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1. Introduction

Kottman introduced in 1970 the concept of P-convexity in [8]. He proved that every
P-convex space is reflexive and also that P-convexity follows from uniform convexity,
as well as from uniform smoothness. In 2008 Saejung proved in [13] that if a Banach
space X is P-convex then X∗ has uniform normal structure and in particular X∗ has
the fixed point property for nonexpansive mappings (FPP). So far, it seems to be
unknown if P-convex Banach spaces have the FPP.

There are many geometrical conditions related to the FPP. Among these are the
following: Brodskii and Milman introduced in 1948 the concept of normal structure of
a Banach space [2] and Kirk proved in 1965 [7] that every Banach space with normal
structure has the weak fixed point property for nonexpansive mappings (WFPP). Huff
defined in 1980 the uniform Kadec-Klee property [6]. van Dulst and Sims proved in
1981 that every Banach space with the uniform Kadec-Klee property has the WFPP
[14]. Property (Sm) was introduced by Wísnicki in 2001 [15]. He proved that if
X is a superreflexive space and there exists a free ultrafilter U on N such that the
ultrapower {X}U has property (Sm) then X has the FPP. He also introduced in [15]
another property stronger than property (Sm) called property (S). In 2006 in [4]
Garćıa Falset, Llorens-Fuster and Mazcuñán Navarro defined the coefficient MW (X)
and proved that the condition MW (X) > 1 ensures the WFPP of X.

In this paper we show that normal structure, condition MW (X) > 1, property (S)
and the Kadec-Klee property do not follow from P-convexity. We also prove that if
X is a Banach space whose dual space X∗ is P-convex then X has property (S).
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2. P-convex Banach spaces

Throughout this paper (X, ‖·‖) will be a Banach space and when there is no possible
confusion, we simply write X. The unit ball {x ∈ X : ‖x‖ ≤ 1} and the unit sphere
{x ∈ X : ‖x‖ = 1} of X are denoted, respectively, by BX and SX . The topological
dual space of X is denoted by X∗.

In [8], Kottman defined the concept of a P-convex Banach space as follows.

Definition 2.1. Let X be a Banach space. For each n ∈ N let

P (n, X) = sup{r > 0 : there exist n disjoint balls of radius r in BX}.

In the same paper it is shown that 1
3 ≤ P (n, X) ≤ 1

2 for each n ≥ 2.

Definition 2.2. X is said to be P-convex if P (n, X) < 1
2 for some n ∈ N.

Recall that the characteristic of convexity of X is defined by

ε0(X) = sup
{
ε ∈ [0, 2] : δX(ε) = 0

}
,

where δX(ε) = inf
{
1 − 1

2‖x − y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε
}

is the Clarkson
modulus of convexity of X.

Among other interesting results, Kottman [8] proved that P-convexity is a sufficient
condition for reflexivity. Furthermore, for a uniformly convex space (ε0(X) = 0) one
has P (3, X) < 1

2 and hence, it is P-convex.
The following useful characterization of a P-convex space is also found in [8].

Lemma 2.3. Let X be a Banach space and n ∈ N. Then P (n, X) < 1
2 if and only if

there exists ε > 0 such that for any x1, x2, ..., xn ∈ SX

min{‖xi − xj‖ : 1 ≤ i, j ≤ n, i 6= j} ≤ 2− ε. (1)

That is, X is P-convex if and only if X satisfies condition (1) for some n ∈ N and
some ε > 0.

Definition 2.4. Given n ∈ N and ε > 0 we say that X is P (ε, n)-convex if X
satisfies (1). For each n ∈ N, X is said to be P (n)-convex if it is P (ε, n)-convex for
some ε > 0.

Recently, in [11] the author obtained the following result.

Theorem 2.5. Let X be a Banach space which satisfies ε0(X) < 1. Then X is
P(3)-convex.

3. P-convexity and properties implying the WFPP

In this section we will separate P-convexity from some geometric conditions on a
Banach space sufficient for the FPP.
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3.1. P-convexity and normal structure. Brodskii and Milman introduced in 1948
[2] the concept of normal structure.

Let C be a bounded subset of a Banach space X. For each x ∈ C we define the
radius of C relative to x by

rx(C) = sup {‖ x− y ‖ : y ∈ C}.
Obviously rx(C) ≤ diam(C). We say that x ∈ C is a diametral point of C if the
equality rx(C) = diam(C) holds, otherwise we say that x is a nondiametral point of
C and C is called diametral if every point in C is diametral.

