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Abstract. In present paper, the author investigates the existence of positive solutions of boundary

value problems for second-order functional differential equations on infinite intervals as follows�
x′′ − p(t)x′ − q(t)x + f(t, xt, x′t) = 0, t ∈ I = [0,∞),

αx(t)− βx′(t) = ξ(t) ≥ 0, t ∈ [−τ, 0], ξ(0) = x(∞) = 0,

where α ≥ 0, β > 0, ξ(t) ∈ C[−τ, 0]. By applying fixed point index theorem on cone and operator

spectra theorem, the author obtains the results on existence of positive solutions of boundary value
problems.
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1. Introduction

In recent years, many authors have paid attention to the research of boundary
value problems for functional differential equations owing to its potential significant
applications, see for example [1-9]. In paper [10], Bai et al. study the existence of
positive solutions for boundary value problem{

x′′ − p̄x′ − q̄x + f(t, xt, x
′
t) = 0, t ∈ I = [0,∞),

αx(t)− βx′(t) = ξ(t) ≥ 0, t ∈ [−τ, 0], ξ(0) = x(∞) = 0,
(1.1)

where constants p̄ ≥ 0, q̄ > 0, α ≥ 0, β > 0, function f is continuous and nonnegative.
It is worth pointing out that the method of proof used in [10] is transforming

boundary value problem (simply denoted by BVP ) into an integral equation, so that
the theorem on fixed point index on cone can be applied.

In this paper, we are concerned with the more general boundary value problem{
x′′ − p(t)x′ − q(t)x + f(t, xt, x

′
t) = 0, t ∈ I = [0,∞),

αx(t)− βx′(t) = ξ(t) ≥ 0, t ∈ [−τ, 0], ξ(0) = x(∞) = 0,
(1.2)
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where α ≥ 0, β > 0 and p(t), q(t) ∈ C(I,R). Obviously, BVP (1.1) can be regarded as
the special case of BVP (1.2) with p(t) = p̄, and q(t) = q̄. Now, owing to p(t), q(t) in
(1.2) being variable with respect to t, we can not expect to transform directly BVP
(1.2) into an integral equation as in [10]. In order to overcome the present difficulty
here, we introduce the method of operator spectra combined with the application
of the cone fixed point theorem. We successfully established existence of positive
solutions of BVP (1.2), and generalized correspond the results in [10].

Now, let us begin with formal transformation on BVP(1.2).
Put

u(−τ ; t) =
1
β

e
α
β t

∫ 0

t

e−( α
β )sξ(s)ds, t ∈ [−τ, 0]; u(t) =

{
0, t ∈ I,
u(−τ ; t), t ∈ [−τ, 0],

(1.3)
and set y = x− u, then by [10], BVP(1.2) can be reduced to the form{

y′′ − p(t)y′ − q(t)y + f(t, yt + ut, y
′
t + u′t) = 0, t ∈ I

αy(t)− βy′(t) = 0, t ∈ [−τ, 0], y(∞) = 0.
(1.4)

Let r1, r2 be two real roots of x2 − p̄x − q̄ = 0 i.e. r1 = p̄+
√

p̄2+4q̄

2 , r2 =
p̄−
√

p̄2+4q̄

2 .The constants p̄, q̄ satisfies p̄ ≥ 0, q̄ > 0. It is easy to see that p̄ ≥ 0, q̄ > 0
imply r2 < 0 < r1. Let h = α−βr1

α−βr2
, then β > 0 yields h < 1. As in [10], throughout

the paper, we always assume that h > 0.
Let σ(t) ∈ C(I,R) satisfying

∫∞
0

σ(t)e−r1tdt < ∞. Consider the following linear
differential equation{

y′′ − p̄y′ − q̄y + σ = 0, t ∈ I,
αy(t)− βy′(t) = 0, t ∈ [−τ, 0], x(∞) = 0.

(1.5)

From [10], BVP(1.5) has an unique solution y = Tσ(t), t ∈ J = [−τ,∞) as bellow

(Tσ)(t) =
{

g1(t), t ∈ I,
g2(t), t ∈ [−τ, 0], (1.6)

where

g1(t) =
∫ ∞

0

G(t, s)σ(s)ds, t ∈ I; g2(t) = e
α
β tg1(0), t ∈ [−τ, 0], (1.7)

and

G(t, s) =
1

r1 − r2

{
er2t(e−r2s − he−r1s), 0 ≤ s ≤ t,
e−r1s(er1t − her2t), 0 ≤ t ≤ s.

(1.8)

By h > 0, we have α− βr1 > 0.
Throughout the paper, we keep the following notations:

For fixed µ ∈ (r1,
α
β ), set E =

{
y ∈ C1[J,R] : sup |

t∈J

y(t)|e−µt < ∞, sup |
t∈J

y′(t)|e−µt

}
.

From [10], it follows that (E, || · ||1) is a Banach space equipped with the norm

||y||1 = sup
t∈J

{
(|y(t)|+ |y′(t)|)e−µt

}
, for y ∈ E.
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Let

X =
{

x ∈ C(I,R) :
∫ ∞

0

|x(t)|e−r1tdt < ∞
}

, Z = C([−τ, 0], R),

and
E+ = {x ∈ E : x(t) ≥ 0, t ∈ J} ,

X+ = {x ∈ X : x(t) ≥ 0, t ∈ I} ,

Z+ = {x ∈ Z : x(t) ≥ 0, t ∈ [−τ, 0]} .

It is easy to see that (X, || · ||X) is a normed linear space equipped with the norm
||x||X =

∫∞
0
|x(t)|e−r1tdt, x ∈ X, and (Z, || · ||0) is a Banach space equipped with the

norm ||z||0 = max
t∈[−τ,0]

|z(t)|, z ∈ Z.

