Fized Point Theory, 13(2012), No. 2, 659-668
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

ULAM-HYERS-RASSIAS STABILITY
FOR SET INTEGRAL EQUATIONS

F.A. TISE AND 1.C. TISE*

Babes-Bolyai University of Cluj-Napoca, Romania
E-mail: ti_camelia@yahoo.com
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1. INTRODUCTION AND PRELIMINARIES

In this paper we will study the following aspects concerning a set integral equation:
Ulam stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and
generalized Ulam-Hyers-Rassias stability.

We will present first some notions and symbols used in this paper.

Definition 1.1. (I.A. Rus [9]) A function ¢ : Ry — Ry is a comparison function if
it satisfies:

(i) ¢ is monotone increasing;
(i) (¢™(t))nen converges to 0, for all ¢ > 0.

Definition 1.2. (I.A. Rus [9]) A comparison function ¢ : Ry — R is said to be:

(i) a strict comparison function if it satisfies t — ¢(t) — oo, for t — oo;
o0
(ii) a strong function if it satisfies Y ¢"(¢) < oo, for all ¢ > 0.

n=1

Remark 1.3. If ¢ : R. — Ry is a comparison function then p(0) = 0 and ¢(t) < t,
for allt > 0.

Example 1.4. (LA. Rus [9]) The functions ¢; : Ry — Ry, ¢1(t) = at (where
a €]0,1[) and @2 : Ry — Ry, @o(t) = %th are strict comparison functions.
Let ¢ : Ry — R, be a strict comparison function. We denote:
oy = sup{t € Ry| ¢t —o(t) < n}.
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Definition 1.5. (I.A. Rus [10]) Let (X, d) be a metric space. A mapping A: X — X
is a w-contraction if ¢ is a comparison function and

d(A(z), A(y)) < p(d(z,y)), for all z,y € X.

We present now the concept of generalized Ulam-Hyers stability.
Let (X,d) be a metric space, A : X — X be an operator. Consider the following
fixed point equation:

r=Az), e X (1.1)

and for € > 0 the following inequation

d(y, Aly)) <e. (1.2)

Definition 1.6. (I.A. Rus [10]) The equation (1.1) is called generalized Ulam-Hyers
stable if there exists ¢ : Ry — R, increasing, continuous in 0 with (0) = 0, such
that for each € > 0 and for each solution y* € X of (1.2), there exists a solution
x* € X of (1.1) such that:

d(y*, ") < ¥(e).
In the case that () := ct, ( for some ¢ > 0), for all ¢ € Ry, then the equation
(1.1) is said to be Ulam-Hyers stable.

Theorem 1.7. Let (X,d) be a complete metric space and A : X — X be -
contraction. If the function ¢ = 1r, — @ is strictly increasing and surjective, then
the fized point equation

x=Ax), re€X

is generalized Ulam-Hyers stable.

Proof. Let € > 0 and y* € X with the property d(y*, A(y*)) < e. By Matkowski-Rus
theorem (see [9]) we know that there exists a unique fixed point 2% € X for A4, i.e.,
x% € A(x%). Then
d(z, %) < d(z, A(z)) + d(A(z), 274)

d(x, A(z)) + @(d(z, 27))-

If follows that: d(z,z%) < ¢~1(d(x, A(x))), for all x € X.

In particular, for z := y* we have that

d(y*,24) <N d(y", A(y")) <91 (e).

Then the fixed point equation is generalized Ulam-Hyers stable (with the function

o). O

<
<

Remark 1.8. If, in the above result, p is a strict comparison function, then we have
the conclusion

d(y*,z%) < @e.
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2. ULAM-HYERS STABILITY

Let us denote Py, (R™") :={X € P(R")|X is compact and convex} and let
B, :={X € P, .o(R")|diam(X) < r}, where r > 0.

The set B, is convex and endowed with Pompeiu-Hausdorff metric H is complete.
Let F': [a,b] x [a,b] x B, — B, /5, and a set A € B, /5.

