Fized Point Theory, 13(2012), No. 2, 423-438
http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

EXISTENCE OF POSITIVE SOLUTIONS OF BOUNDARY
VALUE PROBLEMS FOR SECOND-ORDER FUNCTIONAL
DIFFERENTIAL EQUATIONS ON INFINITE INTERVALS

GUOQING CHAI

College of Mathematics and Statistics, Hubei Normal University
Huangshi, Hubei, 435002, PR China
E-mail: mathchgq@gmail. com

Abstract. In present paper, the author investigates the existence of positive solutions of boundary
value problems for second-order functional differential equations on infinite intervals as follows
{ " —p(t)x’ — q(t)x + f(t,z¢,2;) = 0,6 € I =[0,00),
az(t) — Bz’ (t) = £(t) > 0,t € [-7,0],£(0) = z(c0) =0,

where a > 0,8 > 0,£(t) € C[—7,0]. By applying fixed point index theorem on cone and operator
spectra theorem, the author obtains the results on existence of positive solutions of boundary value
problems.
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1. INTRODUCTION

In recent years, many authors have paid attention to the research of boundary
value problems for functional differential equations owing to its potential significant
applications, see for example [1-9]. In paper [10], Bai et al. study the existence of
positive solutions for boundary value problem

{ 2 —pa' — qr+ f(t,xe,x) =0,t € I =10,00), (1.1)
ax(t) — pa'(t) = £(t) > 0,t € [-7,0],£(0) = 2(c0) = 0, '

where constants p > 0, > 0, > 0,5 > 0, function f is continuous and nonnegative.
It is worth pointing out that the method of proof used in [10] is transforming
boundary value problem (simply denoted by BVP ) into an integral equation, so that
the theorem on fixed point index on cone can be applied.
In this paper, we are concerned with the more general boundary value problem

{ 2" —p(t)x —q(t)x + f(t,z, ;) =0,t € I =[0,00),

0z (t) — B/ (t) = £(8) > 0,¢ € [—r, 0], £(0) = 2(00) = 0, (1.2)
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where a > 0,5 > 0 and p(t), ¢(t) € C(I, R). Obviously, BVP (1.1) can be regarded as
the special case of BVP (1.2) with p(t) = p, and ¢(t) = g. Now, owing to p(t),¢(f) in
(1.2) being variable with respect to ¢, we can not expect to transform directly BVP
(1.2) into an integral equation as in [10]. In order to overcome the present difficulty
here, we introduce the method of operator spectra combined with the application
of the cone fixed point theorem. We successfully established existence of positive
solutions of BVP (1.2), and generalized correspond the results in [10].

Now, let us begin with formal transformation on BVP(1.2).

Put

1oy [0 (o
u(—7;t) = Beﬁt/t e—(ﬁ)sf(s)ds,t e[-7,0); wu(t)= { 2’(75_??),75 € [-7,0],
(1.3)

and set y = x — u, then by [10], BVP(1.2) can be reduced to the form

v —pt)y —qt)y+ ft,ye +ue,y, +up) =0,t €1 14
ay(t) — By'(t) = 0,t € [~7,0],y(c0) = 0. :

Let 71,75 be two real roots of 22 — pr — ¢ = 0 ie. 7 = 5 , T

s
%W.The constants p, g satisfies p > 0, > 0. It is easy to see that p > 0, > 0
imply 7o < 0 < ry. Let h = 3:2:;, then 8 > 0 yields h < 1. As in [10], throughout
the paper, we always assume that h > 0.

Let o(t) € C(I, R) satisfying [~ o(t)e ""'dt < co. Consider the following linear
differential equation

{y//_py/_qy_|_o-:O,IfGI7 (15)
ay(t) - By (t) = 0.t € [~7,0],2(c0) = 0. |

From [10], BVP(1.5) has an unique solution y = To(t),t € J = [—7,00) as bellow

mo0-{ 2L
where .
gl(t) = /0 G(ta S)J(S)dsvt € I;g2(t) = e%tgl(()),t € [_Ta 0]7 (17)
and

1 rot(,—r2s __ —7r18 < <
Gt s) = {e (e he™™%),0 <s <t,

6—7-13(67'1t _ h€7'2t>70 <t<s. (18)

L )
By h > 0, we have a — Or; > 0.
Throughout the paper, we keep the following notations:

For fixed p1 € (r1, ), set £ = {y € CJ, R] : sup | y(t)|e ™ < oo, sup | y’(t)|e“t}.
teJ teJ
From [10], it follows that (E,|| - ||1) is a Banach space equipped with the norm

1yl = sup {(y@[+1y'@®))e ™}, fory € E.
S
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Let
X = {x €C(IR) /ODO le(t)|e "t dt < oo} 7 =C(-7,00,R),

and
Et={ze€FE:xz(t)>0,teJ},
Xt ={zre X :z(t)>0,tel},
Zt={ze€Z:z2(t)>0,te[-7,0]}.

