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1. Introduction and preliminaries

Let A and B be two non-empty subsets of a metric space (X, d) and T : A ∪B →
A ∪ B be a mapping. A self-mapping T is called a cyclic map if T (A) ⊆ B and
T (B) ⊆ A. We denote the set of all fixed points of T {x∗ ∈ A ∪ B : x∗ = Tx∗}, by
Fix(T ).

A point x ∈ A∪B is called a best proximity point of T if d(x, Tx) = d(A,B) where
d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. It is clear that a fixed point z ∈ A ∪ B of a
cyclic map T is a best proximity point of T if the sets A and B have a non-empty
intersection.

The notions of cyclic contraction and best proximity points were introduced and
studied by Kirk-Srinavasan-Veeramani in [6]. Recently, many authors have focused
on these topics, (see for instance [2, 3, 8, 1, 9, 4, 10, 5, 7] and the reference therein).

In 2003, Kirk-Srinavasan-Veeramani [6] proved the following fixed point theorem
as a generalization of Banach contraction principle:
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Theorem 1.1. Let A and B be two non-empty closed subsets of a complete metric
space (X, d). Suppose that T : A ∪ B → A ∪ B is a map satisfying T (A) ⊆ B and
T (B) ⊆ A and there exists k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all x ∈ A
and y ∈ B. Then, T has a unique fixed point in A ∩B.

In this manuscript, new cyclic orbital contractions called KT -types are defined and
some related best proximity point theorems are given about them. Also, the notion
of KT -type cyclic orbital Meir-Keeler contraction is defined and some fixed point
theorems are proved.

2. KT-types cyclic orbital contractions

Definition 2.1. (See [4]) Let A and B be non-empty subsets of a metric space (X, d).
A cyclic map T : A ∪B → A ∪B is said to be a cyclic orbital contraction if for some
x ∈ A there exists a kx ∈ (0, 1) such that

d(T 2nx, Ty) ≤ kxd(T 2n−1x, y) (2.1)

for all n ∈ IN and y ∈ A.

We generalize the definition above as follows:

Definition 2.2. Let A and B be non-empty subsets of a metric space (X, d) and
T : A ∪ B → A ∪ B be a cyclic map. If there is x ∈ A and there exists a kx ∈ (0, 1

2 )
such that either

d(T 2nx, Ty) ≤ kx[d(T 2n−1x, T 2n−2x) + d(Ty, y)] or (2.2)

d(T 2nx, Ty) ≤ kx[d(T 2n−1x, y) + d(Ty, y)] or (2.3)
d(T 2nx, Ty) ≤ kx[d(T 2n−1x, y) + d(T 2n−2x, Ty)] (2.4)

holds for all n ∈ IN and y ∈ A, then T is said to be a cyclic orbital contraction of type
KT1, KT2, KT3, respectively.

Theorem 2.3. (See [4]) Let A and B be two non-empty closed subsets of a complete
metric space (X, d) and T : A ∪ B → A ∪ B be a cyclic orbital contraction. Then
A ∩B is non-empty and T has a unique fixed point.

Inspired by Theorem 2.3 we will prove now the following theorem.

Theorem 2.4. Let A and B be non-empty closed subsets of a complete metric space
(X, d) and T : A ∪B → A ∪B be a KT1-type cyclic orbital contraction. Then A ∩B
is non-empty and T has a unique fixed point.

Proof. Assume that there exists x ∈ A satisfying (2.2). Then taking x instead of y,
we have

d(T 2x, Tx) ≤ kx[d(Tx, x) + d(Tx, x)]
and so

d(T 2x, Tx) ≤ txd(Tx, x), where tx = 2kx ∈ (0, 1).
Similarly we have

d(T 3x, T 2x) = d(T 2( Tx︸︷︷︸
u

), T ( Tx︸︷︷︸
u

)) ≤ tud(Tu, u) ≤ (tu)(tx)d(Tx, x),
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where tu ∈ (0, 1) and

d(T 4x, T 3x) = d(T 3( Tx︸︷︷︸
u

), T 2( Tx︸︷︷︸
u

)) ≤ (tu)(tu)d(Tu, u) ≤ (tu)2(tx)d(Tx, x).

