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1. Introduction

Our knowledge concerning the continuity properties of epimorphisms on Banach al-
gebras, Jordan-Banach algebras, and, more generally, nonassociative complete normed
algebras, is now fairly complete and satisfactory (see [24, 44, 45]). A basic continuity
problem consists in determining algebraic conditions on a Banach algebra A which
ensure that derivations on A are continuous. In 1996, Villena [45] proved that deriva-
tions on semisimple Jordan-Banach algebras are continuous. In [24], the authors dealt
with derivations acting on Banach-Jordan pairs. By a J∗−algebra we mean a closed
subspace A of a C*–algebra such that xx∗x ∈ B whenever x ∈ B. Several well known
spaces have the structure of a J∗−algebra (cf.[17]). For example, (i) every Cartan
factor of type I, i.e, the space of all bounded operators B(H,K) between Hilbert
spaces H and K; (ii) every Cartan factor of type IV, i.e, a closed *–subspace B of
B(H) in which the square of each operator in B is scalar multiple of indentity op-
erator on H; (iii) every ternary algebra of operators [8, 18]. A J∗−homomorphism
between J∗−algebras A and B is defined to be a C–linear mapping H : A→ B such
that

H(aa∗a) = H(a)H(a)∗H(a)
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for all a ∈ A, and a J∗−derivation on a J∗−algebras A is defined to be a C–linear
mapping D : A→ A such that

D(aa∗a) = D(a)a∗a+ aD(a)∗a+ aa∗D(a)

for all a ∈ A. In particular, every ∗–homomorphism between C*–algebras is a
J∗−homomorphism and every ∗–derivation on a C*–algebra is a J∗−derivation.

The stability problem of functional equations originated from a question of Ulam
[43] concerning the stability of group homomorphisms. Hyers [19] provided a first
affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem
was generalized by T. Aoki [1] for additive mappings and by Th.M. Rassias [41] for
linear mappings by considering an unbounded Cauchy difference. The paper of Th.M.
Rassias [41] has provided a lot of influence in the development of what we now call
generalized Hyers–Ulam stability or as Hyers–Ulam–Rassias stability of functional
equations. In 1994, a generalization of the Rassias theorem was obtained by Gǎvruţa
[15] by replacing the unbounded Cauchy difference by a general control function in
the spirit of Rassias’ approach. For more details about various results concerning
such problems the reader is referred to [6, 9, 11, 14, 16, 20, 21, 22] and [37]–[42].

C. Park, J.C. Hou and Th.M. Rassias proved the stability of homomorphisms
and derivations in Banach algebras, Banach ternary algebras, C*–algebras, Lie C*–
algebras and C*–ternary algebras [25]–[35]. Moreover, in [29], Park established the
stability of ∗–homomorphisms of a C*–algebra (see also [30]).

We note that a mapping f satisfying the following Jensen equation 2f
(

x+y
2

)
=

f(x)+ f(y) is called Jensen. Stability of Jensen functional equation has been studied
by using the direct method as well as the fixed point method at [3, 5, 20, 23, 42].
Recently, Eshaghi Gordji and Najati [12] proved the stability and superstability of
J∗−homomorphisms between J∗−algebras for the Jensen type functional equation

f(
x+ y

2
) + f(

x− y

2
)− f(x) = 0.

In addition, Eshaghi Gordji et al. [10] established the stability and superstability of
J∗−derivations in J∗−algebras for the following Jensen type functional equation

rf(
x+ y

r
) + rf(

x− y

r
)− 2f(x) = 0.

In this paper, we investigate the stability and superstability of J∗−homomorphisms
and J∗−derivations in J∗−algebras for the generalized Jensen type functional equa-
tion

µf(
∑n

i=1 xi

n
) + µ

n∑
j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj

n
)− f(µx1) = 0 (1)

for all µ ∈ T1 := {λ ∈ C; |λ| = 1}, where n ≥ 2.
Before proceeding to the main results, we recall a fundamental result in fixed point

theory.

