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1. INTRODUCTION

Our knowledge concerning the continuity properties of epimorphisms on Banach al-
gebras, Jordan-Banach algebras, and, more generally, nonassociative complete normed
algebras, is now fairly complete and satisfactory (see [24, 44, 45]). A basic continuity
problem consists in determining algebraic conditions on a Banach algebra A which
ensure that derivations on A are continuous. In 1996, Villena [45] proved that deriva-
tions on semisimple Jordan-Banach algebras are continuous. In [24], the authors dealt
with derivations acting on Banach-Jordan pairs. By a J*—algebra we mean a closed
subspace A of a C*—algebra such that zz*x € B whenever x € B. Several well known
spaces have the structure of a J*—algebra (cf.[17]). For example, (i) every Cartan
factor of type I, i.e, the space of all bounded operators B(H, K) between Hilbert
spaces H and K; (ii) every Cartan factor of type IV, i.e, a closed *—subspace B of
B(H) in which the square of each operator in B is scalar multiple of indentity op-
erator on H; (iii) every ternary algebra of operators [8, 18]. A J*—homomorphism
between J*—algebras A and B is defined to be a C-linear mapping H : A — B such
that

H(aa*a) = H(a)H(a)*H (a)
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for all a € A, and a J*—derivation on a J*—algebras A is defined to be a C-linear
mapping D : A — A such that

D(aa*a) = D(a)a*a + aD(a)*a + aa® D(a)

for all @ € A. In particular, every *homomorphism between C*-algebras is a
J*—homomorphism and every *—derivation on a C*-algebra is a J*—derivation.

The stability problem of functional equations originated from a question of Ulam
[43] concerning the stability of group homomorphisms. Hyers [19] provided a first
affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem
was generalized by T. Aoki [1] for additive mappings and by Th.M. Rassias [41] for
linear mappings by considering an unbounded Cauchy difference. The paper of Th.M.
Rassias [41] has provided a lot of influence in the development of what we now call
generalized Hyers—Ulam stability or as Hyers—Ulam—Rassias stability of functional
equations. In 1994, a generalization of the Rassias theorem was obtained by Gavruta
[15] by replacing the unbounded Cauchy difference by a general control function in
the spirit of Rassias’ approach. For more details about various results concerning
such problems the reader is referred to [6, 9, 11, 14, 16, 20, 21, 22] and [37]-[42].

C. Park, J.C. Hou and Th.M. Rassias proved the stability of homomorphisms
and derivations in Banach algebras, Banach ternary algebras, C*—algebras, Lie C*—
algebras and C*-ternary algebras [25]-[35]. Moreover, in [29], Park established the
stability of *-homomorphisms of a C*~algebra (see also [30]).

We note that a mapping f satisfying the following Jensen equation 2f (%) =
f(@)+ f(y) is called Jensen. Stability of Jensen functional equation has been studied
by using the direct method as well as the fixed point method at [3, 5, 20, 23, 42].
Recently, Eshaghi Gordji and Najati [12] proved the stability and superstability of
J*—homomorphisms between J*—algebras for the Jensen type functional equation

1) + 152 - fw) =

In addition, Eshaghi Gordji et al. [10] established the stability and superstability of
J*—derivations in J*—algebras for the following Jensen type functional equation

P () < 2f(@) = 0.

r

In this paper, we investigate the stability and superstability of J*—homomorphisms
and J*—derivations in J*—algebras for the generalized Jensen type functional equa-
tion

Z;L: T; " Z?:l,i i — (n— 1)%‘
pf(Z) ey f(FE ) = fpar) =0 (1)
j=2
for all € T := {\ € C;|\| = 1}, where n > 2.
Before proceeding to the main results, we recall a fundamental result in fixed point
theory.

Theorem 1.1. [7]. Suppose that we are given a complete generalized metric space
(Q,d) and a strictly contractive function T : Q — Q with Lipschitz constant L. Then
for each given x € Q, either
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d(T™z, T™2) = 00 for all m >0,
or there exists a natural number mg such that
o d(T™x, T™z) < 0o for all m > my;
e the sequence {T™x} is convergent to a fized point y* of T;
o y* is the unique fized point of T in the set A ={y € Q:d(T™x,y) < oo};
o d(y,y*) < ﬁd(y,Ty) for all y € A.

