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1. Introduction

We will recall first some notations, auxiliary concepts and results, see e.g., [2], [10]
and [8].

A set E equipped with a partial order ”≤” is called a partially ordered set. In a
partially ordered set (E,≤) the notation x < y means x ≤ y and x 6= y. An order
interval [x, y] is the set {z ∈ E : x ≤ z ≤ y}. Notice that if x � y, then [x, y] = ∅.

A partially ordered set (E,≤) is a lattice if each pair of elements x, y ∈ E has
a supremum and an infimum. A real linear space E with an order relation ”≤” on
E which is compatible with the algebraic structure of E, in the sense that satisfies
properties:

(1) x ≤ y implies x+ z ≤ y + z, for each z ∈ E, x, y ∈ E and

(2) x ≤ y implies tx ≤ ty, for each t > 0, x, y ∈ E

is called an ordered linear space. An ordered linear space E for which (E,≤) is a
lattice is called a Riesz space or linear lattice. Many familiar spaces are Riesz spaces,
as some examples show.
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Example 1.1. ([2]) The space Rn with norm defined by

||x|| =

(
n∑

i=1

xi

) 1
2

and with the usual ordering relation, where x = (x1, . . . , xn) ≤ y = (y1, . . . , yn)
whenever xi ≤ yi, for each i = 1, . . . , n is a Riesz space. The infimum and supremum
of two vectors x and y are given by

x ∨ y = (max {x1, y1} , . . . ,max {xn, yn}) and

x ∧ y = (min {x1, y1} , . . . ,min {xn, yn}) .

Example 1.2. ([2]) Both the vector space C (X) of all continuous real functions
(with X a compact set) and the vector space Cb (X) of all bounded continuous real
functions on the topological space X, with norms defined by

||f ||∞ = sup {|f (x)| : x ∈ X}
and with the ordering relation defined pointwise, i.e. f ≤ g whenever f (x) ≤ g (x),
for each x ∈ X are Riesz spaces. The lattice operations of the real functions f and g
are given by

(f ∨ g) (x) = max (f (x) , g (x)) and

(f ∧ g) (x) = min (f (x) , g (x)) .

Example 1.3. ([2]) The vector space Lp (µ) , 0 ≤ p ≤ ∞, with norm defined by

||f ||p =

{ (∫
|f |p dµ

) 1
p , 0 ≤ p <∞

ess sup |f | , p = ∞

and with the almost everywhere pointwise ordering relation, i.e. f ≤ g in Lp (µ)
whenever f (x) ≤ g (x), for µ-almost every x is a Riesz space. The lattice operations
are given by

(f ∨ g) (x) = max (f (x) , g (x)) and

(f ∧ g) (x) = min (f (x) , g (x)) .

The notation xn ↓ x means that xn is a decreasing sequence and inf {xn} = x. If
(xn) , (yn) ⊂ E, then some basic properties of decreasing sequences are:

xn ↓ x and ym ↓ y implies xn + ym ↓ x+ y;
xn ↓ x implies λxn ↓ λx, for λ > 0 and λxn ↑ λx, for λ < 0;
xn ↓ x and ym ↓ y implies xn ∨ ym ↓ x ∨ y and xn ∧ ym ↓ x ∧ y.

A Riesz space E is Archimedean if 1
nx ↓ 0 holds for every x ∈ E+ (see [2]), where

E+ = {x ∈ E : x ≥ 0} is the positive cone of E.

A Riesz space E is order complete or Dedekind complete if every nonempty subset
of E which is bounded from above has a supremum (equivalently, every nonempty
subset of E which is bounded from below has an infimum), see [2]. Any order complete
Riesz space is Archimedean. The converse is false.
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If E is a Riesz space, we will denote by

|x| := x ∨ (−x) the absolute value of x ∈ E.

We present now some useful definitions for our main results and the concept of
vector metric space given in [2], [8] and [10].

Definition 1.4. Let E be a Riesz space. A sequence (bn) in E is called order-
convergent (or o-convergent) to b (we write bn

o−→ b), if there exists a sequence (an)
in E satisfying an ↓ 0 and |bn − b| ≤ an, for all n ∈ N.

Definition 1.5. Let E,F be two Riesz spaces and f : E → F . The function f is
order continuous (or o-continuous) if bn

o−→ b in E implies f (bn) o−→ f (b) in F .

Definition 1.6. Let E be a Riesz space. A sequence (bn) in E is called order-
Cauchy (or o-Cauchy), if there exists a sequence (an) in E such that an ↓ 0 and
|bn − bn+p| ≤ an, for all n ∈ N and p ∈ N∗.

Definition 1.7. A Riesz space E is called o-complete if every o-Cauchy sequence is
o-convergent.

Definition 1.8. Let X be a nonempty set and E be a Riesz space. The function
d : X ×X → E is said to be a vector metric or E-metric if it satisfies the following
properties:
(a) d (x, y) = 0 if and only if x = y;
(b) d (x, y) ≤ d (x, z) + d (y, z) , for all x, y, z ∈ X.
Also, the triple (X, d,E) is said to be a vector metric space or an E-metric space.

It is obvious that E-metric spaces generalize the notion of metric spaces and for
arbitrary elements x, y, z, w of an E-metric space, the following properties holds:

(i) 0 ≤ d (x, y) ;
(ii) d (x, y) = d (y, x) ;
(iii) |d (x, z)− d (y, z)| ≤ d (x, y) ;
(iv) |d (x, z)− d (y, w)| ≤ |d (x, y)− d (z, w)|.