Consider the set integral equation

b
X(t) = A+/ F(t, 5, X (s))ds. 2.1)
By a solution of the equation (2.1) we understand a continuous function X : [a, b] —
B,., which satisfies (2.1) for every ¢t € [a, b].
Definition 2.1. Let F': [a,b] X [a,b] X Pep oo (R™) = Pep.co(R™) and A € Py o (R™).
The integral equation (2.1) is generalized Ulam-Hyers stable if there exists a function
¥ : Ry — R increasing, continuous in 0 with ¢(0) = 0 such that for each ¢ > 0 and
for each solution Y* € C([a, b], Pep,co (R™)) of the inequation

b
H(Y(t),A —|—/ F(t,s,Y(s))ds) <e, t€]a,b

there exists a solution X* of the equation (2.1) such that

X =Y ™[ ([a,0], Pep.cw (®r)) < P(E).
If (t) = ct, for each t € Ry (¢ > 0) then the equation (2.1) is said to be Ulam-Hyers
stable.

Theorem 2.2. Let F : [a,b] x [a,b] x B, — B, /5 be continuous and suppose there
exist a comparison function ¢ : Ry — Ry and a function p : [a,b] X [a,b] — Ry such
that:

H(F(t,s,X),F(t,s,Y)) <plt,s)p(H(X,Y))

for every t, s € [a,b], X, Y € B, where m[a)lc)] fabp(t,s) < 1. Then:
te|a,

(a) For each A € B,/ the integral equation (2.1) has a unique solution X (-, A) :
[a,b] — B, with depends continuously on A (see [14]).

(b) If, in addition, we assume that the function ¥ : Ry — Ry, ¢(t) = t —
p(t) is strict increasing and surjective, then the set integral equation (2.1) is
generalized Ulam-Hyers stable.

Proof. For (a) the proof is given in [14]. By (a) we have that the operator
U:(C([a, 0], B.), | - lle(a,p),B,)) — (C([a,b],By), || - le(ab),B,)), given by
UX(t) = A—f—fab F(t,s,X(s))ds, where X € C([a,b],B,) and t € [a,}] is a ¢- contrac-
tion, i.e., [[UX — UY|l¢((a.),B,) < @UIX = Ylle((a,),B,)), for all X,Y € C([a,b],B;).
Notice that the fixed point equation X = UX is equivalent with the equation (2.1)
and X* denotes the unique solution of this equation.
Let € > 0 and Y* € C([a,b], B,) with the property: [[Y* — UY"*|[¢(a5,B,) < €



662 F.A. TISE AND I.C. TISE

For X € C([a,b],B,), we have:
X = X*leap.B,) < 1X = UXlle(an,B,) T IUX = X*le((a.0),B,)
= |X = UXlle((a,),B,) + IUX = UX"¢((a,],B,)
<X =UXlle(jap),B,) + 21X = Xl (la.5,B,))-

There, we have that ¥(||X — X*||C([a7b],B,,.)) <||IX - UXHC([a,b],BT) and then

1X = X*e(ap,B,) < ¥ X = UX|le((a,p,B,)): for all X € C([a,b],By).
By putting X :=Y™*, we get

V" = X"leqasBn < ¥ (Y = UY*leusm) < 7).

Then the fixed point equation X = UX, is generalized Ulam-Hyers stable with
function ¥~1. Then, the integral equation (2.1) is generalized Ulam-Hyers stable. []

3. ULAM-HYERS-RASSIAS STABILITY

We consider the following integral equations in the space of multivalued operators:
b
X(t) :/ K(t,s,X(s))ds + Xo(t), tE€[a,b (3.1)

X(t) = /t K(t, s, X(s))ds + Xo(t), t€ [a,b], (3.2)

where K : [a,b] X [a,b] X Pep co(R™) — Py (R™) is a continuous operator and
Xo € C([a,b], Pep o (R™)).

A solution of these integral equations in the space of the multivalued operators

means a continuous operator X : [a,b] — P ¢, (R™) which satisfies (3.1) respectively
(3.2), for each t € [a, b].