Radu and Cadariu [2, 3, 36] applied the fixed point method to the investigation of
functional equations (see also [4, 13, 22]).
This paper is organized as follows: By using the fixed point method, in Section 2,
we prove the superstability and stability of J*—homomorphisms in J*—algebras for
the functional equation (1), and also using Gajda’s example [14] to give a counterex-
ample for a singular case. In Section 3, we prove the superstability and stability of
J*—derivations on J*—algebras for the functional equation (1), and also we present
a counterexample for a singular case.

Throughout this paper assume that A, B are two J*—algebras.
For convenience, we use the following abbreviation for given a mapping f : A — B,

" T +aa*a
Af(xy,Ta,... Ty, a) :,uf(zl—l—)

n
D D iz T — (n— 1)z +aa”a
+u;f( - ) = f(uw1)
for all 4 € T and all z1,2s,...,2,,a € A, where n > 2.

2. APPROXIMATION OF J*—HOMOMORPHISMS IN J*—ALGEBRAS
We will use the following lemma:

Lemma 2.1. Let both X and Y be real vector spaces. If a mapping f : X — Y
satisfies (1) with u =1, then f: X — Y is additive.

Proof. Letting ; = 0 (1 <4 < n) in (1), we obtain f(0) = 0. Setting x; = =z and
;=0 (2<i<n)in (1), we get

nf(2) = f@) (2)
for all x € X. Setting z; =0 (3 <i <n) in (1) and using (2), we get
"L f @ m) S (o (0= 1)) = fo) 3)

for all 21,29 € X. Putting 21 = 21 + (n — 1)z2 in (3), we get

n—1

F 4 ma) 4 1 (1) = f (1 (n = D) (4)
for all z1,z2 € X. Replacing 1 by 0 and x5 by z in (4) and using (2), we get
f((n=1)z) = (n—1)f(x) (5)
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for all € X. Replacing x1 by 0 and z by « in (3) and using (5), we get f(—x) =
—f(z) for all z € X, i.e., fis an odd function. Setting xo = x2 — 1 in (3), we get

Fea) 4+ f (nr — (0= 1)) = f (22) (6)

for all 1,20 € X. Replacing x; by %% and xo by —-*; in (6), by (2), (5) and the
oddness of f, we obtain

n—1

f(x1+22) = f(21) + f(22)
for all x1,z5 € X. So f is additive. O

In the following we formulate and prove a theorem in superstability of J*—homo-
morphisms for the functional equation (1).

Theorem 2.2. Let ¢ € {—1,1} be given and let 0 # l|s| < €. Assume f : A — B
is a mapping for which f(sx) = sf(x) for all x € A. Suppose there exists a function
¢ : A"t — [0,00) such that

||Af($1,$27 sy Ty Cl) - uf(a)f(a)*f(a)H < QS(H]‘l,JZQ, s 71:n7a) (7)

forall xy,...,xn,a € A. If there exists an L < 1 such that
L
d(x1, 20, ..., Ty, a) < W(;S(sexl, sao, ..., ste,, s%a) (8)

forall xy,...,xy,a € A, then f is a J*—homomorphism.

Proof. It follows from (8) that

To T, a

mé —
hm | | gb( me,snw,...,w,w)fo (9)

for all z1,...,z,,a € A. Setting p =1 and 2; =0 (1 < i < n) in (7), we obtain

*

a a a

| f(aa”a) - f@)f(@)" F(@) = lim_[sP™ () ) ()
—f(smnf(ﬁ)*f(ﬁ)n
< lim [s79(0,0,..., <) < lim [s™6(0.0,..., ) =0
for all @ € A. So
f(aa*a) = f(a)f(a)" f(a)
for all @ € A. Similarly puta:Oin (7), then
oz — (n—Da;
(= Zf Ei “#xn C %) _ o
m z Ki -SCZ'—(TL—].){E- x
= i s fnuﬂz Zf gy PO )