Some examples of E-metric spaces, from [2], [10] and [8], are given now.

Example 1.9. A Riesz space E is an E-metric space with d : E×E → E defined by

d (x, y) = |x− y| .
This E-metric is called to be the absolute valued metric on E.

Example 1.10. It is well known the R2 is a Riesz space with coordinatwise ordering
defined by

(x1, y1) ≤ (x2, y2) if and only if x1 ≤ x2 and y1 ≤ y2, for (x1, y1) , (x2, y2) ∈ R2

or with lexicographical ordering defined by

(x1, y1) ≤ (x2, y2) if and only if x1 < x2 or x1 = x2, y1 ≤ y2

and endowed with the vector metric d : R2 × R2 → R2 defined by

d ((x1, y1) , (x2, y2)) = (α |x1 − y1| , β |x2 − y2|) , where α, β ∈ R+

becomes an E-metric space.
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Other necessary notions (see [2], [10], [8]) are the following.

Definition 1.11. Let (X, d,E) be an E-metric space. A sequence (xn) in X E-

converges to some x ∈ E, written xn
d,E−→ x, if there is a sequence (an) in E such that

an ↓ 0 and d (xn, x) ≤ an, for all n ∈ N.

Definition 1.12. Let X,Y be two E-metric spaces and f : X → Y . The function f
is E-continuous if xn

d,E−→ x in X implies f (xn)
d,E−→ f (x) in Y .

Definition 1.13. Let (X, d,E) be an E-metric space. A sequence (xn) in X is called
to be E-Cauchy, if there is a sequence (an) in E such that an ↓ 0 and d (xn, xn+p) ≤ an,
for all n ∈ N and p ∈ N∗.

Definition 1.14. An E-metric space X is called E-complete if each E-Cauchy se-
quence in X E-converges to a limit in X.

Definition 1.15. Let (X, d,E) be an E-metric space. We say that a subset Y ⊂ X

is E-closed if (xn) ⊂ Y and xn
d,E−→ x implies x ∈ Y .

Lemma 1.16. Let (X, d,E) be an E-metric space. If xn
d,E−→ x then the following

properties hold:
(1) The limit x is unique;
(2) Any subsequence of (xn) E-converges to x;

(3) If yn
d,E−→ y then d (xn, yn) o−→ d (x, y).

Definition 1.17. Let (X, d,E) be an E-metric space. If A ⊂ X is a nonempty set,
then the symbol

δ (A) = sup {d (x, y) : x, y ∈ A}
is called the E-diameter of X if sup {d (x, y) : x, y ∈ A} is in E. Furthermore, if there
exists an a > 0 in E such that d (x, y) ≤ a, for x, y ∈ A, then A is called an E-bounded
set.

Remark 1.18. If E = R, the concepts of E-convergence and metric convergence
are the same, respectively the concepts of E-Cauchy sequence and Cauchy sequence
are the same. If X = E and d is the absolute valued vector metric on X, then the
concepts of E-convergence and o-convergence are the same.

The purpose of this paper is to give some extensions of the Contraction principle to
the case of E-metric spaces. More precisely we will realize the study of the fixed point
theory for (local and global) nonlinear contractions with an o-comparison function in
E-metric spaces. Our results generalize some theorems given in [8], [15], [27], [28],
[29].

2. Main Results

In the first part we give some existence and uniqueness results for nonlinear ϕ-
contractions in E-metric spaces, using the lattice structure and the order relation of
the Riesz space E.
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Definition 2.1. Let (X, d,E) be an E-metric space and ϕ : E+ → E+ be an increas-
ing operator such that ϕ (t) < t and ϕn (t) o−→ 0, for any t > 0. We say that the
operator T : X → X is a nonlinear ϕ-contraction, if and only if

d (Tx, Ty) ≤ ϕ [d (x, y)] , for any x, y ∈ X.

Definition 2.2. By definition, an operator ϕ : E+ → E+ which satisfies the above
properties is called an o-comparison function.

In what follows, by Theorems 2.3, 2.4, 2.8 and 2.11 we will obtain some extensions
of the Contraction principle to the case of E-metric spaces and we will realize the study
of the fixed point theory for nonlinear contractions with an o-comparison function in
the entire space, in a closed ball of the space, respectively in a certain subset of the
E-metric space.

Theorem 2.3. Let (X, d,E) be an E-complete metric space and let T : X → X be a
nonlinear ϕ-contraction. Then:

(i) there exists a unique fixed point z ∈ X for T and for any x ∈ X, Tn (x)
d,E−→ z;

(ii) d (z, Tn (x)) ≤ ϕn [d (z, x)], for any n ∈ N.

Proof. Let x ∈ X be arbitrarily. Inductively, we have

d
(
Tn (x) , Tn+p (x)

)
≤ ϕn [d (x, T p (x))] , for any n ∈ N and p ∈ N∗.

Since ϕn (d (x, T p (x))) o−→ 0 as n → ∞, we have that there exists (ηn) in E such
that ηn ↓ 0 and ϕn (d (x, T p (x))) ≤ ηn, for any n ∈ N. Thus,

d
(
Tn (x) , Tn+p (x)

)
≤ ηn, for any n ∈ N and p ∈ N∗.