It is easy to see that (X,]|-||x) is a normed linear space equipped with the norm
|z||x =[5 |lz(t)|e"""dt, v € X, and (Z,]| - ||o) is a Banach space equipped with the
norm ||z|lp = max |z(t)],z € Z.

te[—7,0]

Asusual, Vy € E\Vs € 1,0 € [-1,0],y:(0) = y(s+0),y.(0) = v/ (s+0). Obviously,
fory € E,s € I, we have ys,y. € Z.

For convenience, we list the following assumptions:

(Hy) f(t,¢,0) € C(IX ZT x Z,I), and exists v > 1 with uv < g, such that the
following inequality holds

F(t.d,0) < a(t) +b(&)(lIgllG + [lellg) forany t € I,¢ € 27, p € Z,

where a(t) € X+ b(t)e# € X+,
(H2) Exists0<~vy <6, M > mi‘]"To ,and Ry > 0 such that

F(t,¢,0) = M([[6]lo + ll¢llo), for t € [v,0],(¢,¢) € ZT x Z with [|¢]lo +[|¢llo = R,

where A\g described as in (Hs) bellow, and mg, 79 will be given later on.
(Hs) p(t),q(t) € C(I,R),0 < p = Slll?P(t) <o0,0<q= suI;q(t) < o0,qi(t) >
te te
Aopi(t),t € I, qi(t)e’ € X, where pi(t) = p —p(t),q1(t) = ¢ —q(t) , do =
max{ P2 + 47, 1}.

=
Remark 1. In the following, we always denote r; o = pi++4q, and the constants
D, ¢ described as in (Hj).

The rest of this paper is organized as follows. Section 2 contains some preliminary

lemmas, and the proofs of the main results are given in Section 3.

2. PRELIMINARIES

Lemma 1.1'] The Green’s function G(t, s) given by (1.8) has following properties
(1) G(t,s) >0,Vt,sel.
(it) G(t,s)e "' < G(s,s)e” "5 forv > ry,s,t € 1.
roe™t (728 — heTT1%),0 < s < t,
(Z’LZ) Gt(t; 5) = Tlir2 62_r15((7ﬁ16r1t _ hr2€r2t))’ 0 <t<s.
Lemma 2.0% For ¢ € [v,6]  I\{0},t,s € I,
(1) if ro < —1, then

m [G(S, s) + ‘Gt(s - 075)‘
(r1 —r2)G(t,s) + Gy(t,s) > { mi[G(S, )+ |Ge(s +0,5)]

where m; = %6”5.

lemmslift < s,
lemmslift > s,
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(2) if =1 <7y <0, then

Glt,s5) + Gult,s) > { malGle, ) +1Gus 0.l it < o

ma[G(s,s) + |Gi(s +0,s)|le”™%,if t > s,

where my = min{ =2 e“‘s er hli:f e}

Lemma 3.010 Leth>0. For¢,sel,¢#sand v >r
(i) If ro < —1, then

e (14+h)G[(s,8) + |Ge(s — 0, 8)|le ™5, if ¢ < s,
(G(s, 8) +1Gels, )lle™ < { (14 B)Cl(5.) + G151 0, )]~ it < > 5.

(if) If —1 <72 < 0, then

v (G(s,8) +|Gi(s —0,8)])e 5 if ¢ < s,
S
(G, ) +1Gus, s)lle = { (G(s,s) +|Gi(s+0,5)])e 2 if ¢ > s.

Remark 2. In Lemma 3, the inequality is dependent on the case ¢ < s or ¢ > s,
however, in the proof below, it will be necessary that corresponding inequality holds
independently on the case ¢ < s or ¢ > s. Therefor, the following Lemma will be
useful.
Lemma 4. Let 0 < h < 1. For¢,s € I[,¢ # s,v > 11
(i) If 7o < —1, then
[Gls.s) + |Gi(s £ 0,) e ™™ > ma[Gls, 8) + [Guls, s)[Je™,
ro(h—1)
where my = mln{lm7 ol 1Jrh}
(if) If —1 <72 < 0, then

[G(s,8) +[Gils £0,8)e™™ = ms[G(s, 8) + [Gi(s, s)[Jle ™™,

(h—1
where ms = mln{lr2‘7T2 ) 1}

ri—rah’
Proof. We notice that 1o <0< 11,0 <h <1l,0v>r1,¢,5 € 1,6 #s.
(1) If ro < —1, we consider the case ¢ > s or ¢ < s respectively.