. ¢ fn o
SWP_IP | |m ¢( mgasmea"wW?O)_O
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for all zy,...,z, € A. So

=L Ejf' S e LBy

n

for all 4 € T and all z1,...,x, € A. Thus by Lemma 2.1, the mapping f is additive.
Letting x; =« (1 <i <n) and a =0 in (7), we have

1f (n) = pf (@)l = T [s[™[1f (- =) - uf(sm,z)ll

€T xZ

s$g1|w%<mwyﬁw~agaﬁ%:0
for all p € T and all x € A. One can show that the mapping f : A — B is C-linear,
and we conclude that f is a J*—homomorphism. O

Corollary 2.3. Let ¢ € {—1,1} be given and let 0 # £|s| < £, £p < £ and 0,0,p
be non-negative real numbers. Suppose that f : A — B is a mapping satisfying
flsx) = sf(x) for all x € A, and the following inequality

1+¢ =
1Af (21,22, ..., 20, a) = uf(a) fa)" fla)]| < ——6 +6( lewin+ l[all”)
=1

forallp € T and all x1,29,...,x,,a € A, then f is a J*—homomorphism.

Proof. Let ¢(x1,T2,...,Tp,a) := %5 + 0030 lzl|P + [lalP) for all zy, s, ..., @y,
a € Ain Theorem 2.2. Then we choose L = |s[(*~P) and we get the desired result. [

We prove the following generalized Hyers—Ulam stability problem for J*—homo-
morphisms on J*—algebras for the functional equation (1).

Theorem 2.4. Let f : A — B be a mapping with f(0) = 0 for which there exists a
function ¢ : A" — [0, 00) satisfying (7). If there exists an L < 1 such that
Tr1 T2 Ty a

ey Tpya) <nLo(—,—=,...,—, — 10
¢(.’II1,$2, y L ) n ¢(7’L n n n) ( )
for all z1,...,z,,a € A, then there exists a unique J*—homomorphism H : A — B
such that )
— < —— e
@) = H@)| € e s(n.0.0......0) (1)
for all x € A.
Proof. Letting u=1, 21 =2, 2, =0 (2<% <n)and a =0 in (7), we obtain
x
Inf(5) = £l < 6(a,0,....,0) (12)
for all € A. Replacing z by nz in (12), we get
1 1
= f(n) = f(@)]| < = 6(nz,0, .., 0) (13)

for all z € A. Consider the set X := {g | g : A — B} and introduce the generalized
metric on X as follows:

d(g,h) :==inf {C € RT : ||g(z) — h(z)|| £ CP(nz,0,...,0),Vz € A}.
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It is easy to show that (X, d) is a generalized complete metric space [3, 4].
Now we define the linear mapping 7' : X — X by T'(h)(z) = Lh(nz) for all z € A.
It is easy to see that
d(T(g), T(h)) < Ld(g; h)
for all g, h € X. It follows from (13) that

AT < - < oo (14)

By Theorem 1.1, T has a unique fixed point in the set X; := {g € X : d(f, g) < oo}.
Let H be the fixed point of T. H is the unique mapping with H(nz) = nH (x) for all
x € A, such that there exists C' € (0, 00) satisfying

If(z) — H(z)|| < C¢p(nx,0,...,0)
for all z € A. On the other hand we have lim,, o, d(T™(f), H) = 0. It follows that

. 1 m
Jim (") = H() (15)
for all x € A. Also by Theorem 1.1, we have
1
d(f, H) < T2 d(f, 7)) (16)
It follows from (14) and (16), that
1
d(f,H) < ———
This implies inequality (11). It follows from (10) that
1
lim —a¢(n"wy,n"ws,...,n"w,,n"a) =0 (17)
m—oo N
for all z1,...,x,,a € A. By the same reasoning as the proof of Theorem 2.2, One can

show that the mapping H : A — B is C-linear. It follows from (7), (15) and (17)
that
1
|H(aa*a) — H(a)H(a)*H(a)|| = lim

m— o0 nSm

[H((n™a)(n™a")(n™a))