Letting n →∞, we obtain that the sequence (Tn (x)) is E-Cauchy in X. By the E-
completeness of X, it follows that there exists z ∈ X such that for any x ∈ X,
Tn (x)

d,E−→ z. Thus, there exists a sequence (εn) in E such that εn ↓ 0 and
d (Tn (x) , z) ≤ εn, for any n ∈ N. We have

d (z, Tz) ≤ d
(
z, Tn+1 (x)

)
+ d

(
Tn+1 (x) , T z

)
≤ εn+1 + ϕ [d (Tn (x) , z)]

≤ εn+1 + ϕ (εn) ≤ 2εn ↓ 0, when n→∞.

Thus, z is a fixed point of T in X. For the uniqueness, we suppose that y ∈ X is
another fixed point of T with y 6= z. Then

d (y, z) = d (Ty, Tz) ≤ ϕ [d (y, z)] .

Thus, by the properties of ϕ, we get that d (y, z) = 0 and so, y = z.
For any n ∈ N, the error estimate for the fixed point is given by

d (z, Tn (x)) = d (Tn (z) , Tn (x))

≤ ϕn [d (z, x)] ,

which completes the proof. �
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Another result of this type can be obtained in the closed ball

B̄ (x0, r) := {x ∈ X | d (x, x0) ≤ r} ,

where x0 ∈ X and r ∈ E+ with r > 0.

Theorem 2.4. Let (X, d,E) be an E-complete metric space, x0 ∈ X, r ∈ E+, let
T : B̄ (x0, r) → X be an operator and there exists an increasing operator ϕ : [0, r] →
[0, r] ⊂ E+ such that ϕn (t) o−→ 0 for any t ∈ (0, r], with the property d (Tx, Ty) ≤
ϕ [d (x, y)] and d (x, y) ≤ r, for any x, y ∈ B̄ (x0, r). We assume that d (x0, Tx0) ≤
r − ϕ (r).
Then:

(i) T has a unique fixed point z ∈ B̄ (x0, r) and for any x ∈ B̄ (x0, r) we have

Tn (x)
d,E−→ z;

(ii) d (z, Tn (x)) ≤ ϕn (r), for any n ∈ N.

Proof. We will show that T
(
B̄ (x0, r)

)
⊂ B̄ (x0, r).

Let x ∈ B̄ (x0, r) and by the estimation

d (x0, Tx) ≤ d (x0, Tx0) + d (Tx0, Tx)

≤ r − ϕ (r) + ϕ [d (x0, x)]

≤ r − ϕ (r) + ϕ (r) = r,

we get that Tx ∈ B̄ (x0, r). Thus, T : B̄ (x0, r) → B̄ (x0, r) and sinceX is E-complete,
by Theorem 2.3, we get that there exists a unique fixed point z for T in B̄ (x0, r) and

for any x ∈ B̄ (x0, r), Tn (x)
d,E−→ z.

For any n ∈ N, the error estimate for the fixed point is given by

d (z, Tn (y0)) = d (Tn (z) , Tn (y0))

≤ ϕn [d (z, x)] ≤ ϕn (r) ,

which completes the proof. �

Example 2.5. Let I = [0, a], a > 0 be an interval of the real axis. Suppose that
T ∈ C

(
I2 ×B,B

)
, g ∈ C (I,B) and we consider the Fredholm type integral equation

x (t) =
∫

I

T (t, s, x (s)) ds+ g (t) , (1)

in C (I,B), i.e., in the space of all continuous functions defined on I, with values in
a Banach space B, with the uniform convergence −→ and with the metric defined by

d (x, y) = ||x (t)− y (t)|| , for any x, y ∈ C (I,B) ,

where ||·|| : B → R+ is the norm of B. In C (I,R+) we choose the usual partial
order and the usual operations (addition and multiplication) and for the convergence
relation ↓ we consider the pointwise convergence of decreasing sequences in C (I,R+).
Then, in this case, we can easily observe that the Riesz space E is C (I,R+) and the
abstract space X is C (I,B).
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Moreover, if we assume that there exists a continuous function ω ∈ C
(
I2,R+

)
with sup

t∈I

∫
I
ω (t, s) ds ≤ 1, such that

||T (t, s, x)− T (t, s, y)|| ≤ ω (t, s)ϕ (||x− y||) , for each t, s ∈ I, x, y ∈ B,

where ϕ : E+ → E+ is an o-comparison operator.
Then, the integral equation (1) has a unique solution in C (I,B).
We attach to the integral equation (1) the operator

A : C (I,B) → C (I,B) ,

A (x) (t) :=
∫

I

T (t, s, x (s)) ds+ g (t) , for any t ∈ I.

Thus, A is well defined. We prove that A is a nonlinear ϕ-contraction. Let x1, x2 ∈
C (I,B). We have

||A (x1) (t)−A (x2) (t)|| ≤
∫

I

||T (t, s, x1 (s))− T (t, s, x2 (s))|| ds

≤
∫

I

ω (t, s)ϕ (||x1 (s)− x2 (s)||) ds

≤ ϕ (||x1 − x2||∞)
∫

I

ω (t, s) ds.

Passing to the norm ||·||∞, we get

||A (x1)−A (x2)||∞ ≤ ϕ (||x1 − x2||∞) , for any x1, x2 ∈ C (I,B) .

By Theorem 2.3, it follows that the equation (1) has a unique solution in C (I,B).