Theorem 1.1. [7]. Suppose that we are given a complete generalized metric space
(Ω, d) and a strictly contractive function T : Ω → Ω with Lipschitz constant L. Then
for each given x ∈ Ω, either
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d(Tmx, Tm+1x) = ∞ for all m ≥ 0,
or there exists a natural number m0 such that
• d(Tmx, Tm+1x) <∞ for all m ≥ m0;
• the sequence {Tmx} is convergent to a fixed point y∗ of T ;
• y∗ is the unique fixed point of T in the set Λ = {y ∈ Ω : d(Tm0x, y) <∞};
• d(y, y∗) ≤ 1

1−Ld(y, Ty) for all y ∈ Λ.

Radu and Cădariu [2, 3, 36] applied the fixed point method to the investigation of
functional equations (see also [4, 13, 22]).
This paper is organized as follows: By using the fixed point method, in Section 2,
we prove the superstability and stability of J∗−homomorphisms in J∗−algebras for
the functional equation (1), and also using Gajda’s example [14] to give a counterex-
ample for a singular case. In Section 3, we prove the superstability and stability of
J∗−derivations on J∗−algebras for the functional equation (1), and also we present
a counterexample for a singular case.

Throughout this paper assume that A,B are two J∗−algebras.
For convenience, we use the following abbreviation for given a mapping f : A→ B,

4f(x1, x2, . . . , xn, a) = µf(
∑n

i=1 xi + aa∗a

n
)

+µ
n∑

j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj + aa∗a

n
)− f(µx1)

for all µ ∈ T and all x1, x2, . . . , xn, a ∈ A, where n ≥ 2.

2. Approximation of J∗−homomorphisms in J∗−algebras

We will use the following lemma:

Lemma 2.1. Let both X and Y be real vector spaces. If a mapping f : X → Y
satisfies (1) with µ = 1, then f : X → Y is additive.

Proof. Letting xi = 0 (1 ≤ i ≤ n) in (1), we obtain f(0) = 0. Setting x1 = x and
xi = 0 (2 ≤ i ≤ n) in (1), we get

nf
(x
n

)
= f(x) (2)

for all x ∈ X. Setting xi = 0 (3 ≤ i ≤ n) in (1) and using (2), we get

n− 1
n

f (x1 + x2) +
1
n
f (x1 − (n− 1)x2) = f(x1) (3)

for all x1, x2 ∈ X. Putting x1 = x1 + (n− 1)x2 in (3), we get

n− 1
n

f (x1 + nx2) +
1
n
f (x1) = f (x1 + (n− 1)x2) (4)

for all x1, x2 ∈ X. Replacing x1 by 0 and x2 by x in (4) and using (2), we get

f ((n− 1)x) = (n− 1)f(x) (5)
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for all x ∈ X. Replacing x1 by 0 and x2 by x in (3) and using (5), we get f(−x) =
−f(x) for all x ∈ X, i.e., f is an odd function. Setting x2 = x2 − x1 in (3), we get

n− 1
n

f (x2) +
1
n
f (nx1 − (n− 1)x2) = f (x1) (6)

for all x1, x2 ∈ X. Replacing x1 by x1
n and x2 by − x2

n−1 in (6), by (2), (5) and the
oddness of f , we obtain

f(x1 + x2) = f(x1) + f(x2)

for all x1, x2 ∈ X. So f is additive. �

In the following we formulate and prove a theorem in superstability of J∗−homo-
morphisms for the functional equation (1).

Theorem 2.2. Let ` ∈ {−1, 1} be given and let 0 6= `|s| < `. Assume f : A → B
is a mapping for which f(sx) = sf(x) for all x ∈ A. Suppose there exists a function
φ : An+1 → [0,∞) such that

‖4f(x1, x2, . . . , xn, a)− µf(a)f(a)∗f(a)‖ ≤ φ(x1, x2, . . . , xn, a) (7)

for all x1, . . . , xn, a ∈ A. If there exists an L < 1 such that

φ(x1, x2, . . . , xn, a) ≤
L

|s|`
φ(s`x1, s

`x2, . . . , s
`xn, s

`a) (8)

for all x1, . . . , xn, a ∈ A, then f is a J∗−homomorphism.