Therefore for any n ∈ IN, we have

d(Tn+1x, Tnx) ≤ (tu)n−1(tx)d(Tx, x), tx ∈ (0, 1), n ∈ IN.

Consequently,
∞∑

n=1

d(Tn+1x, Tnx) ≤
∞∑

n=1

(tu)n−1(tx).d(Tx, x) < ∞, tx ∈ (0, 1), n ∈ IN.

Thus, {Tnx} is a Cauchy sequence. Hence, there exists a z ∈ A ∪ B such that
Tnx → z. Notice that {T 2nx} is a sequence in A and {T 2n−1x} is a sequence in
B. Both sequences tend to the same limit z. Since A and B are closed, we conclude
z ∈ A ∩B. Hence, A ∩B 6= ∅.
We claim that Tz = z. Since d(T 2nx, Tz) ≤ kx.[d(T 2n−1x, T 2n−2x) + d(Tz, z)], then
taking the limit we obtain d(z, Tz) ≤ kx.[d(z, z) + d(Tz, z)]. Using that kx ∈ (0, 1

2 ),
we get d(Tz, z) = 0 and thus Tz = z.

To prove the uniqueness of z, assume that there exists w ∈ A∪B such that z 6= w
and Tw = w. Since T is a cyclic map, we get w ∈ A ∩B. So, d(z, w) = d(Tz, Tw) =
d(T (Tz), Tw) = d(T 2z, Tw) ≤ kx[d(Tz, z) + d(Tw,w)] = 0, which concludes that
z = w. Hence z is the unique fixed point of T . �

We will present now a data dependence result for the fixed points of a KT1-type
cyclic orbital contraction. Usually, the data dependence phenomena holds if for two
”very closed” operators, the fixed points of it are not ”too far” one from the other.
In our case, a term depending on the ”special” point x ∈ X appears.

Theorem 2.5. Let A and B be non-empty closed subsets of a complete metric space
(X, d) and T, S : A ∪B → A ∪B such that:

(i) T is a KT1-type cyclic orbital contraction (with constant k∗x);
(ii) there exists x∗S ∈ Fix(S) ∩A;
(iii) there exist η > 0 such that d(Tx, Sx) ≤ η, for each x ∈ A ∩B.

Then d(x∗T , x∗S) ≤ 2k∗xd(Tx, x) + (1 + k∗x)η, where x∗T is the unique fixed point of T .

Proof. By Theorem 2.4 we know that Fix(T ) = {x∗T }. Since there exists x ∈ A
satisfying (2.2), we have:

d(x∗T , x∗S) ≤ d(T 2x, x∗T ) + d(T 2x, x∗S) = d(T 2x, Tx∗T ) + d(T 2x, x∗S)
≤ d(T 2x, Tx∗T ) + d(T 2x, Tx∗S) + d(Tx∗S , S(x∗S))
≤ k∗x (d(Tx, x) + d(Tx∗T , x∗T )) + k∗x (d(Tx, x) + d(Tx∗S , x∗S)) + η
= 2k∗xd(Tx, x) + (1 + k∗x)η.

Thus
d(x∗T , x∗S) ≤ 2k∗xd(Tx, x) + (1 + k∗x)η.

�
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Notice that, if x ∈ X is a fixed point for T , then we obtain the classical data
dependence of the fixed points, i.e.,

d(x∗T , x∗S) ≤ (1 + k∗x)η.

We present now a well-posedness result for the fixed point problem related to a KT1-
type cyclic orbital contraction. Again, a term involving d(Tx, x) (where x ∈ X is the
special point from the definition of a KT1 mapping) appears.

Theorem 2.6. Let A and B be non-empty closed subsets of a complete metric space
(X, d) and T : A ∪B → A ∪B such that:

(i) T is a KT1-type cyclic orbital contraction (with some constant k∗x, where
x ∈ X);

(ii) there exists a sequence {xn}n∈N ⊂ A such that d(xn, Txn) → 0 as n → +∞.
Then d(xn, x∗T ) → 2k∗xd(Tx, x) as n → +∞ (where x∗T is the unique fixed point of T ).