As usual, ∀y ∈ E,∀s ∈ I, θ ∈ [−τ, 0], ys(θ) = y(s+ θ), y′s(θ) = y′(s+ θ). Obviously,
for y ∈ E, s ∈ I, we have ys, y

′
s ∈ Z.

For convenience, we list the following assumptions:
(H1) f(t, φ, ϕ) ∈ C(I × Z+ × Z, I), and exists ν > 1 with µν < β

α , such that the
following inequality holds

f(t, φ, ϕ) ≤ a(t) + b(t)(||φ||ν0 + ||ϕ||ν0), for any t ∈ I, φ ∈ Z+, ϕ ∈ Z,

where a(t) ∈ X+, b(t)eνµt ∈ X+.
(H2) Exists 0 < γ < δ,M > λ0

m0τ0
, and R1 > 0 such that

f(t, φ, ϕ) ≥ M(||φ||0 + ||ϕ||0), for t ∈ [γ, δ], (φ, ϕ) ∈ Z+ × Z with ||φ||0 + ||ϕ||0 ≥ R1,

where λ0 described as in (H3) bellow, and m0, τ0 will be given later on.
(H3) p(t), q(t) ∈ C(I,R), 0 ≤ p̄

.= sup
t∈I

p(t) < ∞, 0 < q̄
.= sup

t∈I
q(t) < ∞, q1(t) ≥

λ0p1(t), t ∈ I, q1(t)eµt ∈ X, where p1(t)
.= p̄ − p(t), q1(t)

.= q̄ − q(t) , λ0 =
max

{√
p̄2 + 4q̄, 1

}
.

Remark 1. In the following, we always denote r1,2 = p̄±
√

p̄2+4q̄

2 , and the constants
p̄, q̄ described as in (H3).

The rest of this paper is organized as follows. Section 2 contains some preliminary
lemmas, and the proofs of the main results are given in Section 3.

2. Preliminaries

Lemma 1.[10] The Green’s function G(t, s) given by (1.8) has following properties
(i) G(t, s) ≥ 0,∀t, s ∈ I.
(ii) G(t, s)e−vt ≤ G(s, s)e−r1s, for v ≥ r1, s, t ∈ I.

(iii) Gt(t, s) = 1
r1−r2

{
r2e

r2t(e−r2s − he−r1s), 0 ≤ s < t,
e−r1s(r1e

r1t − hr2e
r2t), 0 ≤ t < s.

Lemma 2.[10] For t ∈ [γ, δ] ⊂ I\{0}, t, s ∈ I,
(1) if r2 ≤ −1, then

(r1 − r2)G(t, s) + Gt(t, s) ≥
{

m1[G(s, s) + |Gt(s− 0, s)|]e−r1s, if t < s,
m1[G(s, s) + |Gt(s + 0, s)|]e−r1s, if t > s,

where m1 = |r2|
1+r1

er2δ.
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(2) if −1 < r2 < 0, then

G(t, s) + Gt(t, s) ≥
{

m2[G(s, s) + |Gt(s− 0, s)|]e−r1s, if t < s,
m2[G(s, s) + |Gt(s + 0, s)|]e−r1s, if t > s,

where m2 = min{ 1+r2
1−r2

er2δ, er1γ − h 1+r2
1+r1

er2γ}.
Lemma 3.[10] Let h ≥ 0. For ς, s ∈ I, ς 6= s and v ≥ r1

(i) If r2 ≤ −1, then

[G(ς, s) + |Gt(ς, s)|]e−vς ≤
{

(1 + h)G[(s, s) + |Gt(s− 0, s)|]e−r1s, if ς < s,
(1 + h)G[(s, s) + |Gt(s + 0, s)|]e−r1s, if ς > s.

(ii) If −1 < r2 < 0, then

[G(ς, s) + |Gt(ς, s)|]e−vς ≤
{

(G(s, s) + |Gt(s− 0, s)|)e−r1s, if ς < s,
(G(s, s) + |Gt(s + 0, s)|)e−r1s, if ς > s.

Remark 2. In Lemma 3, the inequality is dependent on the case ς < s or ς > s,
however, in the proof below, it will be necessary that corresponding inequality holds
independently on the case ς < s or ς > s. Therefor, the following Lemma will be
useful.
Lemma 4. Let 0 < h < 1. For ς, s ∈ I, ς 6= s, v ≥ r1

(i) If r2 ≤ −1, then

[G(s, s) + |Gt(s± 0, s)|]e−r1s ≥ m4[G(ς, s) + |Gt(ς, s)|]e−vς ,

where m4 = min{ r1
|r2| ,

r2(h−1)
r1−r2h , 1

1+h}.
(ii) If −1 < r2 < 0, then

[G(s, s) + |Gt(s± 0, s)]e−r1s ≥ m5[G(ς, s) + |Gt(ς, s)|]e−vς ,

where m5 = min{ r1
|r2| ,

r2(h−1)
r1−r2h , 1}.

Proof. We notice that r2 < 0 < r1, 0 < h < 1, v ≥ r1, ς, s ∈ I, ς 6= s.
(1) If r2 ≤ −1, we consider the case ς > s or ς < s respectively.
(i) If ς > s, by (1.8) and (2.3) , we have

G(s, s) + |Gt(s− 0, s)| = 1− he(r2−r1)s + r1 − hr2e
(r2−r1)s,

[G(ς, s) + |Gt(ς, s)|]e−vς+r1s = er2(ς−s)+(r1s−vς)[1− he(r2−r1)s + |r2|(1− he(r2−r1)s)].