Proof. It follows from (8) that

lim
m→∞

|s|m`φ(
x1

sm`
,
x2

sm`
, . . . ,

xn

sm`
,
a

sm`
) = 0 (9)

for all x1, . . . , xn, a ∈ A. Setting µ = 1 and xi = 0 (1 ≤ i ≤ n) in (7), we obtain

‖f(aa∗a)− f(a)f(a)∗f(a)‖ = lim
m→∞

|s|3m`‖f((
a

sm`
)(
a∗

sm`
)(

a

sm`
))

− f(
a

sm`
)f(

a

sm`
)∗f(

a

sm`
)‖

≤ lim
m→∞

|s|3m`φ(0, 0, . . . ,
a

sm`
) ≤ lim

m→∞
|s|m`φ(0, 0, . . . ,

a

sm`
) = 0

for all a ∈ A. So
f(aa∗a) = f(a)f(a)∗f(a)

for all a ∈ A. Similarly put a = 0 in (7), then

‖µf(
∑n

i=1 xi

n
) + µ

n∑
j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj

n
)− f(µx1)‖

= lim
m→∞

|s|m`‖µf(
∑n

i=1 xi

sm`n
) + µ

n∑
j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj

sm`n
)− f(µ

x1

sm`
)‖

≤ lim
m→∞

|s|m`φ(
x1

sm`
,
x2

sm`
, . . . ,

xn

sm`
, 0) = 0
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for all x1, . . . , xn ∈ A. So

µf(
∑n

i=1 xi

n
) + µ

n∑
j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj

n
) = f(µx1)

for all µ ∈ T and all x1, . . . , xn ∈ A. Thus by Lemma 2.1, the mapping f is additive.
Letting xi = x (1 ≤ i ≤ n) and a = 0 in (7), we have

‖f(µx)− µf(x)‖ = lim
m→∞

|s|m`‖f(µ
x

sm`
)− µf(

x

sm`
)‖

≤ lim
m→∞

|s|m`φ(
x

sm`
,
x

sm`
, . . . ,

x

sm`
, 0) = 0

for all µ ∈ T and all x ∈ A. One can show that the mapping f : A → B is C–linear,
and we conclude that f is a J∗−homomorphism. �

Corollary 2.3. Let ` ∈ {−1, 1} be given and let 0 6= `|s| < `, `p < ` and δ, θ, p
be non–negative real numbers. Suppose that f : A → B is a mapping satisfying
f(sx) = sf(x) for all x ∈ A, and the following inequality

‖4f(x1, x2, . . . , xn, a)− µf(a)f(a)∗f(a)‖ ≤ 1 + `

2
δ + θ(

n∑
i=1

‖xi‖p + ‖a‖p)

for all µ ∈ T and all x1, x2, . . . , xn, a ∈ A, then f is a J∗−homomorphism.

Proof. Let φ(x1, x2, . . . , xn, a) := 1+`
2 δ + θ(

∑n
i=1 ‖xi‖p + ‖a‖p) for all x1, x2, . . . , xn,

a ∈ A in Theorem 2.2. Then we choose L = |s|`(1−p) and we get the desired result. �

We prove the following generalized Hyers–Ulam stability problem for J∗−homo-
morphisms on J∗−algebras for the functional equation (1).

Theorem 2.4. Let f : A → B be a mapping with f(0) = 0 for which there exists a
function φ : An+1 → [0,∞) satisfying (7). If there exists an L < 1 such that

φ(x1, x2, . . . , xn, a) ≤ nLφ(
x1

n
,
x2

n
, . . . ,

xn

n
,
a

n
) (10)

for all x1, . . . , xn, a ∈ A, then there exists a unique J∗−homomorphism H : A → B
such that

‖f(x)−H(x)‖ ≤ 1
n(1− L)

φ(nx, 0, 0, . . . , 0) (11)

for all x ∈ A.

Proof. Letting µ = 1, x1 = x, xi = 0 (2 ≤ i ≤ n) and a = 0 in (7), we obtain

‖nf(
x

n
)− f(x)‖ ≤ φ(x, 0, . . . , 0) (12)

for all x ∈ A. Replacing x by nx in (12), we get

‖ 1
n
f(nx)− f(x)‖ ≤ 1

n
φ(nx, 0, . . . , 0) (13)

for all x ∈ A. Consider the set X := {g | g : A → B} and introduce the generalized
metric on X as follows:

d(g, h) := inf
{
C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cφ(nx, 0, . . . , 0),∀x ∈ A