Remark 2.6. The interval I could be replaced by a compact subset of a topological
space and similarly the proof runs (see Example 1.2).

Remark 2.7. Theorem 2.3 and Theorem 2.4 represent global and local extensions
(to the case of E-metric spaces) of some well known fixed point principles, see J.
Matkowski [17] and I.A. Rus [24].

If we choose X = E and d an absolute valued metric on E, then we obtain fixed
point theorems in the Riesz space E, see R. Cristescu [10]. Moreover, similarly can
be proved other fixed point theorems in E-metric spaces for operators which satisfies
nonlinear generalized ϕ-contraction conditions and the theory of such a theorem can
be considered, see [19] and [26].

Following the ideas from [15], other results with equivalent conclusions with The-
orems 2.3 and 2.4 can be obtained in the space

X (x0, r) := ∪
λ∈E+

B̄ (x0, λr) = ∪
λ∈E+

{x| x ∈ X, d (x, x0) ≤ λr} .

Theorem 2.8. Let (X, d,E) be an E-complete metric space, x0 ∈ X, r ∈ E+, let
T : X (x0, r) → X be an operator and there exists an increasing operator ϕ : E+ → E+

(not necessary o-continuous) such that ϕn (t) o−→ 0 for any t > 0, with properties:
1◦) ϕ (λr) ≤ ϕ (λ) r, for λ ∈ E+;
2◦) d (Tx, Ty) ≤ ϕ [d (x, y)] and d (x, y) ≤ λr, for any x, y ∈ X (x0, r) and for λ ∈ E+;
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3◦) d (x0, Tx0) ≤ λ0r, for λ0 ∈ E+.
Then:

(i) there exists a unique fixed point z for T in X (x0, r) and for any x ∈ X (x0, r),

Tn (x)
d,E−→ z;

(ii) d (z, Tn (x)) ≤ ϕn [d (z, x)], for any n ∈ N.

Proof. We have to prove that X (x0, r) is invariant with respect to T , i.e.,
T (X (x0, r)) ⊂ X (x0, r). Let x ∈ X (x0, r), then there exists λ ∈ E+ such that
d (x, x0) ≤ λr. Since

d (Tx, x0) ≤ d (Tx, Tx0) + d (Tx0, x0)

≤ ϕ [d (x, x0)] + λ0r ≤ ϕ (λr) + λ0r

≤ [ϕ (λ) + λ0] r

thus, there exists λ′ := [ϕ (λ) + λ0] ∈ E+ such that d (Tx, x0) ≤ λ′r, i.e., Tx ∈
X (x0, r). Then, the conclusion follows by Theorem 2.3. �

Lemma 2.9. If (yn) ⊂ X (x0, r) and yn
d,E−→ y, then y ∈ X (x0, r), i.e., X (x0, r) is

E-closed in X with respect to the convergence
d,E−→.

Proof. Let yn ∈ X (x0, r) , n ∈ N∗, then there exists λ ∈ E+ such that d (yn, x0) ≤ λr.

Since yn
d,E−→ y, there exists a sequence (εn) in E such that εn ↓ 0 and d (yn, y) ≤ εnr,

for any n ∈ N. We have

d (y, x0) ≤ d (y, yn) + d (yn, x0) ≤ (ε1 + λ) r

thus, there exists λ′ := (ε1 + λ) ∈ E+ such that

d (y, x0) ≤ λ′r,

i.e., y ∈ X (x0, r). �

If we endow the space X (x0, r) ⊂ X with a metric ρ : X (x0, r)×X (x0, r) → E+,
given by

ρ (x, y) = inf
λ∈E+

{d (x, y) ≤ λr} ,

we have the following:

Lemma 2.10. Let (X, d,E) be an E-complete metric space with E-Archimedean.
Then, the space X (x0, r) is E-complete with respect to ρ.

Proof. It is easy to check that ρ is a metric of space X (x0, r) in the sense of Definition
1.8. We want to show that any E-Cauchy sequence in X (x0, r) is E-convergent and
his limit is in X (x0, r).

Let (yn) be an E-Cauchy sequence in X (x0, r). Thus, there exists a sequence (εn)
in E such that εn ↓ 0 and ρ (yn, yn+p) ≤ εn, for any n ∈ N and p ∈ N∗. We have

d (yn, yn+p) ≤
[
ρ (yn, yn+p) +

1
k

]
r ≤

(
εn +

1
k

)
r, k ∈ N∗.
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Letting k →∞, we obtain that

d (yn, yn+p) ≤ εnr := cn, for any n ∈ N and p ∈ N∗,

respectively by the fact that E is Archimedean, we have that cn ↓ 0. Thus, (yn) is
E-Cauchy in (X, d,E). By E-completeness of (X, d,E), it follows that there exists

y ∈ X such that yn
d,E−→ y.

By Lemma 2.9, X (x0, r) is E-closed in X with respect to the convergence
d,E−→. It

follows that d (yn, y) ≤ cn, for any n ∈ N and

d (x0, y) ≤ d (x0, y1) + d (y1, y) ≤ λ1b+ c1 = (λ1 + ε1) r,

thus, y ∈ X (x0, r). �

If we use the same conditions as in Theorem 2.8, we can obtain another existence
and uniqueness result in the E-metric space X (x0, b). Notice that, this time, the
proof is based on the equivalence between the E-metrics ρ and d and thus, we will
not apply Theorem 2.8 to show that the sequence of successive approximations of T
converges with respect to

d,E−→ to the unique fixed point of T in X (x0, b).