— H(n™a)H(n™a)*H(n™a)|
1
< 7nlg>n(x> 7’Li)’7m¢(07 07 . 7nma)
1
S lim nfmgi)(0,0, AP ,nma) =0

for all a € A. Thus
H(aa*a) = H(a)H(a)*H(a)
for all a € A. Hence H : A — B is a J*—homomorphism. U

Corollary 2.5. Let 6, p be non—negative real numbers such that p < 1. Suppose that
a function f: A — B satisfies

[Af (21,22, a0, a) — pf(a) f(a) fla)] < 9Z(Hxillp + llall”)
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forallp € T and all x4, ... ,x,,a € A. Then there exists a unique J*—homomorphism
H : A — B such that )
_ T glP
I1£@) = H@) < ———z]

for all x € A.

The case in which p = 1 was excluded in Corollary 2.5. Indeed this result is not
valid when p = 1. Here we use Gajda’s example [14] to construct a Counterexample.

Example 2.6. Let ¢ : C — C be defined by

_J oz for |z|<1;
(@) = { 1 for |z|>1.

Consider the function f: C — C to be defined by the formula

f(z) = Z n~"p(n™x)

Let _
Duf(x1,... 2n,a) = ﬂf(M)"'MZ?:g f(zi=1,'i#j -'Eri—n(n—l)-'ﬂj-‘raaa)_f(uxl)_
wf(a)f(a) f(a)

forall p € T and all x1,29,...,2,,a € C. Then f satisfies

nt4nd+6n2—Tn+2 —
o (el +la)

for all w € T and all x1,x2,...,%n,a € C, and the range of |f(x) — A(z)|/|x| for x # 0
is unbounded for each additive function A : C — C.

[Duf(z1,. . 2n,a)| < (18)

Proof. Tt is clear that f is bounded by —5 on C. If Y7 | |a;|+|a| =0 or 31", || +
|a] > 1, then

4 _ 2 4 2 n
n*—n+n n*—n"+n
D < < § ;
| #f(xla ,:L’n,a)‘ = (n_l)g = (n_l)g (i:1 ‘xl|+|a|)
Now suppose that 0 < >_"", |2;| 4+ |a] < 1. Then there exists an integer k > 0 such
that

1 - 1
W§Z|$i|+|a‘<ﬁ (19)
i=1
Therefore

n'| Zmz + adal,n’| Zazl + a@a — (n — )|, n'|uz1],n'la| < 1
i=1 i=1
forall j =2,3,...,nand all t =0,1,...,k — 1. From the definition of f and (19), we
have

F(@)] < Hal + 30 n~ "6 a)] < Ml + et

m=k
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Duforsma)] < Kol + 2D
n?+2n  3n(n—1)k? + 3n%k
< (k+E)al® + 1) + 1) |al
< (n—1)2k% +3n(n — k% + ((n — 1)%2 +3n?)k n®+2n
- n2k(n —1)2 la nk(n —1)
—1)2 _ 2 3 2 "
- 2(n —1) ELn?il(lT;? 1)+ 3n al n(n+_2173 3 [z + Jal)

nt4nd+6n2—Tn+2 <
<l + el

Therefore f satisfies (18). Let A : C — C be an additive function such that
|f(z) = A(z)] < alz]

for all x € C, where a > 0 is a constant. Then there exists a constant ¢ € C such
that A(z) = cz for all rational numbers z. Thus we have

[f(@)] < (a+[e])|] (20)
for all rational numbers z. Let ¢ € N with ¢ > a + |¢|. If z is a rational number in
(0,n'~), then n™x € (0,1) for all m = 0,1,...,¢t — 1. Therefore

t—1
f(z) > Z n~mp(n"x) =tz > (a+ |¢|)x
m=0
which contradicts (20). O

3. APPROXIMATION OF J*—DERIVATIONS IN J*—ALGEBRAS

In this section, we prove the superstablity and stability of J*—derivations on
J*—algebras for the functional equation (1).