(i) If¢ > s, by (1.8) and (2.3) , we have
G(s,8) + |Ge(s —0,8) =1 — hel™27T)8 4 py — hpgelr2—r1)s,
(G(s,8) + |Gils, s)[Je U+ = er2(s=)Hrs—v) ] _ pelra=r)s ||y, |(1 — Re(r2=r)s)].
Owing to e"2(s—9)+(rs=vs) < 1 by taking 0< my < min {1, I ‘} we have
— hree(27T8 > > mylrg| > my|ra|(1 — he(r27T)9),
So, it follows that
G(s,8) +|Gi(s —0,8)| > ma[G(s,s) + |Gi(s, s)|Je” 5.
(ii) If ¢ < s, similarly to the case (i), we have
G(5,8) + |Ge(s +0,8)] = 1 — hel™27T% 4 |py|(1 — he(r27m0)5),

[G(s,s) + |Gi(s, s)|Je T8 = =V [1 — pe(r2=m)s ) — hpge(ra=ri)s],
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By ¢ < s, we have 1—helr2=r1)s > 1 — pelra=ri)s, Taking 0 < m4 < min {1 M},

’ T1—T'2h
it turns out that
|7"2|<1 — he(TQ—m)S) > |T‘2‘(1 — h) > m4(r1 — hr2) > m4(7«1 _ hr2e(r2—r1)<).
Noting that e(™ =)< <1, it follows that
G(s,5) + |Ge(s +0,5)| > my[G(s,s) + |G(s, s)|Je s Hm),

ry ra(h=1) 1
|ra|? ri—roh ? 1+h

So, taking my4 = min{
of Lemma 3, we have

[G(s,8) +Gi(s £0,8)lle™™ = ma[G(s, 8) + [Gi(s, s)[le™™.

}, by above analysis (i)-(ii) combined with (i)

(2) If —1 < ro < 0, the proof is similar to that in the case (1), so we omit it.

From Lemma 2 and lemma 4, it is easy to see that the following lemma is true.
Lemma 5. Vt € [y,0] C (0,00),Vs,c € I,v > 11,8 # <, we have

(i) if ro < —1, then

(r1 = 7r2)G(t, s) + Gi(t, ) =2 m[G(s, s) +|Gi(s, s)[Jle™™,
where m = mymy, and m1, my described as in Lemma 2, Lemma 4 respectively.
(#9) if =1 < ry <0, then
G(t,s) + Gi(t, s) > n[G(s,s) + |Ge(s, s)|]e™ ",
where n = maoms, and mo, ms described as in Lemma 2, Lemma 4, respectively.

e <
Remark 3. Let ¢p = { Z%ilffr2 1< rl <0’
s — 2

with A > max{\/p? +4q,1} = max{r, —re,1}, Vt € [r,d] C (0,00),Vs,¢ € I,v >
r1, s # ¢, the following inequality holds
AG(t, ) + Gi(t, s) > eg|G(s, s) + |Ge(s, 8)|]e™ .
Lemma 6. Assume that (Hs) holds, define the operator B as
(By)(t) = p1(O)y'(t) + ¢1(0)y(t),t € I, for y € E. Then B : E — X is linear and
bounded, and ||B|| < b, where b= [, (p1(t) + q1(t))e ") dt.

Proof. By (Hs), we have pi(t) > 0,q1(t) > 0,Vt € I, and pi(t)ert, ¢ (t)e* € X.
Hence, Vy € E, we have

[T imowlerta < [T oo+ a@ope
0 0

by Lemma 5, for any fixed number A

| e 0l + ale et

A

o
< ol [ a0+ @) = by
0

Thus, By € X. Again, it is clear that B is a linear operator with ||B|| < b.
Lemma 7. The operator T defined by (1.6) maps X into F, and is completely
continuous, moreover, TX*T C ET,||T|| < d, where d = ?”117“2 [2+ 71 —re(1+ R))].