}
.
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It is easy to show that (X, d) is a generalized complete metric space [3, 4].
Now we define the linear mapping T : X → X by T (h)(x) = 1

nh(nx) for all x ∈ A.
It is easy to see that

d(T (g), T (h)) ≤ Ld(g, h)
for all g, h ∈ X. It follows from (13) that

d(f, T (f)) ≤ 1
n
<∞. (14)

By Theorem 1.1, T has a unique fixed point in the set X1 := {g ∈ X : d(f, g) <∞}.
Let H be the fixed point of T. H is the unique mapping with H(nx) = nH(x) for all
x ∈ A, such that there exists C ∈ (0,∞) satisfying

‖f(x)−H(x)‖ ≤ Cφ(nx, 0, . . . , 0)

for all x ∈ A. On the other hand we have limm→∞ d(Tm(f),H) = 0. It follows that

lim
m→∞

1
nm

f(nmx) = H(x) (15)

for all x ∈ A. Also by Theorem 1.1, we have

d(f,H) ≤ 1
1− L

d(f, T (f)) (16)

It follows from (14) and (16), that

d(f,H) ≤ 1
n(1− L)

This implies inequality (11). It follows from (10) that

lim
m→∞

1
nm

φ(nmx1, n
mx2, . . . , n

mxn, n
ma) = 0 (17)

for all x1, . . . , xn, a ∈ A. By the same reasoning as the proof of Theorem 2.2, One can
show that the mapping H : A → B is C–linear. It follows from (7), (15) and (17)
that

‖H(aa∗a)−H(a)H(a)∗H(a)‖ = lim
m→∞

1
n3m

‖H((nma)(nma∗)(nma))

−H(nma)H(nma)∗H(nma)‖

≤ lim
m→∞

1
n3m

φ(0, 0, . . . , nma)

≤ lim
m→∞

1
nm

φ(0, 0, . . . , nma) = 0

for all a ∈ A. Thus
H(aa∗a) = H(a)H(a)∗H(a)

for all a ∈ A. Hence H : A→ B is a J∗−homomorphism. �

Corollary 2.5. Let θ, p be non–negative real numbers such that p < 1. Suppose that
a function f : A→ B satisfies

‖4f(x1, x2, . . . , xn, a)− µf(a)f(a)∗f(a)‖ ≤ θ
n∑

i=1

(‖xi‖p + ‖a‖p)
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for all µ ∈ T and all x1, . . . , xn, a ∈ A. Then there exists a unique J∗−homomorphism
H : A→ B such that

‖f(x)−H(x)‖ ≤ θ

n1−p − 1
‖x‖p

for all x ∈ A.

The case in which p = 1 was excluded in Corollary 2.5. Indeed this result is not
valid when p = 1. Here we use Gajda’s example [14] to construct a Counterexample.

Example 2.6. Let φ : C → C be defined by

φ(x) :=
{
x for |x| < 1;
1 for |x| ≥ 1.

Consider the function f : C → C to be defined by the formula

f(x) :=
∞∑

m=0

n−mφ(nmx)

Let
Dµf(x1, . . . , xn, a) := µf(

Pn
i=1 xi+aaa

n )+µ
∑n

j=2 f(
Pn

i=1,i6=j xi−(n−1)xj+aaa

n )−f(µx1)−

µf(a)f(a)f(a)
for all µ ∈ T and all x1, x2, . . . , xn, a ∈ C. Then f satisfies

|Dµf(x1, . . . , xn, a)| ≤
n4 + n3 + 6n2 − 7n+ 2

(n− 1)2
(

n∑
i=1

|xi|+ |a|) (18)

for all µ ∈ T and all x1, x2, . . . , xn, a ∈ C, and the range of |f(x)−A(x)|/|x| for x 6= 0
is unbounded for each additive function A : C → C.