Owing to er2(ς−s)+(r1s−vς) < 1, by taking 0< m4 ≤ min
{

1, r1
|r2|

}
, we have

r1 − hr2e
(r2−r1)s > r1 ≥ m4|r2| ≥ m4|r2|(1− he(r2−r1)s).

So, it follows that

G(s, s) + |Gt(s− 0, s)| ≥ m4[G(ς, s) + |Gt(ς, s)|]e−vς+r1s.

(ii) If ς < s, similarly to the case (i), we have

G(s, s) + |Gt(s + 0, s)| = 1− he(r2−r1)s + |r2|(1− he(r2−r1)s),

[G(ς, s) + |Gt(ς, s)|]e−vς+r1s = e(r1−v)ς [1− he(r2−r1)ς + r1 − hr2e
(r2−r1)ς ].
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By ς < s, we have 1−he(r2−r1)s ≥ 1−he(r2−r1)ς . Taking 0 < m4 ≤ min
{

1, r2(h−1)
r1−r2h

}
,

it turns out that

|r2|(1− he(r2−r1)s) ≥ |r2|(1− h) ≥ m4(r1 − hr2) ≥ m4(r1 − hr2e
(r2−r1)ς).

Noting that e(r1−v)ς ≤ 1, it follows that

G(s, s) + |Gt(s + 0, s)| ≥ m4[G(ς, s) + |Gt(ς, s)|]e(−vς+r1).

So, taking m4 = min{ r1
|r2| ,

r2(h−1)
r1−r2h , 1

1+h}, by above analysis (i)-(ii) combined with (i)
of Lemma 3, we have

[G(s, s) + |Gt(s± 0, s)|]e−r1s ≥ m4[G(ς, s) + |Gt(ς, s)|]e−vς .

(2) If −1 < r2 < 0, the proof is similar to that in the case (1), so we omit it.
From Lemma 2 and lemma 4, it is easy to see that the following lemma is true.

Lemma 5. ∀t ∈ [γ, δ] ⊂ (0,∞),∀s, ς ∈ I, v ≥ r1, s 6= ς, we have
(i) if r2 ≤ −1, then

(r1 − r2)G(t, s) + Gt(t, s) ≥ m[G(ς, s) + |Gt(ς, s)|]e−vς ,

where m = m1m4, and m1,m4 described as in Lemma 2, Lemma 4,respectively.
(ii) if −1 < r2 < 0, then

G(t, s) + Gt(t, s) ≥ n[G(ς, s) + |Gt(ς, s)|]e−vς ,

where n = m2m5, and m2,m5 described as in Lemma 2, Lemma 4, respectively.

Remark 3. Let e0 =
{

m, if r2 ≤ −1
n, if − 1 < r2 < 0 , by Lemma 5, for any fixed number λ

with λ ≥ max{
√

p̄2 + 4q̄, 1} = max {r1 − r2, 1}, ∀t ∈ [r, δ] ⊂ (0,∞),∀s, ς ∈ I, v ≥
r1, s 6= ς, the following inequality holds

λG(t, s) + Gt(t, s) ≥ e0[G(ς, s) + |Gt(ς, s)|]e−vς .

Lemma 6. Assume that (H3) holds, define the operator B as
(By)(t) = p1(t)y′(t) + q1(t)y(t), t ∈ I, for y ∈ E. Then B : E → X is linear and

bounded, and ||B|| ≤ b, where b =
∫∞
0

(p1(t) + q1(t))e(µ−r1)tdt.
Proof. By (H3), we have p1(t) ≥ 0, q1(t) ≥ 0,∀t ∈ I, and p1(t)eµt, q1(t)eµt ∈ X.
Hence, ∀y ∈ E, we have∫ ∞

0

|(By)(t)|e−r1tdt ≤
∫ ∞

0

(p1(t)|y′(t)|+ q1(t)|y(t)|)e−r1tdt

=
∫ ∞

0

(p1(t)|y′(t)|e−µt + q1(t)|y(t)|e−µt)e(µ−r1)tdt

≤ ||y||1
∫ ∞

0

(p1(t) + q1(t))e(µ−r1)tdt = b||y||1.

Thus, By ∈ X. Again, it is clear that B is a linear operator with ||B|| ≤ b.
Lemma 7. The operator T defined by (1.6) maps X into E, and is completely
continuous, moreover, TX+ ⊂ E+, ||T || ≤ d, where d = 1

r1−r2
[2 + r1 − r2(1 + h)].

Proof. For any y ∈ X, from paper [10] combined with (1.5)-(1.8), we have
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(Ty)(t) =
∫ ∞

0

G(t, s)y(s)ds, t ∈ I, (2.1)

(Ty)′(t) =
∫ ∞

0

Gt(t, s)y(s)ds, t ∈ I, (2.2)

where

Gt(t, s) =
1

r1 − r2

{
r2e

r2t(e−r2s − he−r1s), 0 ≤ s < t,
e−r1s(r1e

r1t − hr2e
r2t), 0 ≤ t < s.

(2.3)

∀t ∈ I, by (1.8)-(2.3), it follows from µ > r1 > 0, r2 < 0 < h < 1 and Lemma 1
that

(|(Ty)(t)| + |(Ty)′(t)|)e−µt ≤ e−µt

∫ ∞

0

(G(t, s) + |Gt(t, s)|)|y(s)|ds

≤ 1
r1 − r2

e−µt[(1− r2)er2t

∫ t

0

(e−r2s − he−r1s)|y(s)|ds

+ ((1 + r1)er1t − h(1 + r2)er2t)
∫ ∞

t

e−r1s|y(s)|ds]

≤ 1
r1 − r2

e−µt[(1− r2)(er1t − her2t)
∫ t

0

|y(s)|e−r1sds

+ ((1 + r1)er1t − r2her2t)
∫ ∞

t

|y(s)|e−r1sds]

≤ 1
r1 − r2

[(1− r2)(e(r1−µ)t − he(r2−µ)t)
∫ ∞

0

|y(s)|e−r1sds

+ ((1 + r1)e(r1−µ)t − r2he(r2−µ)t)
∫ ∞

0

|y(s)|e−r1sds]. (2.4)

Since 0 ≤ e(r1−µ)t − he(r2−µ)t = e(r1−µ)t(1 − he(r2−r1)t) ≤ 1, t ∈ I, formula(2.4)
implies

|(Ty)(t)|+ |(Ty)′(t)|e−µt ≤ 1
r1 − r2

[2 + r1 − r2(1 + h)]||y||X

= d||y||X ,∀t ∈ I.