Proof. For any y € X, from paper [10] combined with (1.5)-(1.8), we have
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(Ty)(t) = /OOO G(t,s)y(s)ds,t € I, (2.1)

(Ty)(t) = / TGt syy(s)ds e I, (2.2)
where

Gt(t, S) =

1 { roe"2t(e7"2% — he ™%),0 < s < t, (2.3)

r—ry | e (re"t — hrae™t),0 <t < s.

Vt € I, by (1.8)-(2.3), it follows from g > r; > 0,73 < 0 < h < 1 and Lemma 1
that

(Ty® + [Ty @))e " <e™ /OOO (G(t,s) +|Gu(t, s))ly(s)lds

1 t
e e [ e )i
0

TL — T2

IN

oo

+ (1 +r)e™t — h(1+1r9)e™") / e”"*[y(s)|ds]
t
1 t
(L =) — herst) [ [y(s)]eds
T — T 0

(et — rghe) / ly(s) e~ ds]
t

1 (oo}
(1) el ) [y
1— T2 0

o0
+ ((1+ rl)e(”—“)t — rghe(”_”)t)/ ly(s)|e~"*ds]. (2.4)
0

IN

<

Since 0 < e =Wt — pelr2=mt — e(m=mt(] — pelr2=m)t) < 1.t € I, formula(2.4)
implies

(T + [Ty Ole™ < ——[2+ 11— ra(1+ h)]llyllx

T —To

dl|lyl|x,Vt e 1.

Thus

sup(l(Ty)(®)] + (Ty) )l < dllyllx. (2.5)

(2) Vt € [-7,0], by (1.6), we have (Ty)(t) = e?'(Ty)(0). From the proof in
[10], it follows that (Ty)'(0) exists. Thus, for any t € [~7,0], we have (Ty) (t) =
e#*(Ty)(0), and

[(Ty)O] + [(Ty) )] = (1 + %)e(%f“)tl(Ty)(O)\,t € [r,0].
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From the assumption p < %, we have that %" is increase on [-7,0]. Hence
Vt € [—7,0], we have

[(Ty)(#) + (Ty) () e < [|(Ty)(0) + (Ty)'(0)J]e~+°
< sup[|(Ty) ()] +[(Ty) (B)[Je.
Thus
sup [|(Ty)(0)] + [(Ty) ®)]]le™* < sup[|(Ty)(O)] + [(Ty) )] . (2.6)
te[—T,0] tel
By (2.5)-(2.6) above, we have

(Tl = itelg[l(Ty)(t)l +(Ty) (O)le™ < dllyl|x-

Hence ||T|| < d. On the other hand, by the proof in [10], it is easy to see that the
operator T' is compact. Thus, T is completely continuous. In addition, it is follows
from (i) of lemma 1 that TX*+ C E™.

Lemma 8. Suppose (H3) holds, then BTXT C XT.

Proof. For any o € X, let ¢(t) = (To)(t), Lemma 7 implies ¢ € E+. By (1.8), (2.3)
and (i) of Lemma 1, it follows that for any 0 <t < s,

G(t,s) > 0,G4(t,s) > 0. (2.7)

For 0 < s < t, according to assumption \g > /p? +4q(=r1 —ra > |re|),0 < h <
1,79 < 0 < 7y, it follows that

Gi(t,s) + MoG(t,s) = Me”t(e*r25 — he™"%) > 0. (2.8)
Ty —T2
By(2.7), (2.8), we have
Gi(t,s) + MG(t,s) > 0,Vt, s € I, # s. (2.9)

Thus,
& (1) + Moo (t) = / (Galt, 8) + NGt ))o(s)ds > 0,¥¢ € T.
0
By (Hs3), we have

(Bo)(t) 1)’ (t) + qu(t)b(t)
p1(t)e' (t) + Aopr (t)o(t)
p1(t) (@' (t) + Xoop(t)) > 0,t € I.

Thus, by Lemma 6, it follows that B¢ € X, i.e. BTo € X™T.

Lemma 9. Suppose (H;) holds. for y € E*, define fy = f(t,y; + us, y; + u}). Then
f: BT — X7 is continuous.

