Ulam stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability.

We will present first some notions and symbols used in this paper.

Definition 1.1. (I.A. Rus [9]) A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function if it satisfies:

- (i) φ is monotone increasing;
- (ii) $(\varphi^n(t))_{n \in \mathbb{N}}$ converges to 0, for all t > 0.

Definition 1.2. (I.A. Rus [9]) A comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is said to be:

- (i) a strict comparison function if it satisfies $t \varphi(t) \to \infty$, for $t \to \infty$;
- (ii) a strong function if it satisfies $\sum_{n=1}^{\infty} \varphi^n(t) < \infty$, for all t > 0.

Remark 1.3. If $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function then $\varphi(0) = 0$ and $\varphi(t) < t$, for all t > 0.

Example 1.4. (I.A. Rus [9]) The functions $\varphi_1 : \mathbb{R}_+ \to \mathbb{R}_+$, $\varphi_1(t) = at$ (where $a \in]0,1[$) and $\varphi_2 : \mathbb{R}_+ \to \mathbb{R}_+$, $\varphi_2(t) = \frac{t}{1+t}$ are strict comparison functions.

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a strict comparison function. We denote:

$$\varphi_{\eta} := \sup\{t \in \mathbb{R}_+ | t - \varphi(t) \le \eta\}.$$

Definition 1.5. (I.A. Rus [10]) Let (X, d) be a metric space. A mapping $A : X \to X$ is a φ -contraction if φ is a comparison function and

$$d(A(x), A(y)) \le \varphi(d(x, y)), \text{ for all } x, y \in X.$$

We present now the concept of generalized Ulam-Hyers stability.

Let (X, d) be a metric space, $A : X \to X$ be an operator. Consider the following fixed point equation:

$$x = A(x), \ x \in X \tag{1.1}$$

and for $\varepsilon > 0$ the following inequation

$$d(y, A(y)) \le \varepsilon. \tag{1.2}$$

Definition 1.6. (I.A. Rus [10]) The equation (1.1) is called generalized Ulam-Hyers stable if there exists $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 with $\psi(0) = 0$, such that for each $\varepsilon > 0$ and for each solution $y^* \in X$ of (1.2), there exists a solution $x^* \in X$ of (1.1) such that:

$$d(y^*, x^*) \le \psi(\varepsilon).$$

In the case that $\psi(t) := ct$, (for some c > 0), for all $t \in \mathbb{R}_+$, then the equation (1.1) is said to be Ulam-Hyers stable.

Theorem 1.7. Let (X,d) be a complete metric space and $A : X \to X$ be φ contraction. If the function $\psi := 1_{\mathbb{R}_+} - \varphi$ is strictly increasing and surjective, then
the fixed point equation

$$x = A(x), \quad x \in X$$

is generalized Ulam-Hyers stable.

Proof. Let $\varepsilon > 0$ and $y^* \in X$ with the property $d(y^*, A(y^*)) \leq \varepsilon$. By Matkowski-Rus theorem (see [9]) we know that there exists a unique fixed point $x_A^* \in X$ for A, i.e., $x_A^* \in A(x_A^*)$. Then

$$d(x, x_A^*) \le d(x, A(x)) + d(A(x), x_A^*) \\\le d(x, A(x)) + \varphi(d(x, x_A^*)).$$

If follows that: $d(x, x_A^*) \leq \psi^{-1}(d(x, A(x)))$, for all $x \in X$. In particular, for $x := y^*$ we have that

$$d(y^*, x^*_A) \le \psi^{-1}(d(y^*, A(y^*))) \le \psi^{-1}(\varepsilon).$$

Then the fixed point equation is generalized Ulam-Hyers stable (with the function ψ^{-1}).

Remark 1.8. If, in the above result, φ is a strict comparison function, then we have the conclusion

$$d(y^*, x_A^*) \le \varphi_{\varepsilon}.$$

2. Ulam-Hyers stability

Let us denote $P_{cp,cv}(\mathbb{R}^n) := \{X \in P(\mathbb{R}^n) | X \text{ is compact and convex}\}$ and let $\mathbf{B}_r := \{X \in P_{cp,cv}(\mathbb{R}^n) | diam(X) \leq r\}$, where r > 0.