Thus

sup
t∈I

[|(Ty)(t)|+ |(Ty)′(t)|]e−µt ≤ d||y||X . (2.5)

(2) ∀t ∈ [−τ, 0], by (1.6), we have (Ty)(t) = e
α
β t(Ty)(0). From the proof in

[10], it follows that (Ty)′(0) exists. Thus, for any t ∈ [−τ, 0], we have (Ty)′(t) =
α
β e

α
β t(Ty)(0), and

[|(Ty)(t)|+ |(Ty)′(t)|]e−µt = (1 +
α

β
)e( α

β−µ)t|(Ty)(0)|, t ∈ [τ, 0].
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From the assumption µ < α
β , we have that e( α

β−µ)t is increase on [−τ, 0]. Hence
∀t ∈ [−τ, 0], we have

[|(Ty)(t) + (Ty)′(t)|]e−µt ≤ [|(Ty)(0) + (Ty)′(0)|]e−µ0

≤ sup
t∈I

[|(Ty)(t)|+ |(Ty)′(t)|]e−µt.

Thus

sup
t∈[−τ,0]

[|(Ty)(t)|+ |(Ty)′(t)|]e−µt ≤ sup
t∈I

[|(Ty)(t)|+ |(Ty)′(t)|]e−µt . (2.6)

By (2.5)-(2.6) above, we have

||(Ty||1 = sup
t∈J

[|(Ty)(t)|+ |(Ty)′(t)|]e−µt ≤ d||y||X .

Hence ||T || ≤ d. On the other hand, by the proof in [10], it is easy to see that the
operator T is compact. Thus, T is completely continuous. In addition, it is follows
from (i) of lemma 1 that TX+ ⊂ E+.
Lemma 8. Suppose (H3) holds, then BTX+ ⊂ X+.
Proof. For any σ ∈ X+, let φ(t) = (Tσ)(t), Lemma 7 implies φ ∈ E+. By (1.8), (2.3)
and (i) of Lemma 1, it follows that for any 0 ≤ t < s,

G(t, s) ≥ 0, Gt(t, s) ≥ 0. (2.7)

For 0 ≤ s < t, according to assumption λ0 ≥
√

p2 + 4q(= r1 − r2 > |r2|), 0 < h <
1, r2 < 0 < r1, it follows that

Gt(t, s) + λ0G(t, s) =
r2 + λ0

r1 − r2
er2t(e−r2s − he−r1s) ≥ 0. (2.8)

By(2.7), (2.8), we have

Gt(t, s) + λ0G(t, s) ≥ 0,∀t, s ∈ I, t 6= s. (2.9)

Thus,

φ′(t) + λ0φ(t) =
∫ ∞

0

(Gt(t, s) + λ0G(t, s))σ(s)ds ≥ 0,∀t ∈ I.

By (H3), we have

(Bφ)(t) = p1(t)φ′(t) + q1(t)φ(t)
≥ p1(t)φ′(t) + λ0p1(t)φ(t)
= p1(t)(φ′(t) + λ0φ(t)) ≥ 0, t ∈ I.

Thus, by Lemma 6, it follows that Bφ ∈ X+, i.e. BTσ ∈ X+.
Lemma 9. Suppose (H1) holds. for y ∈ E+, define fy = f(t, yt + ut, y

′
t + u′t). Then

f : E+ → X+ is continuous.
Proof. For any y ∈ E, s ∈ I, θ1, θ2 ∈ [−τ, 0], we have

|ys(θ1) + us(θ1)| ≤ |y(s + θ1) + u(s + θ1)|e−µ(s+θ1) · eµs ≤ ||y + u||1eµs,

|y′s(θ2) + u′s(θ2)| ≤ |y′(s + θ2) + u′(s + θ2)|e−µ(s+θ2) · eµs ≤ ||y + u||1eµs.

So
||ys + us||ν0 + ||y′s + u′s||ν0 ≤ 2||y + u||ν1eνµs, s ∈ I. (2.10)



430 GUOQING CHAI

Again, by (H1), for t ∈ I, we have

0 ≤
∫ ∞

0

(fy)(s)e−r1sds ≤
∫ ∞

0

a(s)e−r1sds + 2||y + u||ν1
∫ ∞

0

b(s)e(νµ−r1)sds < ∞.

(2.11)
It means that fy ∈ X+.

On the other hand, for any sequence {yn}∞n=0 in E+ with ||yn − y0||1 → 0, then,
exists N ≥ 1 such that ||yn||1 ≤ 1 + ||y0||1 when n ≥ N . By argument similar to
(2.11), we have

|(fyn − fy0)(s)|e−r1s ≤ (fyn + fy0)(s)e−r1s

≤ 2a(s)e−r1s + 2[(1 + ||y0||1 + ||u||1)ν + ||y0 + u||ν1 ]b(s)e(νµ−r1)s

∆= F (s) ∈ L(0,∞), n ≥ N.