Theorem 3.1. Let £ € {—1,1} be given and let 0 # |s|¢ > £. Suppose f : A — A
is a mapping for which f(sx) = sf(x) for all x € A. Suppose there exists a function
¥ A" — [0, 00) such that
[Af(z1, 22, . a0, a)—pf(a)a”a—paf(a) a—paa” f(a)|| < (21, 22,. .. 20, a) (21)
forall xy,...,x,,a € A. If there exists an L < 1 such that
X1 T2 Ty a

I
w(.Tl,xQ,...,l'n,a) S£|S| w(?,?7,?7?) (22)
forall xy,...,xp,a € A, then f is a J*—derivation.
Proof. By using equation f(sz) = sf( ) and (21), we have f(0) =0 and
Dim1ing T — (n—1)z;
(=L Zf Lt )~ fpa)|

n
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< |s|Tmap (s, sy, . .., 5™, 0), (23)
|1 f(aa*a) = f(a)a*a — af(a)*a —aa* f(a)|| < |s|~*"4(0,0,...,0,5™%a)  (24)
for all z1,...,2,,a € A and all integers m. It follows from (22), that
lim |s|~™ (s, s ay, . .., 8™ 2y, s™a) = 0 (25)
m—00

for all z1,...,x,,a € A. Hence, we get from (23), (24) and (25) that

pp(EE) S g DO ),
j=2

n n

flaa*a) = f(a)a*a+af(a)"a+ aa” f(a)
for all z1,...,2,,a € A. Therefore f is additive and f(ux) = pf(z) for all p € T and
x € A. By the same reasoning as in the proof of Theorem 2.2, one can show that the
mapping f: A — A is C-linear, and we conclude that f is a J*—derivation. U

Corollary 3.2. Let ¢ € {—1,1} be given and let 0 # £|s| > ¢, ¢p > £ and B,e,p
be non—negative real numbers. Suppose that f : A — A is a mapping satisfying
flsz) = sf(x) for all x € A, and the following inequality

[Af (1,22, an,a) — pfa)a*a — paf(a) a — paa™ f(a)]
14 ¢ =
< TﬁJrE(Z @3] + [lall”)
i=1
forall w € T and all x1,22,...,x,,a € A, then f is a J*—derivation.

Theorem 3.3. Let f : A — A be a mapping with f(0) = 0 for which there exists a
function v : AL — [0, 00) satisfying (21). If there exists an L < 1 such that

T1 To Ty, @
) gy dng S L Ty T Ty eeey Ty T 26
(w1, 22 Ty, a) nw(n n n n) (26)
for all z1,...,x,,a € A, then there exists a unique J*—derivation D : A — A such
that I
1£(@) = D(@)] < 25 (2.0,0......0) (21)
for all x € A.
Proof. Tt follows from (26) that
1
lim —(n"zy,n"zs,...,n"z,,n"a) =0 (28)

m—oo N,
forall z1,...,2pn,a1,...,a, € A. Consider the set X' := {g|lg : A — X} and introduce
the generalized metric on X’ as follows:
d(g,h) :=inf{C € R : ||g(z) — h(z)|| < C¥(z,0,...,0),Vz € A}

It is easy to show that (X', d) is a generalized complete metric space.
Now we define the linear mapping J : X’ — X’ by J(h)(z) = Lh(nz) for all z € A.
It is easy to see that
d(J(g),J(h)) < Ld(g,h)
for all g,h € X'.
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Letting u =1, 21 =2, 2; =0 (2 <i <n) and a = 0 in (21), we obtain

x
Inf(=) = f(@)lx <%(z,0,...,0) (29)
for all x € A. Thus by using (26), we obtain

I () = f(@)x < (0,0 < Lo(z,0,...,0) (30)
for all z € A, that is,
d(f,I(f) < L < 0. (31)

By Theorem 1.1, J has a unique fixed point in the set Xo := {h € X' : d(f,h) < oo}.
Let D be the fixed point of J. We note that D is the unique mapping with D(nz) =
nD(x) for all x € A, such that there exists C € (0, 00) satisfying

I f(z) — D(z)|| < Cy(x,0,...,0)
for all z € A. On the other hand we have
lim d(J™(f),D) =0,