The set \mathbf{B}_r is convex and endowed with Pompeiu-Hausdorff metric H is complete. Let $F : [a, b] \times [a, b] \times \mathbf{B}_r \to \mathbf{B}_{r/2}$, and a set $A \in \mathbf{B}_{r/2}$.

Consider the set integral equation

$$X(t) = A + \int_{a}^{b} F(t, s, X(s)) ds.$$
 (2.1)

By a solution of the equation (2.1) we understand a continuous function $X : [a, b] \rightarrow \mathbf{B}_r$, which satisfies (2.1) for every $t \in [a, b]$.

Definition 2.1. Let $F : [a, b] \times [a, b] \times P_{cp, cv}(\mathbb{R}^n) \to P_{cp, cv}(\mathbb{R}^n)$ and $A \in P_{cp, cv}(\mathbb{R}^n)$. The integral equation (2.1) is generalized Ulam-Hyers stable if there exists a function $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 with $\psi(0) = 0$ such that for each $\varepsilon > 0$ and for each solution $Y^* \in C([a, b], P_{cp, cv}(\mathbb{R}^n))$ of the inequation

$$H(Y(t), A + \int_{a}^{b} F(t, s, Y(s))ds) \le \varepsilon, \quad t \in [a, b]$$

there exists a solution X^* of the equation (2.1) such that

$$||X^* - Y^*||_{C([a,b], P_{cn,cv}(\mathbb{R}^n))} \le \psi(\varepsilon).$$

If $\psi(t) = ct$, for each $t \in \mathbb{R}_+$ (c > 0) then the equation (2.1) is said to be Ulam-Hyers stable.

Theorem 2.2. Let $F : [a,b] \times [a,b] \times \mathbf{B}_r \to \mathbf{B}_{r/2}$ be continuous and suppose there exist a comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ and a function $p : [a,b] \times [a,b] \to \mathbb{R}_+$ such that:

$$H(F(t, s, X), F(t, s, Y)) \le p(t, s)\varphi(H(X, Y))$$

for every $t, s \in [a, b], X, Y \in \mathbf{B}_r$, where $\max_{t \in [a, b]} \int_a^b p(t, s) \le 1$. Then:

- (a) For each $A \in \mathbf{B}_{r/2}$ the integral equation (2.1) has a unique solution $X(\cdot, A)$: $[a, b] \to \mathbf{B}_r$ with depends continuously on A (see [14]).
- (b) If, in addition, we assume that the function $\psi : \mathbb{R}_+ \to \mathbb{R}_+$, $\psi(t) = t \varphi(t)$ is strict increasing and surjective, then the set integral equation (2.1) is generalized Ulam-Hyers stable.

Proof. For (a) the proof is given in [14]. By (a) we have that the operator $U: (\mathcal{C}([a,b],\mathbf{B}_r), ||\cdot||_{\mathcal{C}([a,b],\mathbf{B}_r)}) \to (\mathcal{C}([a,b],\mathbf{B}_r), ||\cdot||_{\mathcal{C}([a,b],\mathbf{B}_r)})$, given by $UX(t) = A + \int_a^b F(t,s,X(s))ds$, where $X \in \mathcal{C}([a,b],\mathbf{B}_r)$ and $t \in [a,b]$ is a φ - contraction, i.e., $||UX - UY||_{\mathcal{C}([a,b],\mathbf{B}_r)} \leq \varphi(||X - Y||_{\mathcal{C}([a,b],\mathbf{B}_r)})$, for all $X, Y \in \mathcal{C}([a,b],\mathbf{B}_r)$.

Notice that the fixed point equation X = UX is equivalent with the equation (2.1) and X^* denotes the unique solution of this equation.

Let $\varepsilon > 0$ and $Y^* \in \mathcal{C}([a, b], \mathbf{B}_r)$ with the property: $||Y^* - UY^*||_{\mathcal{C}([a, b], \mathbf{B}_r)} \leq \varepsilon$.