Applying Lebesgue convergence theorem, by the continuity of f , we can obtain easily
||fyn − fy0||X → 0(n →∞), i.e. the operator f : E+ → X+ is continuous.
Lemma 10. Let a ≥ 0, b ≥ 0, v > 1, then

aν + bν ≤ (a + b)ν ≤ 2ν−1(aν + bν).

Proof. Without loss of generality, we can assume ab > 0, If a = b, then it is obvious
that the inequality holds. So we can assume that b > a.

(i) Let ϕ(t) = (t + x)ν , t ∈ [0, 1], x > 1. Then ∃t̄ ∈ (0, 1) such that ϕ(1) − ϕ(0) =
ϕ′(t̄) = ν(t̄ + x)ν−1. Owing to ν > 1, x > 1, we have that ν(t̄ + x)ν−1 > 1. Thus
(1 + x)ν − xν > 1. i.e., (1 + x)ν > 1 + xν . Taking x = b

a , it follows that

aν + bν < (a + b)ν .

(ii) Let ϕ(t) = tν , t > 0. According to ν > 1, we have ϕ′′(t) = ν(ν−1)tν−2 > 0, t > 0.
So, by property of convex function, we have

ϕ(
x1 + x2

2
) ≤ 1

2
ϕ(x1) +

1
2
ϕ(x2), for any x1, x2 ∈ (0,∞).

Taking x1 = a
a+b , x2 = b

a+b in above inequality, we immediately have

1
2ν

≤ 1
2
(

a

a + b
)ν +

1
2
(

b

a + b
)ν .

And so, (a + b)ν ≤ 2ν−1(aν + bν).

3. Main results

We introduce the notations as follows:
Let A0 = (1 + h)

∫∞
0

(G(s, s) + H2(s))(a(s) + 2ν−1dν
0b(s))e−r1sds,

B0 = 22ν−1(1 + h)
∫∞
0

(G(s, s) + H2(s))b(s)e(νµ−r1)sds,
H2(s) = max {|Gt(s− 0, s)|, |Gt(s + 0, s)|} , where

d0 = (1 +
α

β
)
1
β

∫ 0

−τ

e−
α
β sξ(s)ds +

1
β
||ξ||0.

Again, denote m0 =
∫ δ

γ
G(0, s)ds = 1−h

(r1−r2)r1
(e−r1γ−e−r1δ), τ0 = e0(1−L), L = bd

( where b, d, e0 are described as in lemma 6-7 and Remark 3, respectively).
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Remark 4. In the hypothesis (H2),M > λ0
m0τ0

, where m0, τ0 described above.
We are now in a position to state and prove our main results on the existence for

BVP (1.2)
Theorem 1. Suppose (H1) − (H3) hold, in addition, assume that L < 1, A0 <

( 1−L
2 )

ν
ν−1 B

1
1−ν

0 . Then BVP (1.2) has at least one positive solution x with x(t) ≥
u(t), t ∈ J , where u(t) described as in(1.3).
Proof. The proof is divided into three steps.

Step1.
By (1.2)-(1.8), it is clear that x ∈ E is an solution of BVP(1.2)⇔ y = x−u ∈ E, y =

T (By + fy) ⇔ y ∈ E, (I − TB)y = T fy. By Lemma 6 and Lemma 7, we have that
the linear operator TB : E → E is completely continuous, and ||TB|| ≤ ||T || · ||B|| ≤
L < 1. Thus, (I − TB)−1 is defined well and bounded. Let H = (I − TB)−1T , then
H : X → E is completely continuous. Hence,∀ϕ ∈ X, we have

(I − TB)y = Tϕ, y ∈ E ⇔ y = Hϕ ∈ E.

By Neuman expansion formula, H can be expressed by

(Hϕ)(t) = (I + TB + · · ·+ (TB)n + · · · )(Tϕ)(t)
= (Tϕ)(t) + (TB)(Tϕ)(t) + (TB)n(Tϕ)(t) + · · · , t ∈ J. (3.1)

Now, we shall prove the following inequality holds by induction,

∀σ ∈ X+,∀n ≥ 1, (TB)n(Tσ)(t) ≥ 0, t ∈ J. (3.2)

In fact, for n = 1, owing to σ ∈ X+, by Lemma 8, we have BTσ ∈ X+, and so, it
follows from Lemma 7 that (TB)(Tσ) = T (BTσ) ∈ E+. Thus, (TB)(Tσ)(t) ≥ 0, t ∈
J . Suppose for n = k, inequality (3.2) holds. Then for n = k + 1, letting σ1 = BTσ,
we have σ1 ∈ X+, and it follows that

(TB)k+1(Tσ)(t) = (TB)k(TB)(Tσ)(t)
= (TB)k(Tσ1)(t) ≥ 0, t ∈ J.

Thus, (3.2) holds. By (3.1)-(3.2), we have

∀ϕ ∈ X+, (Hϕ)(t) ≥ (Tϕ)(t), t ∈ J. (3.3)

On the other hand, ∀ϕ ∈ X, it follows from (3.1) that

||Hϕ||1 ≤ ||Tϕ||1 + ||TB|| · ||Tϕ||1 + · · ·+ ||(TB)n|| · ||Tϕ||1 + · · ·

≤ (1 + L + · · ·+ Ln + · · · )||Tϕ||1 =
1

1− L
||Tϕ||1. (3.4)

Step 2 .
We shall show that

∀ϕ ∈ X+, (Hϕ)′(t) + (Hϕ)(t) ≥ (Tϕ)′(t) + λ0(Tϕ)(t), t ∈ I. (3.5)

(1) for any fixed number Γ ≥ max
{
|r2|, (r1 − r2h)(1− h)−1

}
, we have

|Gt(t, s)| ≤ ΓG(t, s), 0 ≤ t, s < ∞, t 6= s. (3.6)

In fact, by (1.8), (2.3), according to 0 < h < 1,we have
(i) if 0 ≤ s < t < ∞, then |Gt(t, s)| = |r2|G(t, s) ≤ ΓG(t, s).
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(ii) if 0 ≤ t < s < ∞, then

0 ≤ Gt(t, s) =
1

r1 − r2
e−r1ser1t(r1 − hr2e

(r2−r1)t)

≤ 1
r1 − r2

e−r1ser1t(r1 − hr2)

≤ Γ
r1 − r2

e−r1ser1t(1− h)

≤ ΓG(t, s).