An auxiliary result is the following.
Lemma 3.1. (L.A. Rus [12]) Let h € C([a,b],R+) and 8 > 0 with (b —a) < 1. If

u € C([a,b],Ry) satisfies
b
u(t) < h(t) + ﬂ/ u(s)ds, for allt € [a,b],
then

b
u(t) < h(t) + B(1 — B(b - a))—l/ h(s)ds, for all t € [a,b].

Theorem 3.2. Consider the integral equation (3.1). Let
K :[a,b] X [a,b] X Pepey(R™) — Pep oo (R™)
be a multivalued operator. Suppose that:

(1) K is continuous on [a,b] X [a,b] X Py (R™) and Xo € C([a,b], Pep o (R™));
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(ii) K(t,s,-) is Lipschitz, i.e. there exists Lx > 0 such that:
H(K(t,S,A),K(t,S,B)) < LKH(AaB)a

for all A, B € P, o, (R") and for all t,s € [a,b];
(iii) Lrx(b—a) < 1.
(iv) ¢ € C(la,b], (0, +00)).
Then:

(a) the integral equation (3.1) has a unique solution denoted with X*;
(b) the integral equation (3.1) it is generalized Ulam-Hyers-Rassias stable, i.e., if
X € C([a,b], Pep.cv(R™)) has the property

b
H(X(t),/ K(t,s,X(s))ds) < o(t), forallt € [a,b],

then there exists ¢, > 0 such that

H(X(t),X"(t)) <cy,-p(t), forallt e a,bl.

Proof. For the proof of (a) we refer to [15] . By (a) we have that

I': C([a,b], Pep,co(R™)) — C([a, b], Pep,co(R™)) the operator, given by

TX(t) = fabK(t, s, X (s))ds + Xo, for all t € [a,b] is a contraction.
Then the fixed point equation X = I'X has a unique solution

X" € C(la,b], Pep,co(R™)).
‘We have:
b b
H(TX(t),TX*(t) = H(/ K(t,s,X(s))ds +X0(t),/ K(t,s,X"(s))ds + Xo(t)) <
b

X a
§/ H(K(t,s,X(s)),K(Ls,X*(s)))dsSLK/ H(X(s),X™*(s))ds.

a

For X € C([a,b], Pep,co(R™)), we have:
H(X(t), X*(t)) < H(X(t), T X(t)) + HTX(¢), X*(t))
— H(X(t),TX (1)) + HTX(£),TX" (1))
b
< p(t) + LK/ H(X(s),X™*(s))ds.

By Lemma 3.1 we have:
b
H(X (1), X*(t)) < @(t) + Lr(1 = Lr(b—a)) ™" / p(s)ds

b
J, e(s)ds
o(t)
By the Mean Integral Theorem, there exists « € (a,b) such that

=¢t)[1+Lg(1—Lg(b—a)™!

PO+ Ll Lo~ @) ST < GO+ Lic(L - Liclb = ) 2] = -l
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Then, the integral equation (3.1) is generalized Ulam-Hyers-Rassias stable. O

Lemma 3.3. (I.LA.Rus [12]) Let J be an interval in R, tg € J and h,k,u € C(J,R).
If

t
u(t) < h(t) + / k(s)u(s)ds|, for allt e J,
to
then ,
u(t) < h(t) + / h(s)k(s)el Js K@ lqs| | for all t € J.
to
Theorem 3.4. Consider the integral equation (3.2). Let K : [a,b] X [a,b] X

Pep.co(R™) — Pepco(R™) be a multivalued operator and Xo € C([a,b], Pep co(R™)).
Suppose that:

(i) K is continuous on [a,b] X [a,b] X Pep oy (R™);
(ii) K(t,s,-) is Lipschitz, i.e. there exists Lx > 0 such that
H(K(t,s,A),K(t,s,B)) < LxH(A, B),
for all A,B € P o,(R™) and t,s € [a,b];
(ili) there exists ¢ € C([a,b],(0,+00)) and n, > 0 such that fat @(s)ds <y - @(t)
for allt € [a,b].
Then:

(a) the integral equation (3.2) has a unique solution denoted with X*;
(b) the integral equation (3.2) it is generalized Ulam-Hyers-Rassias stable, i.e., if
X € C([a,b], Pep.cw(R™)) has the property

H(X (1), / K(t,5, X (s))ds) < p(t), for all t € [a,)],
then there exists c, > 0 such that

H(X(t),X"(t)) <cy-p(t), forallt e a,bl.