For $X \in \mathcal{C}([a, b], \mathbf{B}_r)$, we have:

$$\begin{aligned} ||X - X^*||_{\mathcal{C}([a,b],\mathbf{B}_r)} &\leq ||X - UX||_{\mathcal{C}([a,b],\mathbf{B}_r)} + ||UX - X^*||_{\mathcal{C}([a,b],\mathbf{B}_r)} \\ &= ||X - UX||_{\mathcal{C}([a,b],\mathbf{B}_r)} + ||UX - UX^*||_{\mathcal{C}([a,b],\mathbf{B}_r)} \\ &\leq ||X - UX||_{\mathcal{C}([a,b],\mathbf{B}_r)} + \varphi(||X - X^*||_{\mathcal{C}([a,b],\mathbf{B}_r)}). \end{aligned}$$

There, we have that $\psi(||X - X^*||_{\mathcal{C}([a,b],\mathbf{B}_r)}) \leq ||X - UX||_{\mathcal{C}([a,b],\mathbf{B}_r)}$ and then $||X - X^*||_{\mathcal{C}([a,b],\mathbf{B}_r)} \leq \psi^{-1}(||X - UX||_{\mathcal{C}([a,b],\mathbf{B}_r)})$, for all $X \in \mathcal{C}([a,b],\mathbf{B}_r)$. By putting $X := Y^*$, we get

 $||Y^* - X^*||_{\mathcal{C}([a,b],\mathbf{B}_r)} \le \psi^{-1}(||Y^* - UY^*||_{\mathcal{C}([a,b],\mathbf{B}_r)}) \le \psi^{-1}(\varepsilon).$

Then the fixed point equation X = UX, is generalized Ulam-Hyers stable with function ψ^{-1} . Then, the integral equation (2.1) is generalized Ulam-Hyers stable. \Box

3. Ulam-Hyers-Rassias stability

We consider the following integral equations in the space of multivalued operators:

$$X(t) = \int_{a}^{b} K(t, s, X(s))ds + X_{0}(t), \quad t \in [a, b]$$
(3.1)

$$X(t) = \int_{a}^{t} K(t, s, X(s))ds + X_{0}(t), \quad t \in [a, b],$$
(3.2)

where $K : [a,b] \times [a,b] \times P_{cp,cv}(\mathbb{R}^n) \to P_{cp,cv}(\mathbb{R}^n)$ is a continuous operator and $X_0 \in C([a,b], P_{cp,cv}(\mathbb{R}^n)).$

A solution of these integral equations in the space of the multivalued operators means a continuous operator $X : [a, b] \to P_{cp,cv}(\mathbb{R}^n)$ which satisfies (3.1) respectively (3.2), for each $t \in [a, b]$.

An auxiliary result is the following.

Lemma 3.1. (I.A. Rus [12]) Let $h \in C([a,b], \mathbb{R}_+)$ and $\beta > 0$ with $\beta(b-a) < 1$. If $u \in C([a,b], \mathbb{R}_+)$ satisfies

$$u(t) \le h(t) + \beta \int_{a}^{b} u(s) ds$$
, for all $t \in [a, b]$,

then

$$u(t) \le h(t) + \beta (1 - \beta (b - a))^{-1} \int_{a}^{b} h(s) ds$$
, for all $t \in [a, b]$.

Theorem 3.2. Consider the integral equation (3.1). Let

$$K: [a,b] \times [a,b] \times P_{cp,cv}(\mathbb{R}^n) \to P_{cp,cv}(\mathbb{R}^n)$$

be a multivalued operator. Suppose that:

(i) K is continuous on $[a, b] \times [a, b] \times P_{cp, cv}(\mathbb{R}^n)$ and $X_0 \in C([a, b], P_{cp, cv}(\mathbb{R}^n));$

(ii) $K(t, s, \cdot)$ is Lipschitz, i.e. there exists $L_K \ge 0$ such that:

$$H(K(t, s, A), K(t, s, B)) \le L_K H(A, B),$$

for all $A, B \in P_{cp,cv}(\mathbb{R}^n)$ and for all $t, s \in [a, b]$;

(iii) $L_K(b-a) < 1$.