Proof. Let {xn} ⊂ A be such that d(xn, Txn) → 0 as n → +∞. Consider again the
point x ∈ A satisfying (2.2). Then we have:

d(xn, x∗T ) ≤ d(xn, Txn) + d(Txn, T 2x) + d(T 2x, x∗T )

= d(xn, Txn) + d(T 2x, Txn) + d(T 2x, Tx∗T )

≤ d(xn, Txn) + k∗x (d(Tx, x) + d(Txn, xn)) + k∗x (d(Tx, x) + d(Tx∗T , x∗T ))

= (1 + k∗x)d(xn, Txn) + 2k∗xd(Tx, x) → 2k∗xd(Tx, x) as n → +∞.

�

Note that, as before, if x ∈ X is a fixed point for T , then we obtain the usual
well-posedness results for the fixed point of T , i.e., d(xn, x∗T ) → 0 as n → +∞.

Remark 2.7. If T : A∪B → A∪B is a KT2-type cyclic orbital contraction or a KT3-
type cyclic orbital contraction, then similar existence, uniqueness, data dependence
and well-posedness results for the fixed point problem can be analogously obtained.

Let us illustrate the application of Theorem 2.4.

Example 2.8. Consider the usual metric space (IR, d), where d(x, y) = |x − y|. Let
A = [−1, 0] and B = [0, 1] be subsets of IR. Define

Tx =
{
−x

2 if x ∈ A
−x if x ∈ B

Then, it is clear that T (A) ⊆ B and T (B) ⊆ A. On the other hand, T 2nx = − x
2n and

T 2n−1x = x
2n , for every x ∈ A.

Therefore, for every y ∈ [0, 1], T y = −y. Thus, d(T 2nx, Ty) = | − x
2n + y| and

d(T 2n−1x, y) = | x
2n−1 − y| = d(T 2nx, Ty). There is no kx ∈ (0, 1) in such a way that

T is a cyclic orbital contraction and thus Theorem 2.3 applies. On the other hand,
we have d(T 2n−1x, x) = | x

2n + x|, d(T 2n−1x, y) = | x
2n + y|, d(Ty, y) = 2|y|, therefore

the KTi-type cyclic orbital contraction conditions (i = 1, 2, 3) are satisfied for some
x ∈ A and kx ∈ (0, 1

2 ). Therefore by Theorem 2.4, T has a unique fixed point, which
is x = 0.
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Corollary 2.9. Let T be a self map on a complete metric space (X, d). If for some
x ∈ X, there exists a kx ∈ (0, 1

2 ) satisfying one of the following conditions

d(T 2nx, Ty) ≤ kx[d(T 2n−1x, T 2n−2x) + d(Ty, y)], n ∈ IN; y ∈ X (2.5)
d(T 2nx, Ty) ≤ kx[d(T 2n−1x, y) + d(Ty, y)], n ∈ IN; y ∈ X (2.6)

d(T 2nx, Ty) ≤ kx[d(T 2n−1x, y) + d(T 2n−2x, Ty)];n ∈ IN; y ∈ X (2.7)

then, T has a unique fixed point.

Remark 2.10. Notice that the statement (2.1) in Definition 2.1 could not be gener-
alized to the following condition:

d(T 2nx, Ty) ≤ kx[d(T 2nx, y) + d(Ty, x)];n ∈ IN; y ∈ A (2.8)

since both T 2nx and y lies in A, the statement (2.8) fails to be cyclic. To avoid such
cases, throughout this manuscript we define and use the notion of ”opposite parity”
as follows:

p, q ∈ IN are opposite parity if either T px ∈ A, T qx ∈ B or T px ∈ B, T qx ∈
A holds.

3. Cyclic Meir-Keeler Contractions

Definition 3.1. (See [4]) Let (X, d) be a metric space, and A and B be non-empty
subsets of X. Assume that T : A ∪ B → A ∪ B is a cyclic map such that, for some
x ∈ A, and for each ε > 0, there exists a δ > 0 such that

d(T 2n−1x, y) < d(A,B) + ε + δ implies d(T 2nx, Ty) < d(A,B) + ε, n ∈ IN, y ∈ A.
(3.1)

Then T is said to be a cyclic orbital Meir-Keeler contraction.