Definition 3.1. A bounded and convex subset C of a Banach space has normal struc-
ture if each bounded, convex subset S of C with diam(S) > 0 contains a nondiametral
point.

There is another property stronger than normal structure called uniform normal
structure defined by Bynum in 1980 [3]. For each S ⊂ X we define

r(S) = inf{rx(S) : x ∈ S}.

Definition 3.2. A nonempty, bounded and convex set C in X is said to have uniform
normal structure if there exists a constant k ∈ (0, 1) such that

r(S) ≤ k diam(S)

for any closed convex subset S ⊂ C. The space X is said to have uniform normal
structure if each of its nonempty convex subsets has this property.

Maluta proved in 1984 (see [9]) that every Banach space with uniform normal
structure is reflexive. The normal structure has been widely studied in the fixed
point theory for nonexpansive mappings since Kirk proved in 1965 that every Banach
space with normal structure has the WFPP [7]. In 2008 Saejung proved in [13] that
if a Banach space X is P-convex then X∗ has uniform normal structure.

In the next example we present a P-convex space which fails to have normal struc-
ture. To do that, we will use the following lemma proved by Brodskii and Milman in
[2].

Lemma 3.3. A Banach space X does not have normal structure if and only if there
exists a bounded sequence {xn} of elements of X such that

lim
k→∞

d
(
xk+1, conv{xi}k

i=1

)
= diam{xn}n.

Such a sequence is called a diametral sequence. The following example shows that
normal structure does not follow from the P-convexity.

Example 3.4. There is a P-convex space lacking normal structure.
Consider the space X where X is l2 with the norm

‖x‖ = max
{

sup
i 6=j

{|xi + xj |}, ‖x‖2
}

where ‖ · ‖2 is the l2-norm. Naidu and Sastry proved in [12], example 3.6, that X is
P-convex. We will see that X does not have normal structure. Define the sequence
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{xn}n as xk = 1
2 (e2k−1 + e2k) for each k, where {en}n is the canonical basis in l2. It

is easy to see that {xn}n ⊂ SX and ‖xi − xj‖ = 1 for all i 6= j. Let α1, α2, ..., αn be
such that

∑n
i=1 αi = 1 and αi ≥ 0 for each i. We have that∥∥∥∥∥xn+1 −

n∑
i=1

αixi

∥∥∥∥∥ = max
{

1,

√
2

2

(
1 +

n∑
i=1

α2
i

)1/2 }
= 1.

Then lim
k→∞

d
(
xk+1, conv{xi}k

i=1

)
= diam{xn}n, that is, {xn}n is a diametral sequence.

Consecuently by Lemma 3.3 X does not have normal structure.

However we have that X has the FPP. To see that we recall that the Banach-Mazur
distance between two isomorphic Banach spaces X and Y is

d(X, Y ) = inf
{
‖U‖‖U−1‖ | U : X → Y is a linear isomorphism

}
.

Mazcuñán-Navarro proved in 2005 [10] the following result on stability of the FPP.

Theorem 3.5. Let H be a Hilbert space. If X is a Banach space such that

d(X, H) <

√
5 +

√
17

2
,

then X has the FPP.

Since ‖x‖2 ≤ ‖x‖ ≤
√

2‖x‖2 we get by Theorem 3.5 that X has the FPP.

3.2. P-convexity and coefficient MW (X). In 2006 in [4] Garćıa Falset, Llorens-
Fuster and Mazcuñán Navarro defined for each a > 0 the parameter

RW (a,X)= sup
{
(lim inf ‖xn+x‖)∧(lim inf ‖xn−x‖) : {xn} ⊂ BX , xn ⇀ 0, ‖x‖ ≤ a

}
,

and the coefficient

MW (X) = sup
{

1 + a

RW (a,X)
: a > 0

}
.

We have that max{a, 1} ≤ RW (a,X) ≤ 1 + a for each a > 0 and 1 ≤ MW (X) ≤ 2.
They proved that if a Banach space X satisfies MW (X) > 1 then X has the WFPP.
In particular, a uniformly nonsquare Banach space (ε0(X) < 2) has this property.

The next example shows that P-convexity does not imply MW (X) > 1.