Theorem 2.11. If all the assumptions of Theorem 2.8 holds and E is Archimedean,
then:

(i) T is a nonlinear ϕ-contraction in X (x0, r) with respect to ρ;
(ii) there exists a unique fixed point z ∈ X (x0, r) for T and for any y0 ∈ X (x0, r)

we have that Tn (y0)
d,E−→ z.

Proof. i) We prove that ρ (Tx, Ty) ≤ ϕ [ρ (x, y)] for any x, y ∈ X (x0, r).
By the proof of Theorem 2.8, we get that X (x0, r) is invariant with respect to T .

Let x, y ∈ X (x0, r), then there exists λ ∈ E+ such that x, y ∈ B̄ (x0, λr). We have

d (Tx, Ty) ≤ ϕ [d (x, y)] ≤ ϕ

[(
ρ (x, y) +

1
k

)
r

]
≤ ϕ

[
ρ (x, y) +

1
k

]
r, k ∈ N∗.

Letting k →∞, we obtain that

d (Tx, Ty) ≤ ϕ [ρ (x, y)] r,

which implies the inequality

ρ (Tx, Ty) ≤ ϕ [ρ (x, y)] .

ii) Inductively, by i), we have

ρ
(
T k (x) , T k (y)

)
≤ ϕk [ρ (x, y)] , for any x, y ∈ X (x0, r) , k ∈ N.

We fix y0 ∈ X (x0, r) and we take x = y0, y = T (y0), thus

ρ
(
T k (y0) , T k+1 (y0)

)
≤ ϕk [ρ (y0, T (y0))] .

On the other hand, since ϕk (t) o−→ 0 for any t > 0, we have that there exists p ∈ N
such that

ϕp [ρ (y0, T (y0))] ≤ 1− ϕ (1) .
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Then, we get that there exists p ∈ N such that

ρ
(
T p (y0) , T p+1 (y0)

)
≤ 1− ϕ (1) .

Let z0 = T p (y0), we define V (z0, 1) := {x | x ∈ X (x0, r) , ρ (z0, x) ≤ 1} and applying
Theorem 2.4 to the operator T : V (z0, 1) → V (z0, 1), it follows that there exists a

unique fixed point z for T in V (z0, 1) and Tn (z0)
ρ,E−→ z. We want to show that

Tn (z0)
d,E−→ z. We have

d
(
Tn (z0) , Tn+p (z0)

)
≤ d (Tn (z0) , z) + d

(
z, Tn+p (z0)

)
≤
(
ρ (Tn (z0) , z) + ρ

(
z, Tn+p (z0)

)
+

1
k

)
r

≤
(
εn + εn+p +

1
k

)
r ≤

(
2εn +

1
k

)
r, k ∈ N∗.

Letting k →∞, we obtain that

d
(
Tn (z0) , Tn+p (z0)

)
≤ 2εnr := dn, for any n ∈ N and p ∈ N∗,

respectively by the fact that E is Archimedean, we have that dn ↓ 0. Thus, (Tn (z0))
is an E-Cauchy sequence in X (x0, r). By E-completeness of X (x0, r), it follows that
there exists z′ ∈ X (x0, r) such that d (Tn (z0) , z′) ≤ 2εnr.
Moreover,

d (z, z′) ≤ d (z, Tn (z0)) + d (Tn (z0) , z′)

≤
[
ρ (z, Tn (z0)) +

1
k

]
r + 2εnr

≤ 3εnr, when k →∞.

Thus, we conclude that z = z′ and Tn (z0)
d,E−→ z, respectively by the properties of ϕ,

it follows that there exists inX (x0, r) at most one fixed point of T . Hence, there exists

a unique fixed point z for T in X (x0, r) and for any y0 ∈ X (x0, r), Tn (y0)
d,E−→ z. �

Remark 2.12. The equality between the E-metric spaces X and X (x0, r) can hold
and depends of the space X and r. If X = C (I,B) and E = C (I,R+) then the
mentioned equality holds if inf [r (t) : t ∈ I] > 0.

Next, we recall some preliminary topological results to Krasnoselskii’s theorem in
E-Banach spaces.

Definition 2.13. ([2], [8]) Let (X, d,E) be an E-metric space. A subset A ⊂ X is
called E-open if for any x ∈ A, there exists some r > 0 in E such that B (x, r) ⊂ A,
where B (x, r) = {y ∈ X : d (x, y) < r}. Any E-open ball is an E-open set and the
collection of all E-open subsets of X represents the E-metric topology on X denoted
by τd,E .

Definition 2.14. ([2], [30]) Let (X, d,E) be an E-metric space. A subset C of X
is called E-compact if every E-open cover of C has a finite subcover. Equivalently,
a subset C of X is E-sequentially compact if every sequence in C contains an E-
convergent subsequence with limit in C.
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A subset C of X is said to be E-totally bounded if for each ε ∈ E+, ε > 0, there
exists a finite number of elements x1, x2, . . . , xn in X such that C ⊂

n
∪

i=1
B (xi, ε). The

set {x1, x2, . . . , xn} is called a finite ε-net.