Definition 3.2. Let (X, d) be a metric space, and A and B be two non-empty subsets
of X. Assume that T : A ∪ B → A ∪ B is a cyclic map such that, for some x ∈ A,
and for each ε > 0, there exists a δ > 0 such that

K(T 2n−1x, y) < d(A,B) + ε + δ
implies d(T 2nx, Ty) < d(A,B) + ε, n ∈ IN, y ∈ A

(3.2)

where K(T 2n−1x, y) = 1
2 [d(T 2nx, T 2n−1x) + d(Ty, y)]. Then T is said to be a KT1-

type cyclic orbital Meir-Keeler contraction.

Proposition 3.3. Let A and B be two non-empty and closed subsets of a metric space
X. Suppose T : A ∪B → A ∪B is a KT1-type cyclic orbital Meir-Keeler contraction.
If x ∈ A satisfies condition (3.2) then d(Tn+1x, Tnx) → d(A,B), as n →∞.

Proof. Suppose T is KT1-type cyclic orbital Meir-Keeler contraction. Take x ∈ A for
which (3.2) is satisfied. Since either n or n+1 is even, then we have 1

2 [d(Tn+1x, Tnx)+
d(Tnx, Tn−1x)] ≥ d(A,B). Consider the case

1
2
[d(Tn+1x, Tnx) + d(Tnx, Tn−1x)] = d(A,B).

Then due to (3.2) we have

d(Tn+1x, Tnx) < d(A,B) + ε
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which is equivalent to

d(Tn+1x, Tnx) <
1
2
[d(Tn+1x, Tnx) + d(Tnx, Tn−1x)] + ε.

Thus we have
d(Tn+1x, Tnx) ≤ d(Tnx, Tn−1x), as ε → 0.

Now, consider the other case:

1
2
[d(Tn+1x, Tnx) + d(Tnx, Tn−1x)] > d(A,B).

Set ε1 = 1
2 [d(Tn+1x, Tnx) + d(Tnx, Tn−1x)]− d(A,B) > 0. Due to (3.2), for this ε1,

there exists a δ such that

d(Tn+1x, Tnx) < d(A,B) + ε1 =
1
2
[d(Tn+1x, Tnx) + d(Tnx, Tn−1x)].

Hence, d(Tn+1x, Tnx) ≤ d(Tnx, Tn−1x) for all n ∈ IN. Let dn = d(Tn+1x, Tnx).
Clearly {dn} is a non-increasing sequence which is bounded below by d(A,B). There-
fore {dn} converges to some d with d ≥ d(A,B). We assert that d = d(A,B). Suppose
not, that is, d > d(A,B). Set ε = d− d(A,B) > 0. Thus, there exists a δ > 0 which
satisfies (3.2). Regarding {d(Tn+1x, Tnx)} → d, there exist a n0 ∈ IN such that

d ≤ 1
2
[d(Tn+2x, Tn+1x) + d(Tn+1x, Tnx)] < s + δ = ε + d(A,B) + δ, ∀n ≥ n0.

Thus,
d(Tn+2x, Tn+1x) < d(A,B) + ε = s, ∀n ≥ n0

which is a contradiction. Hence d = d(A,B). �

Proposition 3.4. Let A and B be two non-empty and closed subsets of a metric
space X and T : A∪B → A∪B is a KT1-type cyclic orbital Meir-Keeler contraction.
Suppose d(A,B) = 0. Then, for each ε > 0, there exist n1 ∈ IN and δ > 0 such that

d(T px, T qx) < ε + δ implies that d(T p+1x, T q+1x) < ε (3.3)

with p, q ≥ n1.