Hence, relation (3.6) holds.
(2) Now, we are going to show that for any fixed d > 0, and any ϕ ∈ X+ , the

following inequality holds

∀n ≥ 1, |((TB)n(Tϕ))′(t)| ≤ Γ||TB||n||Tϕ||1eµd, t ∈ [0, d]. (3.7)

Firstly, we shall prove the following formula holds :

∀n ≥ 1,∃ϕn ∈ X+such that B(TB)nTϕ = BTϕn. (3.8)

Indeed, for n = 1, B(TB)Tϕ = B(T (BTϕ)). Letting ϕ1 = BTϕ, by Lemma 8, we
have ϕ1 ∈ X+. Thus B(TB)Tϕ = BTϕ1. Suppose that for n = k, ∃ϕk ∈ X+ such
that B(TB)kTϕ = BTϕk. Then for n = k + 1, we have

B(TB)k+1Tϕ = B(TB)(TB)k(Tϕ) = B(T (B(TB)k)Tϕ)) = B(T (BTϕk)).

Letting ϕk+1 = BTϕk, then, it follows from Lemma 8 that ϕk+1 ∈ X+, and so,
B(TB)k+1Tϕ = BTϕk+1. Thus, by induction, it follows that (3.8) holds.

Secondly, we come to show the following formula holds.

∀n ≥ 0,∃ϕn ∈ X+, such that (TB)n+1Tϕ = T (BTϕn) ∈ E+. (3.9)

In fact,
(i) If n ≥ 1, then from (3.8), it follows that ∃ϕn ∈ X+ such that

(TB)n+1Tϕ = (TB)((TB)nTϕ) = T (B(TB)nTϕ) = T (BTϕn).

Again,by lemma 7 -8, we have T (BTϕn) ∈ E+.
(ii) If n = 0, taking ϕ0 = ϕ ∈ X+, by Lemma 7 -8, we have (TB)Tϕ = T (BTϕ0) ∈

E+.
Hence, whether for the case (i), or case(ii) above, the formula (3.9) is always true.
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Now, from (3.9),(2.2), and (3.6), for any n ≥ 1, t ∈ [0, d], we have

|((TB)nTϕ)′(t)| = |(T (BT )ϕn−1)
′(t)|

= |
∫ ∞

0

Gt(t, s)(BTϕn−1)(s)ds|

≤
∫ ∞

0

|Gt(t, s)|(BTϕn−1)(s)ds

≤ Γ
∫ ∞

0

G(t, s)(BTϕn−1)(s)ds

= Γ(T (BTϕn−1))(t)
= Γ(TB)n(Tϕ))(t)
= Γ((TB)n(Tϕ))(t)e−µt)eµt

≤ Γ||(TB)n(Tϕ)||1eµt

≤ Γ||TB||n||Tϕ||1eµt.

It means that |((TB)nTϕ)′(t)| ≤ Γ||TB||n||Tϕ||1eµd, for t ∈ [0, d].
This show that (3.7) holds. So we have

∞∑
n=1

|((TB)n(Tϕ))′(t)| ≤ Γ
∞∑

n=1

||TB||n · ||Tϕ||1eµd ≤ ΓL

1− L
||Tϕ||1eµd < ∞, t ∈ [0, d].

Hence, we can differentiate termwise the series (3.1) on [0, d], and obtain

(Hϕ)′(t) = (Tϕ)′(t) +
∞∑

n=1

((TB)n(Tϕ))′(t), t ∈ [0, d].

Thus, ∀t ∈ [0, d], we have

(Hϕ)′(t) + λ0(Hϕ)(t) = (Tϕ)′(t) + λ0(Tϕ)(t)

+
∞∑

n=1

[((TB)nTϕ)′(t) + λ0((TB)nTϕ)(t)]. (3.10)

By (3.9), (2.2), (2.9) and Lemma 8, for any n ≥ 1, t ∈ [0, d], we have

((TB)n(Tϕ))′(t) + λ0((TB)nTϕ)(t) = (T (BTϕn−1))
′(t) + λ0(T (BTϕn−1))(t)

=
∫ 1

0

(Gt(t, s) + λ0G(t, s))(BTϕn−1)(s) ≥ 0.

So by (3.10), the following inequality holds

(Hϕ)′(t) + λ0(Hϕ)(t) ≥ (Tϕ)′(t) + λ0(Tϕ)(t), t ∈ [0, d].

It means that relations (3.5) holds according to arbitrariness of d > 0.
Step 3.