(iv)
$$\varphi \in C([a,b],(0,+\infty)).$$

Then:

- (a) the integral equation (3.1) has a unique solution denoted with X^* ;
- (b) the integral equation (3.1) it is generalized Ulam-Hyers-Rassias stable, i.e., if $X \in C([a, b], P_{cp, cv}(\mathbb{R}^n))$ has the property

$$H(X(t), \int_{a}^{b} K(t, s, X(s))ds) \le \varphi(t), \text{ for all } t \in [a, b],$$

then there exists $c_{\varphi} > 0$ such that

$$H(X(t), X^*(t)) \le c_{\varphi} \cdot \varphi(t), \text{ for all } t \in [a, b].$$

Proof. For the proof of (a) we refer to [15]. By (a) we have that
$$\begin{split} &\Gamma: C([a,b], P_{cp,cv}(\mathbb{R}^n)) \to C([a,b], P_{cp,cv}(\mathbb{R}^n)) \text{ the operator, given by} \\ &\Gamma X(t) = \int_a^b K(t,s,X(s)) ds + X_0 \text{, for all } t \in [a,b] \text{ is a contraction.} \\ &\text{Then the fixed point equation } X = \Gamma X \text{ has a unique solution} \end{split}$$

$$X^* \in C([a,b], P_{cp,cv}(\mathbb{R}^n)).$$

We have:

$$H(\Gamma X(t), \Gamma X^{*}(t)) = H(\int_{a}^{b} K(t, s, X(s))ds + X_{0}(t), \int_{a}^{b} K(t, s, X^{*}(s))ds + X_{0}(t)) \leq \int_{a}^{b} H(K(t, s, X(s)), K(t, s, X^{*}(s)))ds \leq L_{K} \int_{a}^{b} H(X(s), X^{*}(s))ds.$$

For $X \in C([a, b], P_{cp, cv}(\mathbb{R}^n))$, we have:

$$H(X(t), X^*(t)) \leq H(X(t), \Gamma X(t)) + H(\Gamma X(t), X^*(t))$$

= $H(X(t), \Gamma X(t)) + H(\Gamma X(t), \Gamma X^*(t))$
 $\leq \varphi(t) + L_K \int_a^b H(X(s), X^*(s)) ds.$

By Lemma 3.1 we have:

$$H(X(t), X^{*}(t)) \leq \varphi(t) + L_{K}(1 - L_{K}(b - a))^{-1} \int_{a}^{b} \varphi(s) ds$$

= $\varphi(t) [1 + L_{K}(1 - L_{K}(b - a))^{-1} \frac{\int_{a}^{b} \varphi(s) ds}{\varphi(t)}].$

By the Mean Integral Theorem, there exists $\alpha \in (a, b)$ such that

$$\varphi(t)[1+L_K(1-L_K(b-a))^{-1}\frac{\varphi(\alpha)}{\varphi(t)}] \le \varphi(t)[1+L_K(1-L_K(b-a))^{-1}\frac{M_{\varphi}}{m_{\varphi}}] = c_{\varphi} \cdot \varphi(t).$$

Then, the integral equation (3.1) is generalized Ulam-Hyers-Rassias stable.

Lemma 3.3. (I.A.Rus [12]) Let J be an interval in \mathbb{R} , $t_0 \in J$ and $h, k, u \in C(J, \mathbb{R}_+)$. If

$$u(t) \le h(t) + \left| \int_{t_0}^t k(s)u(s)ds \right|, \text{ for all } t \in J,$$

then

$$u(t) \le h(t) + \left| \int_{t_0}^t h(s)k(s)e^{|\int_s^t k(\sigma)d\sigma|} ds \right|, \text{ for all } t \in J.$$

Theorem 3.4. Consider the integral equation (3.2). Let $K : [a,b] \times [a,b] \times$ $P_{cp,cv}(\mathbb{R}^n) \to P_{cp,cv}(\mathbb{R}^n)$ be a multivalued operator and $X_0 \in C([a,b], P_{cp,cv}(\mathbb{R}^n)).$ Suppose that:

- (i) K is continuous on $[a, b] \times [a, b] \times P_{cp, cv}(\mathbb{R}^n)$;
- (ii) $K(t, s, \cdot)$ is Lipschitz, i.e. there exists $L_K \ge 0$ such that

$$H(K(t, s, A), K(t, s, B)) \le L_K H(A, B),$$

for all $A, B \in P_{cp,cv}(\mathbb{R}^n)$ and $t, s \in [a, b]$;

(iii) there exists $\varphi \in C([a, b], (0, +\infty))$ and $\eta_{\varphi} > 0$ such that $\int_{a}^{t} \varphi(s) ds \leq \eta_{\varphi} \cdot \varphi(t)$ for all $t \in [a, b]$.