Example 3.6. There is a P-convex Banach space X satisfying MW (X) = 1.
Consider the space X = (l2, ‖ · ‖) obtained by renorming the space l2 as follows.

For each x = (xn)n ∈ l2 we define

‖x‖ = |x1|+ ‖(x2, x3, ...)‖2
where ‖ · ‖2 is the l2-norm. Since l2 is uniformly convex, it is also P(ε,3)-convex for
some ε > 0. Let N ∈ N such that N ε

2 ≥ 1. We will verify that X is P
(

ε
2 , 2N + 1

)
-

convex. Let x(1), x(2), ..., x(2N+1) ∈ SX , x(m) = (x(m)
1 , x

(m)
2 , ...) for each 1 ≤ m ≤

2N + 1. From

[0, 1] ⊂
[
0, N

ε

2
]

=
N⋃

k=1

[
(k − 1)

ε

2
, k

ε

2

]



P-CONVEXITY AND PROPERTIES IMPLYING THE FIXED POINT PROPERTY 597

we have that there are different 1 ≤ i, j, k ≤ 2N + 1 so that

max
{
|xi

1 − xj
1|, |x

j
1 − xk

1 |, |xi
1 − xk

1 |
}
≤ ε

2
.

On the other hand, define y(m) = (x(m)
2 , x

(m)
3 , ...), 1 ≤ m ≤ 2N + 1. It is clear that

y(m) ∈ Bl2 for every 1 ≤ m ≤ 2N + 1. Since l2 is P(ε,3)-convex the next inequality
holds

min
{
‖y(i) − y(j)‖2, ‖y(j) − y(k)‖2, ‖y(i) − y(k)‖2

}
≤ 2− ε

and thus
min

{
‖x(i) − x(j)‖, ‖x(j) − x(k)‖, ‖x(i) − x(k)‖

}
≤ 2− ε

2
.

Then X is P
(

ε
2 , 2N + 1

)
-convex. Now consider the canonical basis {en}n in l2. It is

clear that en ∈ SX for each n and en ⇀ 0. Furthermore for every a > 0 we have that
‖ae1 + ei‖ = 1 + a and ‖ae1 − ei‖ = 1 + a for all i > 1. Then RW (a,X) = 1 + a for
every a > 0 and consecuently MW (X) = 1.

It is not difficult to see that ‖x‖2 ≤ ‖x‖ ≤
√

2‖x‖2 and by Theorem 3.5 we have
that X has the FPP.

3.3. P-convexity and property (S). Before talking about property (S) we recall
the definition and some results regarding ultrapowers which can be found in [1].

Let U be a nontrivial ultrafilter on N and let X be a Banach space. A sequence
{xn} in X converges to x with respect to U, denoted by lim

U
xi = x, if for each

neighborhood U of x, {i ∈ N : xi ∈ U} ∈ U. Let l∞(X) be the subspace of the
product space

∏
n∈N X equipped with the norm ‖{xn}‖ = supn∈N ‖xn‖ < ∞, and let

NU =
{
{xi} ∈ l∞(X) : lim

U
||xi|| = 0

}
.

The ultrapower of X, denoted by X̃, is the quotient space l∞(X)/NU equipped with
the quotient norm. Write {xn}U to denote the elements of the ultrapower. It follows
from the definition of the quotient norm that ‖{xn}U‖ = lim

U
‖xn‖. We will write x̃

instead of {xn}U unless we need to specify the ultrafilter we are talking about. Note
that X can be embedded into X̃ isometrically.

In [15] Wísnicki defined the following property of Banach spaces which he called
property (S).

Definition 3.7. We say that a Banach space X has property (S) if for every A ⊂ SX

with diam(A) ≤ 1 there exists a functional F ∈ X∗ such that F (x) > 0 for all x ∈ A.

He showed that there exist superreflexive spaces which do not possess this prop-
erty. He defined another property slightly weaker than property (S) and he called it
property (Sm).

Definition 3.8. A closed set A is said to be metrically convex if for every x, y ∈ A
there exists z ∈ A such that

‖x− z‖ = ‖y − z‖ =
‖x− y‖

2
.
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We say that a Banach space X has property (Sm) if for every metrically convex
A ⊂ X with diam(A) ≤ 1 there exists a functional F ∈ X∗ such that F (x) > 0 for
all x ∈ A.