Proof. It is clear that f is bounded by n
n−1 on C. If

∑n
i=1 |xi|+ |a| = 0 or

∑n
i=1 |xi|+

|a| ≥ 1, then

|Dµf(x1, . . . , xn, a)| ≤
n4 − n2 + n

(n− 1)3
≤ n4 − n2 + n

(n− 1)3
(

n∑
i=1

|xi|+ |a|)

Now suppose that 0 <
∑n

i=1 |xi| + |a| < 1. Then there exists an integer k ≥ 0 such
that

1
nk+1

≤
n∑

i=1

|xi|+ |a| < 1
nk

(19)

Therefore

nt|
n∑

i=1

xi + aaa|, nt|
n∑

i=1

xi + aaa− (n− 1)xj |, nt|µx1|, nt|a| < 1

for all j = 2, 3, . . . , n and all t = 0, 1, . . . , k− 1. From the definition of f and (19), we
have

|f(a)| ≤ k|a|+
∞∑

m=k

n−m|φ(nma)| ≤ k|a|+ n

nk(n− 1)
,
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|Dµf(x1, . . . , xn, a)| ≤ k|a|3 +
n(n+ 1)
nk(n− 1)

+ |f(a)|3

≤ (k + k3)|a|3 +
n2 + 2n
nk(n− 1)

+
3n(n− 1)k2 + 3n2k

n2k(n− 1)2
|a|

≤ (n− 1)2k3 + 3n(n− 1)k2 + ((n− 1)2 + 3n2)k
n2k(n− 1)2

|a|+ n2 + 2n
nk(n− 1)

≤ 2(n− 1)2 + 3n(n− 1) + 3n2

(n− 1)2
|a|+ n3 + 2n2

(n− 1)
(

n∑
i=1

|xi|+ |a|)

≤ n4 + n3 + 6n2 − 7n+ 2
(n− 1)2

(
n∑

i=1

|xi|+ |a|)

Therefore f satisfies (18). Let A : C → C be an additive function such that

|f(x)−A(x)| ≤ α|x|
for all x ∈ C, where α > 0 is a constant. Then there exists a constant c ∈ C such
that A(x) = cx for all rational numbers x. Thus we have

|f(x)| ≤ (α+ |c|)|x| (20)

for all rational numbers x. Let t ∈ N with t > α + |c|. If x is a rational number in
(0, n1−t), then nmx ∈ (0, 1) for all m = 0, 1, ..., t− 1. Therefore

f(x) ≥
t−1∑
m=0

n−mφ(nmx) = tx > (α+ |c|)x

which contradicts (20). �

3. Approximation of J∗−derivations in J∗−algebras

In this section, we prove the superstablity and stability of J∗−derivations on
J∗−algebras for the functional equation (1).

Theorem 3.1. Let ` ∈ {−1, 1} be given and let 0 6= |s|` > `. Suppose f : A → A
is a mapping for which f(sx) = sf(x) for all x ∈ A. Suppose there exists a function
ψ : An+1 → [0,∞) such that

‖4f(x1, x2, . . . , xn, a)−µf(a)a∗a−µaf(a)∗a−µaa∗f(a)‖ ≤ ψ(x1, x2, . . . , xn, a) (21)

for all x1, . . . , xn, a ∈ A. If there exists an L < 1 such that

ψ(x1, x2, . . . , xn, a) ≤ `|s|`ψ(
x1

s`
,
x2

s`
, . . . ,

xn

s`
,
a

s`
) (22)

for all x1, . . . , xn, a ∈ A, then f is a J∗−derivation.

Proof. By using equation f(sx) = sf(x) and (21), we have f(0) = 0 and

‖µf(
∑n

i=1 xi

n
) + µ

n∑
j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj

n
)− f(µx1)‖
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≤ |s|−m`ψ(sm`x1, s
m`x2, . . . , s

m`xn, 0), (23)
‖f(aa∗a)− f(a)a∗a− af(a)∗a− aa∗f(a)‖ ≤ |s|−3m`ψ(0, 0, . . . , 0, sm`a) (24)

for all x1, . . . , xn, a ∈ A and all integers m. It follows from (22), that

lim
m→∞

|s|−m`ψ(sm`x1, s
m`x2, . . . , s

m`xn, s
m`a) = 0 (25)

for all x1, . . . , xn, a ∈ A. Hence, we get from (23), (24) and (25) that

µf(
∑n

i=1 xi

n
) + µ

n∑
j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj

n
) = f(µx1),

f(aa∗a) = f(a)a∗a+ af(a)∗a+ aa∗f(a)
for all x1, . . . , xn, a ∈ A. Therefore f is additive and f(µx) = µf(x) for all µ ∈ T and
x ∈ A. By the same reasoning as in the proof of Theorem 2.2, one can show that the
mapping f : A→ A is C–linear, and we conclude that f is a J∗−derivation. �

Corollary 3.2. Let ` ∈ {−1, 1} be given and let 0 6= `|s| > `, `p > ` and β, ε, p
be non–negative real numbers. Suppose that f : A → A is a mapping satisfying
f(sx) = sf(x) for all x ∈ A, and the following inequality

‖4f(x1, x2, . . . , xn, a)− µf(a)a∗a− µaf(a)∗a− µaa∗f(a)‖

≤ 1 + `

2
β + ε(

n∑
i=1

‖xi‖p + ‖a‖p)

for all µ ∈ T and all x1, x2, . . . , xn, a ∈ A, then f is a J∗−derivation.

Theorem 3.3. Let f : A → A be a mapping with f(0) = 0 for which there exists a
function ψ : An+1 → [0,∞) satisfying (21). If there exists an L < 1 such that

ψ(x1, x2, . . . , xn, a) ≤ nLψ(
x1

n
,
x2

n
, . . . ,

xn

n
,
a

n
) (26)

for all x1, . . . , xn, a ∈ A, then there exists a unique J∗−derivation D : A → A such
that

‖f(x)−D(x)‖ ≤ L

1− L
ψ(x, 0, 0, . . . , 0) (27)

for all x ∈ A.

Proof. It follows from (26) that

lim
m→∞

1
nm

ψ(nmx1, n
mx2, . . . , n

mxn, n
ma) = 0 (28)

for all x1, . . . , xn, a1, . . . , an ∈ A. Consider the set X ′ := {g|g : A→ X} and introduce
the generalized metric on X ′ as follows:

d(g, h) := inf{C ∈ R+ : ‖g(x)− h(x)‖ ≤ Cψ(x, 0, . . . , 0),∀x ∈ A}
It is easy to show that (X ′, d) is a generalized complete metric space.

Now we define the linear mapping J : X ′ → X ′ by J(h)(x) = 1
nh(nx) for all x ∈ A.

It is easy to see that
d(J(g), J(h)) ≤ Ld(g, h)

for all g, h ∈ X ′.
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Letting µ = 1, x1 = x, xi = 0 (2 ≤ i ≤ n) and a = 0 in (21), we obtain

‖nf(
x

n
)− f(x)‖X ≤ ψ(x, 0, . . . , 0) (29)

for all x ∈ A. Thus by using (26), we obtain

‖ 1
n
f(nx)− f(x)‖X ≤ 1

n
ψ(nx, 0, . . . , 0) ≤ Lψ(x, 0, . . . , 0) (30)

for all x ∈ A, that is,
d(f, J(f)) ≤ L <∞. (31)

By Theorem 1.1, J has a unique fixed point in the set X2 := {h ∈ X ′ : d(f, h) <∞}.
Let D be the fixed point of J. We note that D is the unique mapping with D(nx) =
nD(x) for all x ∈ A, such that there exists C ∈ (0,∞) satisfying

‖f(x)−D(x)‖ ≤ Cψ(x, 0, . . . , 0)

for all x ∈ A. On the other hand we have

lim
m→∞

d(Jm(f), D) = 0,

so

lim
m→∞

1
nm`

f(nm`x) = D(x)

for all x ∈ A. Also by Theorem 1.1, we have

d(f,D) ≤ 1
1− L

d(f, J(f)) (32)

It follows from (31) and (32), that

d(f,D) ≤ L

1− L

This implies inequality (27). By the same reasoning as in the proof of Theorem 2.2,
one can show that the mapping f : A→ A is C–linear. It follows from (21) and (28)
that

‖D(aa∗a)−D(a)a∗a− aD(a)∗a− aa∗D(a)‖

= lim
m→∞

‖ 1
n3m

(D((nma)(nma∗)(nma))−D(nma)(nma∗)(nma)−

(nma)D(nma)∗(nma)− (nma)(nma∗)D(nma)‖

≤ 1
n3m

ψ(0, 0, . . . , 0, nma) ≤ 1
nm

ψ(0, 0, . . . , 0, nma) = 0

for all a ∈ A. Therefore

D(aa∗a) = D(a)a∗a+ aD(a)∗a+ aa∗D(a)

for all a ∈ A. Hence D : A→ A is a J∗−derivation. �

Corollary 3.4. Let ε, p be non–negative real numbers such that p < 1. Suppose that
a function f : A→ A satisfies