&) .

n}iinm Wf(nmzx) = D(x)
for all z € A. Also by Theorem 1.1, we have

1

A(f.D) < ——d(f.J() (32)

It follows from (31) and (32), that
L
D)< ——

This implies inequality (27). By the same reasoning as in the proof of Theorem 2.2,
one can show that the mapping f : A — A is C-linear. It follows from (21) and (28)
that

|D(aa*a) — D(a)a*a — aD(a)*a — aa*D(a)|

— I [ (D((" @) (™" (™)) ~ D)™ ") (™a)
(n"™a) D(n™a)* (n"™a) — (n™a)(n™a*)D(n™a)|

L 0(0,0,...,0,nma) < =

77137'”7' nmLZJ(0,0,...,O,nma):O
for all @ € A. Therefore
D(aa*a) = D(a)a*a + aD(a)*a + aa®D(a)
foralla € A. Hence D : A — A is a J*—derivation. O

Corollary 3.4. Let €, p be non—negative real numbers such that p < 1. Suppose that
a function f: A — A satisfies

||Af(l‘1,332, <oy Ty a) - uf(a)a*a - Naf(a)*a - ,uaa*f(a)”
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n
e Naall” + llall?)
i=1

for all p € T and all z1,...,x,,a € A. Then there exists a unique J*—derivation
D : A— A such that
nP~1

€
[f(z) — D(z)|| < WII%II”
for all x € A.

For the case p = 1, similar to the Example 2.6, we have the following counterex-
ample.

Example 3.5. Let ¢ : C — C be defined by
z for |x|<1;
o ={ ] o |

for |z| > 1.
Consider the function f: C — C to be defined by the formula

)= n ()
m=0
Let

D/Af(zla"'vxn7a) =

n —
S0y @i+ ata

uf( n ) i
+qu L ALLUE s
~ uf(a)aa — paf(a)a - paaf(a)
forall p € T and all x1,29,...,2,,a € C. Then f satisﬁes
Dpf (o, o) < ot ”” Z|xz| +Jal) (33)

forallp € T and all x1,x2,...,2,,a € C, and the range of|f(x)f (@)|/|x| forx #0
is unbounded for each additive function A : C — C.

Proof. Tt is clear that f is bounded by —7 on C. If Y"1 | |x;|+]a| = 0 or D7 |z| +
|a| > 1, then

n?+ (1+ 3lal*)n (1+ 3|a|
|Duf(x1,...,xn,a)\§ (n—l) S ( Z‘ ‘+|a|

Now suppose that 0 < Y7, |z;| + |a| < 1. Then there exists an integer k£ > 0 such
that

1 - 1
RS Z |zi| + |al <% (34)

=1
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Therefore
n'| Zmz + adal,n’| Zml + a@a — (n — V)|, n'|uz1],n'la| < 1
i=1 i=1
forall j =2,3,...,nand all t =0,1,...,k — 1. From the definition of f and (34), we

have

@] < klal + D2 0~ (0" a)] < Hlal + s,

m=k

n(n+1)

\Duf(xl,n-,xn,aﬂSk|a|3+m 3lal?| f(a)|
< akfaf* + n?+n N 3n af?
- nf(n—1)  nF(n—1)
4(n—1)k+3n| 2 n?+n
nk(n —1) nk(n—1)
4(n — 1)k +3n nd +n? &
T o
nd+n?+Tn —4 &
< ,
< T el e

Therefore f satisfies (33). Let A : C — C be an additive function such that
(@) = Az)] < alz|

for all x € C, where a > 0 is a constant. Then there exists a constant ¢ € C such
that A(x) = cx for all rational numbers z. Thus we have

[f(@)] < (a+ )] (35)

for all rational numbers x. Let ¢t € N with ¢t > « + |¢|. If  is a rational number in
(0,n171), then n™z € (0,1) for all m =0, 1,...,¢ — 1. Hence

t—1
f(z) > Z n~"op(n"x) =tx > (a +|c|)x
m=0
which contradicts (35). O
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