Let P =
{

y ∈ E|y(t) ≥ 0, t ∈ J, min
t∈[γ,δ]

[y′(t) + λ0y(t)] ≥ τ0||y||1
}

,where τ0 = e0(1−

L). Obviously, P 6= ∅ noting that θ ∈ P (θ ≡ 0, t ∈ J), and P is a cone in E. Putting
Q = Hf, since H : X → E is completely continuous, by Lemma 9 together with (3.2),
we have Q : E+ → E+ is completely continuous.
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For any y ∈ P, we have fy ∈ X+. In view of (3.1) and Remark 3, for any t ∈
[γ, δ], ς ∈ I, we get

(Hfy)′(t) + λ0(Hfy)(t) ≥ (T fy)′(t) + λ0(T fy)(t)

=
∫ ∞

0

(Gt(t, s) + λ0G(t, s))(fy)(s))ds

≥ e0(
∫ ∞

0

(G(ς, s) + |Gt(ς, s)|)(fy)(s)ds)e−µς

≥ e0(T fy)(ς) + |(T fy)′(ς)|)e−µς ,

and so

(Hfy)′(t) + λ0(Hfy)(t) ≥ e0 sup
ς∈I

[(T fy)(ς) + |(T fy)′(ς)|]e−µζ ,∀t ∈ [γ, δ].

So by (2.6), we have

min
t∈[γ,δ]

[(Hfy)′(t) + λ0(Hfy)(t)] ≥ e0||T fy||1.

On the other hand, inequality (3.4) yields ||T fy||1 ≥ (1− L)||Hfy||1. Therefore

min
t∈[γ,δ]

[(Hfy)′(t) + λ0(Hfy)(t)] ≥ e0(1− L)||Hfy||1.

Namely ,
min

t∈[γ,δ]
[(Qy)′(t) + λ0(Qy)(t)] ≥ τ0||Qy||1(τ0 = e0(1− L)).

Thus, we arrive at Q : P → P .
Step4.

The hypothesis A0 < ( 1−L
2 )

ν
ν−1 B

1
1−ν

0 together with ν > 1 implies 2A0
1−L < (A0

B0
)

1
ν .

We take a number r0 ∈ ( 2A0
1−L , (A0

B0
)

1
ν ). Then rν

0 < A0
B0

, and so B0
1−Lrν

0 < A0
1−L . Thus,

we have
A0

1− L
+

B0

1− L
rν
0 <

2A0

1− L
< r0 (3.11)

Set Ωr0 = {y ∈ P : ||y||1 < r0} . For any y ∈ ∂Ωr0 , we have (ys + us, y
′
s + u′s) ∈

Z+ × Z, and ||y||1 = r0. Thus, by (H1), it follows that

f(s, ys + us, y
′
s + u′s) ≤ a(s) + b(s)(||ys + us||ν0 + ||y′s + u′s||ν0), s ∈ I.

It is easy to see that ||us||0 + ||u′s||0 ≤ d0. By argument similar to (2.10), we obtain

||ys||0 + ||y′s||0 ≤ 2||y||1eµs, s ∈ I. (3.12)

So, by Lemma 10 together with (3.12) we have

||ys + us||ν0 + ||y′s + u′s||ν0 ≤ (||ys + us||0 + ||y′s + u′s||0)ν

≤ (||ys||0 + ||y′s||0 + d0)ν

≤ 2ν−1((||ys||0 + ||y′s||0)ν + dν
0)

≤ 22ν−1||y||ν1eνµs + 2ν−1dν
0 , s ∈ I.

Thus,

f(s, ys + us, y
′
s + u′s) ≤ (a(s) + 2ν−1dν

0b(s)) + 22ν−1b(s)eνµs||y||ν1 , s ∈ I.
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Then, by proving as paper [10], we have

[(T fy)(t) + |(T fy)′)(t)|]e−µt

≤ e−µt
∫∞
0

(G(t, s) + |Gt(t, s)|)f(s, ys + us,y
′
s + u′s)ds

≤ (1 + h)
∫∞
0

(G(s, s) + H2(s))f(s, ys + us,y
′
s + u′s)e

−r1sds
≤ (1 + h)

∫∞
0

(G(s, s) + H2(s))(a(s) + 2ν−1dν
0b(s))e−r1sds

+22ν−1(1 + h)
∫∞
0

(G(s, s) + H2(s))b(s)e(νµ−r1)sds||y||ν1
= A0 + B0||y||ν1 ,∀t ∈ I.

Thus, by (2.6), it follows that ||T fy||1 ≤ A0 + B0||y||ν1 . So by (3.4) and (3.12), we
have

||Qy||1 = ||Hfy||1 ≤
1

1− L
||T fy||1 ≤

A0

1− L
+

B0

1− L
||y||ν1

=
A0

1− L
+

B0

1− L
rν
0 < r0 = ||y||1.

So, the fixed point index theorem implies

i(Q,Ωr0 , P ) = 1. (3.13)

(2) Take R0 > max{ λ0d0m0M
τ0m0M−λ0

, λ0(d0+R1)
τ0

, r0, }, and set ΩR0 = {y ∈ P : ||y||1 <

R0}. Now, we shall prove the following inequality is true

||Qy||1 ≥ ||y||1,∀y ∈ ∂ΩR0 . (3.14)

In fact, for any y ∈ ∂ΩR0 , we have ys + us ∈ Z+, y′s + u′s ∈ Z,∀s ∈ I, and ||y||1 = R0.
Owing to ||us||0 + ||u′s||0 ≤ d0,∀s ∈ I, we have

||ys + us||0 + ||y′s + u′s||0 ≥ ||ys||0 + ||y′s||0 − (||us||0 + ||u′s||0)
≥ ||ys||0 + ||y′s||0 − d0, s ∈ I. (3.15)

According to y ∈ P, λ0 ≥ 1, it follows that

y(s) + |y′(s)| =
1
λ0

(λ0y(s) + λ0|y′(s)|) ≥
1
λ0

(λ0y(s) + |y′(s)|)

≥ τ0

λ0
||y||1,∀s ∈ [γ, δ]. (3.16)

Since ||ys||0 + ||y′s||0 ≥ y(s) + |y′(s)||,∀s ∈ [γ, δ], by (3.15)-(3.16), we have

||ys + us||0 + ||y′s + u′s||0 ≥ τ0

λ0
||y||1 − d0

=
τ0

λ0
R0 − d0 > R1, s ∈ [γ, δ]. (3.17)