A set C of a topological space is said to be E-relatively compact if its closure is
E-compact, i.e., C̄ is E-compact. Equivalently, C is E-sequentially relatively compact
if every sequence in C contains an E-convergent subsequence (the limit need not be
an element of C), i.e., C̄ is E-sequentially compact.

Proposition 2.15. ([30]) If C is a subset of E, then we have:
(i) E-compact ⇔ E-sequentially compact ⇔ E-closed and E-totally bounded;
(ii) E-relatively compact ⇔ E-sequentially relatively compact ⇔ E-totally

bounded.

If a, b are elements of E, then the set {x | x = (1− λ) a+ λb, 0 ≤ λ ≤ 1} is called
the line segment joining a to b. Then a subset K ⊂ E is called E-convex if for each
pair a, b ∈ K, the line segment joining them lies in K (see [2] and [12]). For any
subset A ⊂ E, the intersection of all E-convex sets containing A is called the convex
hull co (A) of A, i.e., the smallest E-convex set containing A.

Definition 2.16. ([10]) Let X be a linear space and E be a Riesz space. Then, an
E-norm on X is a function ||·|| : X → E satisfying the following properties:
(a) ||x|| ≥ 0, for all x ∈ X;
(b) ||x+ y|| ≤ ||x||+ ||y|| , for all x, y ∈ X.
Moreover, the triple (X, ||·|| , E) is called an E-normed space.

Remark 2.17. ([10]) If ||·|| is an E-norm on X, then the function d : X ×X → E,
d (x, y) = ||x− y|| is an E-metric on X and d is called the E-metric generated by the
E-norm ||·||.

Definition 2.18. ([10]) An E-normed space (X, ||·|| , E) is called a vector Banach
space or E-Banach space if any E-Cauchy sequence in X is E-convergent with respect
to ||·||.

Remark 2.19. ([10]) If |·| represents the absolute value of the Riesz space E, then
(E, |·| , E) is an E-Banach space.

Remark 2.20. ([30]) Any E-normed Riesz space is Archimedean and thus, an E-
Banach space is obviously Archimedean.

Notice that Ky Fan’s Lemma and Schauder’s Theorem can be proved, in an E-
Banach space X, by a similar method to the classical case, where we assume that
E is order complete and Y ⊂ X is an E-bounded set (thus, the order completeness
guarantees that inf

x∈Y
||x− f (y0)|| exists in E). More precisely, we have the following

results.

Lemma 2.21. Let X be an order complete E-normed space, let Y ⊂ X be an E-
compact and E-convex set and let f : Y → X be an E-continuous operator. Then
||y0 − f (y0)|| = inf

x∈Y
||x− f (y0)||.
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Definition 2.22. Let X,Y be two E-normed spaces, K ⊂ X and f : K → Y an
operator. Then, we say that f is:

(i) E-compact, if for any E-bounded subset A ⊂ K we have f (A) is E-relatively
compact or f (A) is E-compact;

(ii) E-complete continuous, if f is E-continuous and E-compact;
(iii) with E-relatively compact range, if f is E-continuous and f (K) is E-relatively

compact.

Theorem 2.23. Let (X, ||·|| , E) be an E-Banach space with E order complete, let
Y ⊂ X be an E-bounded, E-closed and E-convex set and let f : Y → Y be an operator
with E-relatively compact value. Then f has at least one fixed point in Y .

Remark 2.24. For another Schauder type theorem in Hausdorff Archimedean vector
lattice, see T. Kawasaki, M. Toyoda, T. Watanabe [14].

In the context of E-Banach spaces, we will prove a nonlinear version of Krasnosel-
skii’s fixed point theorem and we will present an existence result for the solution of a
Fredholm-Volterra type integral equation.

Theorem 2.25. Let (X, ||·|| , E) be an E-Banach space with E order complete and
let Y be a nonempty, E-bounded, E-convex and E-closed subset of X. Assume that
the operators f, g : Y → X satisfy the properties:

(i) f is a nonlinear ϕ-contraction and the operator ψ : E+ → E+ defined by ψ (t) =
t− ϕ (t) satisfies the following relation:

if (ψ(tn)) ↓ 0 as n→ +∞, then (tn) ↓ 0 as n→ +∞.

(ii) g is E-continuous;
(iii) g (Y ) is E-relatively compact and f (x) + g (y) ∈ Y , for any x, y ∈ Y .
Then f + g has a fixed point in Y .

Proof. We show that for any x ∈ Y , the operator ux : Y → Y, ux (y) = f (y) + g (x)
is a nonlinear ϕ-contraction. We have that

||ux (y1)− ux (y2)|| = ||f (y1)− f (y2)|| ≤ ϕ (||y1 − y2||) , for any y1, y2 ∈ Y .

Thus, ux is a nonlinear ϕ-contraction, for each x ∈ Y . By Theorem 2.3, it follows
that for each x ∈ Y , there exists a unique y∗x ∈ Y such that f (y∗x) + g (x) = y∗x. We
define c : Y → Y, c (x) = y∗x. Thus,

c (x) = f [c (x)] + g (x) , for any x ∈ Y .

We prove that c is E-continuous.