‖4f(x1, x2, . . . , xn, a)− µf(a)a∗a− µaf(a)∗a− µaa∗f(a)‖
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≤ ε(
n∑

i=1

‖xi‖p + ‖a‖p)

for all µ ∈ T and all x1, . . . , xn, a ∈ A. Then there exists a unique J∗−derivation
D : A→ A such that

‖f(x)−D(x)‖ ≤ np−1ε

1− np−1
‖x‖p

for all x ∈ A.

For the case p = 1, similar to the Example 2.6, we have the following counterex-
ample.

Example 3.5. Let ψ : C → C be defined by

ψ(x) :=
{
x for |x| < 1;
1 for |x| ≥ 1.

Consider the function f : C → C to be defined by the formula

f(x) :=
∞∑

m=0

n−mψ(nmx)

Let

Dµf(x1, . . . , xn, a) :=

µf(
∑n

i=1 xi + aaa

n
)

+ µ
n∑

j=2

f(

∑n
i=1,i 6=j xi − (n− 1)xj + aaa

n
)− f(µx1)

− µf(a)aa− µaf(a)a− µaaf(a)

for all µ ∈ T and all x1, x2, . . . , xn, a ∈ C. Then f satisfies

|Dµf(x1, . . . , xn, a)| ≤
n3 + n2 + 7n− 4

n− 1
(

n∑
i=1

|xi|+ |a|) (33)

for all µ ∈ T and all x1, x2, . . . , xn, a ∈ C, and the range of |f(x)−A(x)|/|x| for x 6= 0
is unbounded for each additive function A : C → C.

Proof. It is clear that f is bounded by n
n−1 on C. If

∑n
i=1 |xi|+ |a| = 0 or

∑n
i=1 |xi|+

|a| ≥ 1, then

|Dµf(x1, . . . , xn, a)| ≤
n2 + (1 + 3|a|2)n

(n− 1)
≤ n2 + (1 + 3|a|2)n

(n− 1)
(

n∑
i=1

|xi|+ |a|)

Now suppose that 0 <
∑n

i=1 |xi| + |a| < 1. Then there exists an integer k ≥ 0 such
that

1
nk+1

≤
n∑

i=1

|xi|+ |a| < 1
nk

(34)
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Therefore

nt|
n∑

i=1

xi + aaa|, nt|
n∑

i=1

xi + aaa− (n− 1)xj |, nt|µx1|, nt|a| < 1

for all j = 2, 3, . . . , n and all t = 0, 1, . . . , k− 1. From the definition of f and (34), we
have

|f(a)| ≤ k|a|+
∞∑

m=k

n−m|ψ(nma)| ≤ k|a|+ n

nk(n− 1)
,

|Dµf(x1, . . . , xn, a)| ≤ k|a|3 +
n(n+ 1)
nk(n− 1)

+ 3|a|2|f(a)|

≤ 4k|a|3 +
n2 + n

nk(n− 1)
+

3n
nk(n− 1)

|a|2

≤ 4(n− 1)k + 3n
nk(n− 1)

|a|2 +
n2 + n

nk(n− 1)

≤ 4(n− 1)k + 3n
nk(n− 1)

|a|+ n3 + n2

(n− 1)
(

n∑
i=1

|xi|+ |a|)

≤ n3 + n2 + 7n− 4
(n− 1)

(
n∑

i=1

|xi|+ |a|)

Therefore f satisfies (33). Let A : C → C be an additive function such that

|f(x)−A(x)| ≤ α|x|

for all x ∈ C, where α > 0 is a constant. Then there exists a constant c ∈ C such
that A(x) = cx for all rational numbers x. Thus we have

|f(x)| ≤ (α+ |c|)|x| (35)

for all rational numbers x. Let t ∈ N with t > α + |c|. If x is a rational number in
(0, n1−t), then nmx ∈ (0, 1) for all m = 0, 1, ..., t− 1. Hence

f(x) ≥
t−1∑
m=0

n−mφ(nmx) = tx > (α+ |c|)x

which contradicts (35). �
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