Proof. For any y € E,s € 1,601,605 € [—7,0], we have

[ys(61) + us(01)] < [y(s +601) +uls + 61) e #EH e <y + e,
[ (62) + i (82)] < [y (s + 62) + /(s + O2) e F0) - ek <[y + uf et

v

So
lys +usllo + [y +uglls < 2[ly +ul[fe”,s € I. (2.10)
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Again, by (H,), for t € I, we have

0< / (fy)(s)e ™ %ds < / a(s)e™"%ds + 2||ly + u||7/ b(s)eH)3ds < oo.
0 0 0
(2.11)
It means that fy € X .
On the other hand, for any sequence {y,}>°, in ET with ||y, — yo||1 — 0, then,

exists N > 1 such that ||yn|l1 < 1+ ||yo|ls when n > N. By argument similar to
(2.11), we have

|(Fyn — £yo) (s)|e™™* < (fyn + fyo)(s)e™"*
< 2a(s)e”"* + 2((1 + |[yolh + [full1)” + llyo + ul[{]b(s)e# )
2 F(s) € L(0,00),n > N.
Applying Lebesgue convergence theorem, by the continuity of f, we can obtain easily
|y, — fyo||x — O(n — 0), i.e. the operator f: T — X is continuous.
Lemma 10. Let a > 0,b > 0,v > 1, then
a’ +b” < (a+b)” <27 La” +b”).

Proof. Without loss of generality, we can assume ab > 0, If a = b, then it is obvious
that the inequality holds. So we can assume that b > a.

(i) Let o(t) = (t + x)",t € [0,1],z > 1. Then 3t € (0,1) such that (1) — ¢(0) =
©'(t) = v(t+z)”~'. Owing to v > 1,z > 1, we have that v(f + z)~! > 1. Thus
(I+2)” —a” > 1. ie, (1+)” > 1+a". Taking z = £, it follows that

a” + b < (a+b)”.

(i) Let p(t) = t,t > 0. According to v > 1, we have ¢ (t) = v(v—1)t*=2 > 0,t > 0.
So, by property of convex function, we have

1+ 1 1
P(TET2) < () + seplaa), for any 1,22 € (0,00).
Taking z1 = 43,202 = aLer in above inequality, we immediately have
1 1, a 1, b
< Z v - v
2v = 2(a+b) * 2(a—|—b)

And so, (a+ b)” <2 Y(a” + bY).

3. MAIN RESULTS

We introduce the notations as follows:

Let Ag = (14 h) [y~ (G(s,s) + Ha(s))(a(s) + 2~ dEb(s))e " ds,
By =2%""1(1+h) fooo (G(s,s) 4+ Ha(s))b(s)eVr—r)3ds,

Hy(s) = max{|Gi(s — 0, )|, |Gi(s + 0, s)|} , where

0

a1 a 1
dy=(1+-=)= e  B%€E(s)ds + =||€]o.
b=+ 5)5 [ e Pets)ds + el
Again, denote mg = f,f G(0,s)ds = ﬁ(e‘””f —e"9) g =eg(1—L),L =bd

( where b,d, ey are described as in lemma 6-7 and Remark 3, respectively).
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Remark 4. In the hypothesis (Hs), M > m)(‘)"m, where mg, 79 described above.

We are now in a position to state and prove our main results on the existence for
BVP (1.2)

Theorem 1. Suppose (Hi) — (Hs) hold, in addition, assume that L < 1,A4p <
1

(%)ﬁBF. Then BVP (1.2) has at least one positive solution x with z(t) >

u(t),t € J, where u(t) described as in(1.3).

Proof. The proof is divided into three steps.

Stepl.

By (1.2)-(1.8), it is clear that « € E is an solution of BVP(1.2)& y =z—u € E,y =
T(By+1fy) &y e E,(I —-TB)y = Tfy. By Lemma 6 and Lemma 7, we have that
the linear operator TB : E — F is completely continuous, and ||[TB|| < ||T]] - ||B]| <
L < 1. Thus, (I — TB)™! is defined well and bounded. Let H = (I — TB)~'T, then
H : X — FE is completely continuous. Hence,Vp € X, we have

(I-TBy=Tp,ye E<y=HpecE.
By Neuman expansion formula, H can be expressed by
(HO)(t) = (I+TB+ -+ (TB)" +--)(T)(1
(T)(t) + (TB)T@)(t) + (TBY (TQ)(t) +--- t€J. (3.1)
Now, we shall prove the following inequality holds by induction,
Vo € XT,¥vn>1,(TB)"(To)(t) > 0,t € J. (3.2)

In fact, for n = 1, owing to ¢ € X1, by Lemma 8, we have BTo € X, and so, it
follows from Lemma 7 that (T'B)(To) = T(BTco) € ET. Thus, (TB)(To)(t) > 0,t €
J. Suppose for n = k, inequality (3.2) holds. Then for n = k 4 1, letting o1 = BT o,
we have 01 € X, and it follows that

(TB)**!(To)(t) = (TB)*(TB)(To)(t)
= (TB)¥(To1)(t) > 0,t € J.