Then:

- (a) the integral equation (3.2) has a unique solution denoted with X^* ;
- (b) the integral equation (3.2) it is generalized Ulam-Hyers-Rassias stable, i.e., if $X \in C([a, b], P_{cp, cv}(\mathbb{R}^n))$ has the property

$$H(X(t), \int_a^t K(t, s, X(s)) ds) \le \varphi(t), \text{ for all } t \in [a, b],$$

then there exists $c_{\varphi} > 0$ such that

$$H(X(t), X^*(t)) \le c_{\varphi} \cdot \varphi(t), \text{ for all } t \in [a, b].$$

Proof. For the proof of (a) we refer to [15]. By (a) we have that $\Gamma: C([a,b], P_{cp,cv}(\mathbb{R}^n)) \to C([a,b], P_{cp,cv}(\mathbb{R}^n)),$ given by the operator $\Gamma X(t) = \int_a^t K(t, s, X(s))ds + X_0(t), \ t \in [a, b]$ is a contraction. Consider the fixed point equation $X = \Gamma X$ and let X^* be the unique solution of

this equation. We have:

$$\begin{split} H(\Gamma X(t), \Gamma X^*(t)) &\leq H(\int_a^t K(t, s, X(s)) ds, \int_a^t K(t, s, X^*(s)) ds) \\ &\leq \int_a^t H(K(t, s, X(s)), K(t, s, X^*(s))) ds \\ &\leq L_K \int_a^t H(X(s), X^*(s)) ds. \end{split}$$

On the other hand, we have:

$$H(X(t), X^*(t)) \le H(X(t), \Gamma(X)(t)) + H(\Gamma(X)(t), X^*(t))$$

= $H(X(t), \Gamma(X)(t)) + H(\Gamma(X)(t), \Gamma(X^*)(t))$
 $\le \varphi(t) + L_K \int_a^t H(X(s), X^*(s)) ds.$

By Lemma 3.3 we have:

$$H(X(t), X^*(t)) \le \varphi(t) + L_K e^{L_K(b-a)} \int_a^t \varphi(s) ds$$
$$\le [1 + \eta_{\varphi} L_K e^{L_K(b-a)}] \varphi(t) = c_{\varphi} \varphi(t)$$

Then, the integral equation (3.2) is generalized Ulam-Hyers-Rassias stable.

Another stability result is the following.

Theorem 3.5. Consider the following equation

$$X(t) = \int_{t-\tau}^{t} F(s, X(s)) ds, \text{ where } \tau > 1, t, s \in [-\tau, T].$$
(3.3)

Suppose that:

- (i) $F: [-\tau, T] \times P_{cp,cv}(\mathbb{R}_+) \to P_{cp,cv}(\mathbb{R}_+)$, is continuous; (ii) there exists $k \in L^1[-\tau, T]$ such that
- $H(F(s,A),F(s,B) \leq k(s)H(A,B), \text{ for all } A,B \in P_{cp,cv}(\mathbb{R}_+) \text{ and } s \in$ $\begin{array}{l} [-\tau,T];\\ (\mathrm{iii}) \hspace{0.2cm} \varphi \in C([-\tau,T],P_{cp,cv}(\mathbb{R}_{+})); \end{array}$
- (iv) there exists $\lambda_{\varphi} > 0$ such that: $\int_{t-\tau}^{t} \varphi(s) ds \leq \lambda_{\varphi} \cdot \varphi(t)$, for each $t \in [-\tau, T]$.