Proof. Take x ∈ X for which (3.2) is satisfied. Since T is a KT1-type cyclic orbital
Meir-Keeler contraction, for a given ε > 0, there exists δ > 0 satisfies (3.2). That is,

1
2 [d(T 2nx, T 2n−1x) + d(Ty, y)] < ε + δ
implies d(T 2nx, Ty) < ε, n ∈ IN, y ∈ A

(3.4)

Regarding d(A,B) = 0 and Proposition 3.3, one can choose n1 ∈ IN in a way that

d(Tnx, Tn+1x) <
ε + δ

2
, for each n ≥ n1. (3.5)

We shall show that d(T px, T qx) < ε + δ implies that d(T p+1x, T q+1x) < ε. Fix
n ≥ n1. Take p, q ∈ IN which are opposite parity with p, q ≥ n1. Suppose that
d(T px, T qx) < ε + δ. Without loss of generality we may assume T px ∈ A and
T qx ∈ B with p = 2n and q = 2m − 1. Otherwise, revise the indices respectively.
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Thus we have d(T px, T qx) = d(T 2nx, T 2m−1x) < ε + δ, for m ≥ n. Then, regarding
(3.5) we get

1
2
[d(T 2mx, T 2m−1x) + d(T 2n+1x, T 2nx)] ≤ ε + δ

2
+

ε + δ

2
< ε + δ. (3.6)

Consider (3.4) under the assumption y = T 2nx, the inequality (3.6) yields that

d(T 2n+1x, T 2mx) = d(T p+1x, T q+1x) < ε.

Thus, we observe that for a given ε > 0, there exist n1 ∈ IN and a δ > 0 such that

d(T px, T qx) < ε + δ implies that d(T p+1x, T q+1x) < ε (3.7)

where p and q are opposite parity, with p, q ≥ n1. �

Lemma 3.5. Let X be a complete metric space, A and B non-empty, closed subsets
of X such that d(A,B) = 0. Suppose T : A∪B → A∪B be a KT1-type cyclic orbital
Meir-Keeler contraction and d(A,B) = 0. Then

d(T 2nx, Ty) < K(T 2n−1x, y) if T 2n−1x 6= y. (3.8)

Proof. To get (3.8), it is sufficient to show that (3.2) is equivalent to the following
condition: For each ε > 0 there exists δ such that

ε ≤ K(T 2n−1x, y) < ε + δ
implies d(T 2nx, Ty) < ε, n ∈ IN, y ∈ A

(3.9)

where K(T 2n−1x, y) = 1
2 [d(T 2nx, T 2n−1x) + d(Ty, y)]. It is clear that (3.2) implies

(3.9). For the converse, suppose (3.9) holds. Fix T 2n−1x, y ∈ A ∪ B and ε > 0. If
K(T 2n−1x, y) < ε, since (3.9) we have d(T 2nx, Ty) ≤ K(T 2n−1x, y) and consequently
d(T 2nx, Ty) < ε. If K(T 2n−1x, y) ≥ ε, then immediately (3.2) holds. Thus, (3.9) and
(3.2) are equivalent under the condition d(A,B) = 0. Now, we show that if (3.9) holds
then we have d(T 2nx, Ty) ≤ K(T 2n−1x, y). If K(T 2n−1x, y) = 0 then T 2n−1x = T 2nx
and Ty = y. Hence, d(T 2nx, Ty) ≤ K(T 2n−1x, y). Suppose K(T 2n−1x, y) 6= 0
and fix ε ≤ K(T 2n−1x, y). Choose a δ > 0 such that (3.9) holds. Notice that if
K(T 2n−1x, y) ≤ d(T 2nx, Ty), we get a contradiction with (3.9). �

Theorem 3.6. Let X be a complete metric space, A and B non-empty, closed subsets
of X such that d(A,B) = 0. Suppose T : A∪B → A∪B be a KT1-type cyclic orbital
Meir-Keeler contraction. Then, there exists a fixed point, say z ∈ A ∩ B, such that
for each x ∈ A satisfying (3.2), the sequence {T 2nx} converges to z.

Proof. Take x ∈ A. We will show that {Tnx} is a Cauchy sequence. Suppose not.
Then there exists an ε > 0 and a subsequence {Tn(i)} of {Tnx} with

d(Tn(i)x, Tn(i+1)x) > 2ε. (3.10)

Since T is a KT1-type cyclic orbital Meir-Keeler contraction, for this ε, there exists
δ > 0 such that

K(T 2n−1x, y) < ε + δ implies that d(T 2nx, Ty) < ε (3.11)
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where K(T 2n−1x, y) = 1
2 [d(T 2nx, T 2n−1x) + d(Ty, y)]. Set r = min{ε, δ} and dm =

d(Tmx, Tm+1x). Due to Proposition 3.3, one can choose n0 ∈ IN such that

dm = d(Tmx, Tm+1x) <
r

4
, for m ≥ n0. (3.12)