Let (xn) be a sequence in Y such that xn
||·||,E−→ x. Then there exists (εn) in E such

that εn ↓ 0 and ||xn − x|| ≤ εn, for any n ∈ N. Since f is a nonlinear ϕ-contraction,
we have that ϕ is increasing. Now, by the properties of ϕ and the following estimation

||f (xn)− f (x)|| ≤ ϕ (||xn − x||) ≤ ϕ (εn) ≤ εn ↓ 0,

we have that f (xn)
||·||,E−→ f (x), when n → ∞. Thus, f is E-continuous. Since g is

E-continuous, for any sequence (xn) in Y such that xn
||·||,E−→ x, there exists (an) in



FIXED POINTS FOR ϕ-CONTRACTIONS IN E-BANACH SPACES 635

E such that an ↓ 0 and ||g(xn)− g(x)|| ≤ an, for any n ∈ N. Now, we prove that the
mapping c defined below is E-continuous. Indeed, we have:

||c (xn)− c (x)|| = ||f [c (xn)] + g (xn)− f [c (x)]− g (x)||
≤ ||f [c (xn)]− f [c (x)]||+ ||g (xn)− g (x)||
≤ ϕ (||c (xn)− c (x)||) + ||g (xn)− g (x)|| ,

we get that

ψ (||c (xn)− c (x)||) ≤ ||g (xn)− g (x)|| ≤ an ↓ 0, when n→ +∞.

By the properties of ψ, we have

||c (xn)− c (x)|| ↓ 0, when n→ +∞. (2)

Since g (Y ) is E-relatively compact, we have that g (Y ) is E-totally bounded and
thus, for any r ∈ E+ with r > 0, there exists Z = {x1, . . . , xn} ⊂ Y such that
g (Y ) ⊂ {z1, . . . , zn} + B̄ (0, ψ (r)) = {g (x1) , . . . , g (xn)} + B̄ (0, ψ (r)), where zi =
g (xi), for any i = 1, 2, . . . , n. Thus, in view of relation (2), we have that c (Y ) ⊂
{c (x1) , . . . , c (xn)}+ B̄ (0, r). Then, the set c (Y ) is E-totally bounded.

Since X is a Banach vector space, we have that c (Y ) is E-relatively compact
and by Theorem 2.23, it follows that there exists x∗ ∈ Y with c (x∗) = x∗, i.e.,
f (x∗) + g (x∗) = x∗ and hence, the theorem is proved. �

It is known that the classical form of Theorem 2.25 has many interesting applica-
tions, see, for example, [7], [32], etc.

Our next purpose is to give an application for our result in an E-Banach space.
Using Theorem 2.25 we can obtain existence results for some integral and differential
equations. For this purpose we also need an extended version of Cantor’s intersection
theorem and of Cesaro’s lemma.

Lemma 2.26. Let (X, d,E) be an E-complete metric space with the property that
for every descending sequence {Fn}n≥1 of nonempty E-closed subsets of X we have

that δ (Fn) −→ 0 as n→∞. Then the intersection
∞
∩

n=1
Fn contains one and only one

point.

Proof. For each positive integer n, let xn be any point in Fn. Then, by the hypothesis,
xn, xn+1, xn+2, . . . all lie in Fn. Given εn > 0 in E with εn ↓ 0, there exists some
integer n0 such that δ (Fn0) < εn. Now, xn0 , xn0+1, xn0+2, . . . all lie in Fn0 . For
m,n ≥ n0, we have that d (xm, xn) ≤ δ (Fn0) < εn. This shows that the sequence
{xn}n≥1 is an E-Cauchy sequence in the E-complete metric space X. So, it is E-
convergent. Let x ∈ X be such that lim

n→∞
xn = x. Now for any given n, we have that

xn, xn+1, . . . ⊂ Fn. In view of this, x = lim
n→∞

xn ∈ F̄n = Fn, since Fn is E-closed.

Thus, x ∈
∞
∩

n=1
Fn. If y ∈

∞
∩

n=1
Fn and y 6= x, then d (y, x) = α > 0. There exists n ∈ N

large enough such that δ (Fn) < α = d (y, x), which ensures that y /∈ Fn. Thus, y
cannot be in

∞
∩

n=1
Fn and hence, the intersection contains only one point. �
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Lemma 2.27. Let (X, d,E) be an E-complete metric space such that E is Archime-
dean and let (xn) be an E-bounded sequence in X. Then, there exists an E-convergent
subsequence (xnk

) in X.

Proof. Since (xn) is E-bounded in X there exists x ∈ X and r ∈ E+ with r > 0 such
that

d (xn, x) ≤ r, for any n ∈ N.

Let a0 := x and consider now the sets B̄
(
a0,

1
2r
)

and B̄ (a0, r) \B
(
a0,

1
2r
)
.

We choose xn1 in the set which contains an infinite number of elements of (xn), let
xn1 ∈ B̄

(
a0,

1
2r
)
. Next, let a1 ∈ ∂B̄

(
a0,

1
22 r
)

such that the set B̄
(
a1,

1
22 r
)

contains
an infinite number of elements of (xn).

We choose xn2 ∈ B̄
(
a1,

1
22 r
)
, n2 > n1 and inductively, let ak ∈ ∂B̄

(
ak−1,

1
2k r
)

such that the set B̄
(
ak,

1
2k r
)

contains an infinite number of elements of (xn).
We choose xnk

∈ B̄
(
ak−1,

1
2k r
)
, nk > nk−1, for any k ∈ N∗. By Lemma 2.26, we

get that there exists a unique l ∈ B̄
(
ak−1,

1
2k r
)
, for any k ∈ N∗.