Moreover Wísnicki in [15] proved the next theorem.

Theorem 3.9. If X is a superreflexive space and there exists a free ultrafilter U on
N such that the ultrapower {X}U has property (Sm) then X has the FPP.

He also proved that every separable space, every strictly convex space and every
Banach space X satisfying ε0(X) < 1 has property (S). We will show that P-convexity
does not necessarily imply property (S).

Example 3.10. There exists a P-convex Banach space lacking property (S).
Consider the space X where X is l2(R) with the equivalent norm

‖x‖ = max
{

sup
α6=β

{|xα + xβ |}, ‖x‖2
}

and ‖·‖2 is the l2-norm. Because for each x = {xα}α∈R ∈ l2(R) we have that all except
possibly a countable number of xα’s are equal to zero, we can prove as in [12], example
3.6, that X is P-convex. We will see that X lacks property (S). For each α, β ∈ R,
α < β, we define the element xα,β = 1

2 (eα + eβ), where {eα}α is the canonical basis
in l2(R). Let A = {xα,β : α, β ∈ R, α < β}. Clearly A ⊂ SX . We will verify that
diam(A) = 1. Indeed, let α, β, γ, δ ∈ R, α < β, γ < δ. If α, β, γ, δ ∈ R are all different
then ‖xα,β − xγ,δ‖ = 1. Otherwise, only two of them can be equal. In this case we
have that ‖xα,β − xγ,δ‖ =

√
2

2 and so diam(A) = 1. Finally let y ∈
(
l2(R)

)∗ = l2(R),
y = {yα}α∈R. Choosing α, β ∈ R, α < β, such that yα = yβ = 0 and considering
xα,β ∈ A we get that y(xα,β) = 0 and thus X does not have property (S).

By Theorem 3.5 we have that X has the FPP because ‖x‖2 ≤ ‖x‖ ≤
√

2‖x‖2.
Now we will prove that if X is a Banach space whose dual space X∗ is P-convex

then X has property (S). In order to prove it we need the following lemma which is
a slight modification of Lemma 4.6 from [15].

Lemma 3.11. Let X be a reflexive space and suppose there exists A ⊂ SX with
diam(A) ≤ 1 which can not be separated from zero, that is, for each F ∈ X∗ there
exists x ∈ A such that F (x) = 0. Then for every ε > 0 there exist sequences {xn}n ⊂
A and {fn}n ⊂ SX∗ so that fi(xi) = 1 and 0 ≤ fi(xj) < ε for i 6= j.

Proof. In Lemma 4.6 from [15], Wísnicki proved that if for each x ∈ A we take a
supporting functional fx ∈ SX∗ with fx(x) = 1 then, there exists y ∈ Āw such that
fx(y) = 0 for all x ∈ A, where Āw denotes the weak closure of A. Let ε > 0.
We choose a sequence {xn}n ⊂ A such that xn ⇀ y. For each n denote fxn

= fn.
Because BX∗ is weakly compact there exists a subsequence of {fn}n, which we denote
again as {fn}n, such that fn ⇀ f ∈ BX∗ . In particular f(y) = 0. Since xn ⇀ y,
f(y) = fn(y) = 0 for each n and fn ⇀ f , there exists an integer k1 > 1 such that
|f1(xk − y)| = |f1(xk)| < ε, |f(xk − y)| = |f(xk)| < ε

2 and |(fk − f)(x1)| < ε
2 for

each k > k1. Similarly there exists an integer k2 > k1 such that |fk1(xk)| < ε,



P-CONVEXITY AND PROPERTIES IMPLYING THE FIXED POINT PROPERTY 599

|f(xk)| < ε
2 and |(fk − f)(xk1)| < ε

2 for every k > k2. Proceeding inductively
we find an increasing subsequence of natural numbers {ki}i so that |fki

(xkj
)| < ε,

|f(xki
)| < ε

2 and |(fkj
− f)(xki

)| < ε
2 for each 1 ≤ i < j. By the last two inequalities

we get |fkj
(xki

)| < |f(xki
)|+ ε

2 < ε for every 1 ≤ i < j. Finally we note that for i 6= j
we have that 1 − fj(xi) = fj(xj − xi) ≤ ‖xj − xi‖ ≤ 1 and hence fj(xi) ≥ 0. From
above we obtain that fki(xki) = 1 and 0 ≤ fki(xkj ) < ε for every i 6= j. �

We also need the next result which is proved in [11].