Let n(i) ≥ N . Suppose d(Tn(i)x, Tn(i+1)−1x) ≤ ε + r
2 . Then the triangle inequality

implies that

d(Tn(i)x, Tn(i+1)x) ≤ d(Tn(i+1)x, Tn(i)−1x) + d(Tn(i+1)−1x, Tn(i+1)x)
ε + r

2 + dn(i+1)−1 < 2ε
(3.13)

which contradict the assumption (3.10). Thus, there are values of k with n(i) ≤ k ≤
n(i+1) such that d(Tn(i), T kx) > ε+ r

2 where k and n(i) are opposite parity. Assume
that d(Tn(i)x, Tn(i)+1x) ≥ ε + r

2 . Then

dn(i) = d(Tn(i)x, Tn(i)+1x) ≥ ε +
r

2
> r +

r

2
>

r

4
which is a contradiction with (3.12). Hence, there are values of k with n(i) ≤ k ≤
n(i+1) such that d(Tn(i), T kx) < ε+ r

2 where k and n(i) are opposite parity. Choose
smallest integer k with k ≥ n(i) such that d(Tn(i)x, T kx) ≥ ε + r

2 . Therefore,

d(Tn(i)x, T k−1x) < ε +
r

2
. (3.14)

Thus,

d(Tn(i)x, T kx) ≤ d(Tn(i)x, T k−1x) + d(T k−1x, T kx) < ε +
r

2
+

r

4
= ε +

3r

4
. (3.15)

Then there exists an integer k satisfying n(i) ≤ k ≤ n(i + 1) such that

ε +
r

2
≤ d(Tn(i)x, T kx) < ε +

3r

4
. (3.16)

Due to the facts

d(Tn(i)x, Tn(i)+1x) = dn(i) <
r

4
< ε + r

d(T k, T k+1x) = dk <
r

4
< ε + r

we have
K(Tn(i)x, T kx) = 1

2 [d(Tn(i)x, Tn(i)+1x) + d(T k+1x, T kx)]
≤ 1

2 [ε + r + ε + r] = ε + r
(3.17)

which implies d(Tn(i)+1, T k+1x) < ε. But,

d(Tn(i)+1x, T k+1x) ≥ d(Tn(i)x, T kx)− d(Tn(i)x, Tn(i)+1x)− d(T kx, T k+1x)
> ε + r

2 −
r
4 −

r
4 = ε

which contradicts the above inequality.
Hence {Tnx} is a Cauchy sequence. Thus {Tnx} converges to some z ∈ A ∪ B.

So, both {T 2nx} and {T 2n−1x} tends to same point z ∈ A ∪ B. Since {T 2n−1x}
is a sequence in B, it converges to z ∈ B. Analogously, {T 2nx} is a sequence in A
which converges to z ∈ A. Taking into account that both A and B are closed, we get
z ∈ A ∩B.
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Let us show Tz = z. Taking into account of Lemma 3.5, we have

d(Tz, z) = limn→∞ d(T 2nx, Tz) < K(T 2n−1x, z).
= limn→∞

1
2 [d(T 2nx, T 2n−1x) + d(Tz, z)]

which implies that

d(Tz, z) <
1
2
d(Tz, z).

This is a contradiction and hence Tz = z.
Lastly, we show z is the unique fixed point of T . Suppose not, so there exists a

point w ∈ A ∩B such that z 6= w and Tw = w. Hence, by Lemma 3.5, we get

d(w, z) = d(Tw, z) = limn→∞ d(T 2nx, Tw) < limn→∞K(T 2n−1x, w)
≤ limn→∞

1
2 [d(T 2nx, T 2n−1x) + d(Tw,w)]

≤ 1
2 [d(z, z) + d(Tw, w)] = 1

3d(z, w)

which is a contradiction. Hence, z = w. �

Remark 3.7. One can easily state and prove similar KT2-type and KT3-type cyclic
orbital Meir-Keeler contraction theorems.
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