But xnk
∈ B̄

(
ak−1,

1
2k r
)
, for any k ∈ N∗. Then, since E is Archimedean, we have

that d (xnk
, l) ≤ 1

2k r ↓ 0 as k →∞. Hence, xnk

d,E−→ l as k →∞. �

Theorem 2.28. Let E be an order complete Riesz space, r ∈ E+ with r > 0 and
let I := [0, a] (where a > 0) be an order interval of E. We consider the following
Fredholm-Volterra type integral equation in C (I, E):

x (t) =
∫

I

k (t, s, x (s)) ds+
∫ t

0

l (t, s, x (s)) ds, t ∈ I. (3)

We assume that:

(i) k ∈ C
(
I2 × E,E

)
and l ∈ C

(
I2 × E,E

)
are two o-continuous operators;

(ii) there exists ω ∈ C
(
I2, E+

)
with sup

t∈I

∫
I
ω (t, s) ds ≤ 1, such that

|k (t, s, x)− k (t, s, y)| ≤ ω (t, s)ϕ (|x− y|) , for any t, s ∈ I, x, y ∈ E,

where ϕ : E+ → E+ is an o-comparison operator and the operator ψ : E+ → E+,
defined by ψ (t) = t− ϕ (t) satisfies the following relation:

if (ψ(tn)) ↓ 0 as n→ +∞, then (tn) ↓ 0 as n→ +∞.

(iii) we have that Ml := sup
t∈I

∫ t

0
l (t, s, x (s)) ds ≤ 1

2r and ψ(r) ≥ δ, where δ :=

sup
x∈B̄(0,r)

∣∣∣∣sup
t∈I

∫
I

k (t, s, x (s)) ds
∣∣∣∣ ∈ E+.

Then, the equation (3) has a solution x∗ in B̄ (0, r) ⊂ C (I, E).



FIXED POINTS FOR ϕ-CONTRACTIONS IN E-BANACH SPACES 637

Proof. We define

f, g : B̄ (0, r) → C (I, E) , x 7−→ f (x) , x 7−→ g (x) ,

f (x) (t) :=
∫

I

k (t, s, x (s)) ds, for any t ∈ I,

g (x) (t) :=
∫ t

0

l (t, s, x (s)) ds, for any t ∈ I.

From i), the operators f and g are well defined. Obviously, x∗ is a solution for (3) if
and only if x∗ is a fixed point for f + g. We need to show that the operators f and g
satisfies the assumptions of Theorem 2.25. Let x, y ∈ C (I, E). We have

|f (x) (t)− f (y) (t)| ≤
∫ a

0

|ki (t, s, x (s))− ki (t, s, y (s))| ds

≤
∫ a

0

ω (t, s)ϕ (|x (s)− y (s)|) ds

≤ ϕ (||x− y||∞)
∫

I

ω (t, s) ds.

If we consider the abstract norm ||·||∞ on C (I, E) defined in a similar way with
Example 1.2, i.e.,

||u||∞ := {sup |u (t)| : t ∈ I}
we get that

||f (x)− f (y)||∞ ≤ ϕ (||x− y||∞) .
Thus, f is a nonlinear ϕ-contraction with respect to ||·||∞.

We have to show that g is E-continuous. Since l is o-continuous, it follows imme-
diately that g is E-continuous.

Since X := C (I, E), let us consider Y = B̄ (0, r) ⊂ X. We prove that we can
choose r ∈ E+ with r > 0 such that f (x) ⊂ B̄

(
0, 1

2r
)
, for any x ∈ B̄ (0, r). Since

|f (x) (t)| ≤
∫

I

|k (t, s, x (s))| ds ≤
∫

I

ω (t, s)ϕ (|x (s)|) ds

≤ ϕ (||x||∞)
∫

I

ω (t, s) ds ≤ ϕ (r)

and passing to the norm ||·||∞, we get that

||f (x)||∞ ≤ ϕ (r) , for any x ∈ B̄ (0, r) . (4)

On the other hand, we consider δ := sup
x∈B̄(0,r)

||f (x)||∞ ∈ E+, thus

δ ≤ ϕ (r) . (5)

By iii), we get that
ϕ (r) ≤ r − δ. (6)

Thus, from (5) and (6), we have that δ ≤ 1
2r.

In view of relation (4), it follows that

||f (x)||∞ ≤ δ ≤ 1
2
r, for any x ∈ B̄ (0, r) .
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Clearly,

|g (x) (t)| ≤
∫ t

0

|l (t, s, x (s))| ds ≤Ml ≤
1
2
r

and so,

g (x) ∈ B̄
(

0,
1
2
r

)
, for any x ∈ Y .

Thus, f (Y ) + g (Y ) ⊂ Y , i.e., f (x) + g (y) ∈ Y , for any x, y ∈ Y .
Let (xn) be a sequence in B̄ (0, r). Then, (xn) is E-bounded and so, it has a

subsequence (xnk
) which is E-convergent to a certain y ∈ B̄ (0, r). Then, by the

E-continuity of g, we have that g (xnk
)

d,E−→ g(y) ∈ X. This means that the sequence
(g (xn)) ⊂ g

(
B̄ (0, r)

)
has a subsequence which is E-convergent. Thus, g

(
B̄ (0, r)

)
is

E-sequentially relatively compact and by Proposition 2.15 is E-relatively compact.
Hence, the conclusion follows by Theorem 2.25. �
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