Then, the integral equation (3.3) is generalized Ulam-Hyers-Rassias stable with respect to φ , i.e., there exists $c_{F,\varphi} > 0$ such that for each solution $Y \in C^1([-\tau, T], P_{cp,cv}(\mathbb{R}_+))$ of the inequation

$$H(Y(t), \int_{t-\tau}^{t} F(s, Y(s)) ds) \le \varphi(t), \text{ for all } t \in [-\tau, T]$$

with the property

$$Y(0) = \int_{-\tau}^{0} F(s, Y(s)) ds,$$

there exists a solution $X^* \in C^1([-\tau, T], P_{cp,cv}(\mathbb{R}_+))$ of the equation (3.3) such that: $H(Y(t), X^*(t)) \leq c_{F,\varphi} \cdot \varphi(t), \text{ for all } t \in [0, T].$

Proof. Let $Y \in C^1([-\tau, T], P_{cp,cv}(\mathbb{R}_+))$ be a solution of the inequality

$$H(Y(t), \int_{t-\tau}^{t} F(s, Y(s)) ds \le \varphi(t), \text{ for all } t \in [-\tau, T].$$

Let $X^* \in C^1([-\tau, T], P_{cp, cv}(\mathbb{R}_+))$ be the unique solution of the Cauchy problem:

$$\begin{cases} X(t) = \int_{t-\tau}^t F(s, X(s)) ds, \text{ where } \tau > 1, \quad t, s \in [-\tau, T] \\ X(0) = Y(0) \end{cases}$$

We have

$$\begin{split} H(Y(t), X^*(t)) &\leq H(Y(t), \int_{t-\tau}^t F(s, Y(s))ds) + H(\int_{t-\tau}^t F(s, Y(s))ds, X^*(t)) \\ &\leq H(Y(t), \int_{t-\tau}^t F(s, Y(s))ds) + H(\int_{t-\tau}^t F(s, Y(s))ds, \int_{t-\tau}^t F(s, X^*(s))ds) \\ &\leq \lambda_{\varphi} \cdot \varphi(t) + \int_{t-\tau}^t H(F(s, Y(s)), F(s, X^*(s)))ds \\ &\leq \lambda_{\varphi} \cdot \varphi(t) + \int_{t-\tau}^t k(s)H(Y(s), X^*(s))ds. \end{split}$$

By Gronwall Lemma we have:

$$H(Y(s), X^*(s)) \le \lambda_{\varphi} \cdot \varphi(t) \cdot e^{\int_{t-\tau}^t k(s)ds} \\ \le [\lambda_{\varphi} \cdot l^{\int_{t-\tau}^{+\infty} k(s)ds}] \cdot \varphi(t) = c_{F,\varphi} \cdot \varphi(t)$$

Then, the integral equation (3.3) is generalized Ulam-Hyers-Rassias stable.

References

- M.F. Bota-Boriceanu, A. Petruşel, Ulam-Hyers stability for operatorial equations, Analele stiințifice ale Universității "AL.I. Cuza" din Iași, 57(2011), (supliment) 65-74.
- [2] E. Egri, Ulam stability of a first order iterative functional-differential equation, Fixed Point Theory, 12(2011), no. 2, 321-328.
- [3] S.M Jung, A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl., Vol. 2007.
- [4] V. Lakshmikantham, T. Gnana Bhaskar, J. Vasundhara Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, 2006.
- [5] N. Lungu, Ulam stability of some Volterra integral equations, Fixed Point Theory, 12(2011), no. 1, 127-136.
- [6] P.T. Petru, A. Petruşel, J.C. Yao, Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 15(2011), no. 5, 2195-2212,
- [7] A. Petruşel, Multi-funcții și aplicații, Presa Universitară Clujeană, Cluj-Napoca, 2002.
- [8] R. Precup, *Methods in Nonlinear Integral Equations*, Kluwer Academic Publishers, Dordrecht, 2002.
- [9] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, 2001.
- [10] I.A. Rus, Remarks on Ulam Stability of the Operatorial Equations, Fixed Point Theory, 10(2009), no. 2, 305-320.
- [11] I.A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babeş- Bolyai Math., 54(2009), 125-133.
- [12] I.A. Rus, Gronwall Lemma Approach to the Hyers-Ulam-Rassias Stability of an Integral Equation, Nonlinear Analysis and Variational Problems, 35, Springer, New York, 2010.
- [13] I.A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory, Cluj University Press, 2008
- [14] I.C. Tişe, Semifixed sets for multivalued φ -contractions, Creative Math.& Inf., 17(2008), no. 3, 516-520.
- [15] I.C. Tişe, Set integral equations in metric spaces, Math. Moravica, 13(2009), 95-102.

Received: May 23, 2010; Accepted: February 3, 2011.

F.A. TIŞE AND I.C. TIŞE