Consequently, by (H2) together with (3.17), we have

f(s, ys + us, y
′
s + u′s) > M(||ys + us||0 + ||y′s + u′||0)

≥ M
τ0

λ0
R0 −Md0, s ∈ [γ, δ].
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Thus,

(T fy)(0) =
∫ ∞

0

G(0, s)f(s, ys + us,y
′
s + u′s)ds

≥
∫ δ

γ

G(0, s)f(s, ys + us,y
′
s + u′s)ds

≥ (
∫ δ

γ

G(0, s)ds)(M
τ0

λ0
R0 −Md0)

= M
m0τ0

λ0
R0 −Mm0d0 > R0. (3.18)

From (3.18) and (3.3), it follows that

||Qy||1 ≥ (Qy)(0) = (Hfy)(0) ≥ (T fy)(0) > R0 = ||y||1.

Hence, (3.14) holds, and so
i(Q,ΩR0 , P ) = 0.

Thus i(Q,ΩR0\Ωr0 , P ) = −1, and so ∃y∗ ∈ ΩR0\Ωr0 with Qy∗ = y∗. It means that
y∗ ∈ P\{θ} is a positive solution BVP(4), and so x = y∗ + u is a positive solution
BVP (1.2), satisfying x(t) ≥ u(t), t ∈ J , x 6= u.This completes the proof of theorem
1.
Example 1. Consider the following BVP x′′ − (1− e−65.5t)x′ − 6(1− e−60.5t) + f(t, xt, x

′
t) = 0, t ∈ I = [0,∞),

4x− x′ = 1− e4t, t ∈ [−1, 0],
x(∞) = 0.

(3.19)

Set α = 4, β = 1, ξ(t) = 1 − e4t, p(t) = 1 − e−65.5t, q(t) = 6(1 − e−60.5t). Then,
p̄ = 1, q̄ = 6, p1(t) = e−65.5t, q1(t) = 6e−60.5t, r1 = 3, r2 = −2, α

β = 4, λ0 = 5, h =
1
6 , d0 = 5

4e4− e−4− 21
4 . Take µ = 3.5, then b =

∫∞
0

(p1(t) + q1(t))e(µ−r1)tdt = 3
26 , d =

1
r1−r2

[(2 + r1 − r2(1 + h)] = 22
3 , L = bd = 11

13 < 1. Take v = 1.1, set

f(t, ϕ, φ) = f1(t) + f2(t)e−0.85t(
∫ ∞

0

k(t)ϕ1.1(t)dt + ||ϕ||1.1
0 + ||φ||1.1

0 ),

∀t ∈ I, (ϕ, φ) ∈ Z+ × Z, where function f1, f2, k ∈ C(I,R+) satisfy
∫∞
0

k(t)dt ≤ 1,
and

∫∞
0

f1(s)e−3sds < +∞.
In addition, f2 satisfies the following conditions :
(D1)

∫∞
0

f2(s)ds < min {1, ρ}, where ρ = ( 9
455 )

11
10 (

∫∞
0

f1(s)e−3sds + (2d0)1.1)−
1
10 .

(D2) Exists t0 ∈ (0,+∞) such that f2(t0) > 0.
Obviously, after f1 has been given, above function f2 can be found easily.
It is to see that function f satisfies the following relation;

f(t, ϕ, φ) ≤ a(t) + b(t)(||ϕ||1.1
0 + ||φ||1.1

0 ),∀t ∈ I, (ϕ, φ) ∈ Z+ × Z. (3.20)

f(t, ϕ, φ) ≥ e−0.85tf2(t)(||ϕ||1.1
0 + ||φ||1.1

0 ), ∀t ∈ I, (ϕ, φ) ∈ Z+ × Z. (3.21)

where a(t) = f1(t), b(t) = 2e−0.85tf2(t).
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Again, we easily know that

G(s, s) + H2(s) =
4
5

+
1
30

e−5s ≤ 5
6
, s ∈ I. (3.22)

By carefully calculating, taking account of (3.22), we obtain

A0 ≤
35
36

(
∫ ∞

0

f1(s)e−3sds + (2d0)1.1), B0 ≤ 20.2 × 35
9

∫ ∞

0

f2(s)ds. (3.23)

Thus, by the choice of f2 together with (3.23), we have

(
1− L

2
)

υ
υ−1 B

1
1−v

0 = (
1
13

)11
1

B10
0

> A0.

On the other hand, from (D2) , it follows that exists 0 < γ < δ, and b > 0 such
that e−0.85tf2(t) ≥ b, t ∈ [γ, δ]. Consequently, from (3.21), and Lemma 10, we have

f(t, ϕ, φ) ≥ b(||ϕ||1.1
0 + ||φ||1.1

0 ) ≥ 1
20.1

b(||ϕ||0 + ||φ||0)1.1, t ∈ [γ, δ], (ϕ, φ) ∈ Z+ × Z.

Thus

inf
t∈[γ,δ]

lim
||ϕ||0+||φ||0→+∞

f(t, ϕ, φ)
||ϕ||0 + ||φ||0

≥ b

20.1
lim

||ϕ||0+||φ||0→∞
(||ϕ||0 + ||φ||0)0.1 = +∞.

Hence, for M > λ0
m0τ0

, exists R1 > 0 such that the follows inequality holds.
f(t, ϕ, φ) ≥ M(||ϕ||0 + ||φ||0), t ∈ [γ, δ], (ϕ, φ) ∈ Z+ × Z with ||ϕ||0 + ||φ||0 ≥ R1.
So by Theorem 1, BVP (3.19) has a positive solution x = y + u.
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