Proposition 3.12. Let X be a Banach space. We have that X∗ is P(n)-convex
if and only if there exists ε > 0 such that for each f1, f2, ..., fn ∈ SX∗ there exist
1 ≤ i, j ≤ n, i 6= j, so that

S(fi, −fj , ε) = ∅,

where for each f, g ∈ X∗ we define

S(f, g, δ) =
{
x ∈ BX : f(x) ≥ 1− δ, g(x) ≥ 1− δ

}
.

Proposition 3.13. If X is a Banach space whose dual space X∗ is P-convex then X
has property (S).

Proof. Suppose that X∗ is P-convex but X does not satisfy property (S). Then there
exists A ⊂ SX with diam(A) ≤ 1 which can not be separated from zero. Let ε > 0 be
as in Proposition 3.12. By Lemma 3.11 there exist sequences {xn}n ⊂ A and {fn}n ⊂
SX∗ such that fi(xi) = 1 and 0 ≤ fi(xj) < ε for i 6= j. Since fi(xi − xj) > 1− ε and
xi−xj ∈ BX for i 6= j we have that xi−xj ∈ S(fi, −fj , ε), i 6= j, and by Proposition
3.12 the above contradicts that X∗ is P-convex. �

Example 3.10 and Proposition 3.13 show that property (S) is not autodual. In [11]
it is proved that for every Banach space X we have that X is P(n)-convex if and only
if X̃ is P(n)-convex. Hence we obtain the next corollary:

Corollary 3.14. Let X be a Banach space and n ∈ N. Then X∗ is P(n)-convex if
and only if (̃X∗) is P(n)-convex.

In 2008 Saejung proved in [13] that every Banach space X whose dual space X∗ is
P-convex has uniform normal structure and in particular X has the FPP. This fact
can also be proved from our results.

Corollary 3.15. Let X be a Banach space whose dual space X∗ is P-convex. Then
X has the FPP.

Proof. By Corollary 3.14 we have that (̃X∗) is P-convex. Since X is reflexive, (̃X∗) =(
X̃

)∗ and by Proposition 3.13 we get that X̃ has property (S) and in particular it
has property (Sm). Thus, by Theorem 3.9 we obtain that X has the FPP. �
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3.4. P-convexity and Kadec-Klee property.

Definition 3.16. We say that X has the Kadec-Klee property if every weakly con-
vergent sequence contained in the unit sphere of X is norm convergent.

X has the uniform Kadec-Klee property if for every ε > 0 there exists 0 < δ < 1
such that if {xn} is a sequence contained in the unit ball of X so that inf

{
‖xn−xm‖ :

n 6= m
}

> ε and {xn} converges weakly to x then ‖x‖ ≤ δ.

Clearly every Banach space with the uniform Kadec-Klee property has the Kadec-
Klee property. The uniform Kadec-Klee property was introduced by Huff [6]. van
Dulst and Sims proved that every Banach space with the uniform Kadec-Klee property
has the WFPP [14]. Now we will give a example of a P-convex space lacking the
Kadec-Klee property.

Example 3.17. There is a P-convex Banach space lacking the Kadec-Klee property.
Indeed, let λ ∈

(
1,
√

5
2

)
and consider the space Xλ = (l2, ‖ · ‖λ), where

‖x‖λ = max
{
‖x‖∞ ,

1
λ
‖x‖2

}
.

It is known that ε0(Xλ) = 2
√

λ2 − 1 < 1 (see [5]) and by Theorem 2.5 Xλ is P(3)-
convex. On the other hand, we define x = e1, xn = e1 + c en for each n ∈ N,
where {en}n is the canonical basis in l2 and c =

√
λ2 − 1. It is easy to see that

{xn}n≥2 ⊂ SX , x ∈ SX , {xn} converges weakly to x and ‖xn − x‖ = c > 0 for all n.
Thus Xλ does not have the Kadec-Klee property and consequently it does not have
uniform Kadec-Klee property.

It is clear that ‖x‖λ ≤ ‖x‖2 ≤
√

5
2 ‖x‖λ, and thus, by Theorem 3.5 X has the FPP.

These examples show that we need other properties than those mentioned here, in
order to determine if P-convex Banach spaces have the FPP.
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