Proof. For the proof of (a) we refer to [15] . By (a) we have that
I: C([a b], Pep.co(R™)) — C([a,b], Pep v (R™)), given by the operator
rX(t f K(t,s,X(s))ds+ Xo(t), t € [a,b]is a contraction.
Con81der the fixed point equation X = I'’X and let X* be the unique solution of
this equation. We have:

H(TX(t),TX*(1) <H/ K(t, s, X (s))ds / K(t, 5 X*(s))ds)
/H (t,5, X (), K (£, 5, X*(5)))ds
SLK/ H(X(s), X*(s))ds.
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On the other hand, we have:
H(X(t), X*(t)) < H(X (1), [(X)(2) + H(I(X)(t), X™(t))
= H(X(t), [(X)(t) + H(I(X)(£), T(X7)(t))
< p(t) + LK/

By Lemma 3.3 we have:

(t)
H(X(s), X"(s))ds.

H(X(t), X*(t)) < @(t) + Lgelbe=o / ' o(s)ds

< [L+npLre™ = Vp(t) = cpp(t).
Then, the integral equation (3.2) is generalized Ulam-Hyers-Rassias stable. O

Another stability result is the following.

Theorem 3.5. Consider the following equation
t
X(t) = / F(s,X(s))ds, where > 1, t,s€[-7,T]. (3.3)
t—T

Suppose that:
(i) F:[-7,T) X Pepco(Ry) = Pep e (Ry), is continuous;
(ii) there exists k € L'[—7,T] such that
H(F(s,A),F(s,B) < k(s)H(A,B), for all A,B € Py c(Ry) ands €
[_7—7 T] ’

(iii) Y e C([_Tv T]? PCP,CU(R-F));

(iv) there exists A, > 0 such that: ftt_T @(s)ds < Ay - (), for each t € [—7,T].
Then, the integral equation (3.3) is generalized Ulam-Hyers-Rassias stable with respect
to ¢, i.e., there exists cp, > 0 such that for each solution Y € C*([—7, T, Pep,co(R4))
of the inequation

H(Y(t)’/t, F(s,Y(s))ds) < p(t), for allt € [—7,T)]

with the property

0
Y(O):/ F(s,Y(s))ds,

—T

there exists a solution X* € CY([—7, T, Pep.cv(R4)) of the equation (3.3) such that:
H(Y(t),X"(t) <cpgy-@(t), forallt e0,T)].

Proof. Let Y € CY([—7,T)], Pep.cv(R4)) be a solution of the inequality

H(Y(t),/tt F(s,Y(s))ds < p(t), for all t € [—7,T].

—T

Let X* € CY([-7,T], P.p.cv(R4)) be the unique solution of the Cauchy problem:
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{ X(t) = ftt_T F(s,X(s))ds, where 7 > 1, t,s€[-7,T]
X(0) =Y(0)

We have

t t

F(s,Y(s))ds) +H(/ F(s,Y(s))ds, X*(t))

t—7

H(Y (1), X*(1)) < HY (1), /

t—7

t

F(s,Y(s))ds) + H(/t, F(s,Y(s))ds, /ti F(s,X*(s))ds)

T

<H(v(),

t—T1
t

<o lt) + / H(F(s, Y (s)), F(s, X*(5)))ds

<l [ HY(s), X" (5))ds.

t—T1

By Gronwall Lemma we have:

H(Y(5),X*(s)) < Ay - o(t) - eir F)ds
< [)\LP . lfttof k(S)ds] . QD(t) =Cpg- (,D(t)

Then, the integral equation (3.3) is generalized Ulam-Hyers-Rassias stable. O
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