Thus, (3.2) holds. By (3.1)-(3.2), we have
Vo e X1, (Hep)(t) > (Te)(t),t € J. (3.3)
On the other hand, Yy € X, it follows from (3.1) that
1Hellh < [Tl + [ITBI[ - [[Telly + -+ [[(TB)"[| - [Tl + -

S (Lt I )Tl = =2 ITelh. (34)
Step 2.
We shall show that
Vo € X, (Hp)'(t) + (He)(t) = (T) (1) + Xo(T)(t),t € I. (3.5)
(1) for any fixed number I' > max {|rs|, (r1 — r2h)(1 — h) ™'}, we have
|Gy(t,5)] <TG(t,s),0 <t s <oo,t#s. (3.6)

In fact, by (1.8), (2.3), according to 0 < h < 1,we have
(i) if 0 < s <t < 00, then |Gi(t, s)| = |r2|G(t, s) < TG(t, s).
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(i) if 0 <t < s < o0, then

1
Ty —T2

e "5e" (1) — hro)

O S Gt(t,S) =

1
ry—T2
r
< TG(t,s).

67rlser1t(rl _ h,,,26(7’27r1)t)

IN

IN

e St (1 — h)

Hence, relation (3.6) holds.
(2) Now, we are going to show that for any fixed d > 0, and any p € XT | the
following inequality holds

vn > 1,|(TB)"(T9))' (t)] < TITB|"||Tell1e",t € [0,d]. (3.7)

Firstly, we shall prove the following formula holds :
Vn > 1,3¢p, € X suchthat B(TB)"Ty = BTp,. (3.8)
Indeed, for n = 1, B(TB)Ty = B(T(BTy)). Letting ¢1 = BTy, by Lemma 8, we

have 1 € X+. Thus B(TB)Tp = BTy;. Suppose that for n = k, Jp, € X such
that B(TB)*Tp = BT ;.. Then for n = k + 1, we have

B(I'B)*'Ty = B(TB)(TB)(T) = B(I(B(TB)")T)) = B(T(BTxy)).

Letting @11 = BTy, then, it follows from Lemma 8 that @51 € X+, and so,
B(TB)**1Tp = BT¢1. Thus, by induction, it follows that (3.8) holds.
Secondly, we come to show the following formula holds.

Vn > 0,3p, € X, such that (TB)* "' Ty = T(BTp,) € E*. (3.9)

In fact,
(i) If n > 1, then from (3.8), it follows that 3¢, € X such that

(TB)"*'Ty = (IB)(TB)"T¢) = T(B(T'B)"T¢) = T(BT¢,).

Again,by lemma 7 -8, we have T(BTy,,) € ET.

(ii) If n = 0, taking o = ¢ € X+, by Lemma 7 -8, we have (T'B)T'¢ = T(BTyy) €
Et.

Hence, whether for the case (i), or case(ii) above, the formula (3.9) is always true.
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Now, from (3.9),(2.2), and (3.6), for any n > 1,¢ € [0, d], we have
(TB)"Te) ()] = (T(BT)pn-1)()]
— || Gt BT s
0

IN

/O G (t,9)| (BT pn1)(s)ds

IN

T /O Gt 5) (BT oy 1) (s)ds

I(T(BT¢n-1))(t)
I(TB)"(T))(t)

= T((TB)"(Tg))(t)e "")e
LI(TB)" (Te)l[re"
L|TB["||Tell1e.

It means that |((TB)"Ty)'(t)| < T||TB||™||T||1e"?, for t € [0, d].
This show that (3.7) holds. So we have

IANINA

oo . oo . 'L
S IEBY @) ()] < TS ITBIP - T elle < T |ITpllretd < oo, t € [0,d).
n=1 n=1

Hence, we can differentiate termwise the series (3.1) on [0,d], and obtain

(Ho)'(t) = (To)' () + Y (TB)"(T9)) (1), t € [0,d].

n=1

Thus, Vt € [0, d], we have
(Ho) (1) + Xo(He)(t) = (Te) (1) + Xo(Te)(t)

+ D I(TB)"Te) (t) + Mo((TB)"Te)(1))- (3.10)
By (3.9), (2.2), (2.9) and Lemma 8, for any n > 1,¢ € [0, d], we have
(TB)"(T9)) (t) + X((TB)"To)(t) = (T(BT¢n-1))"(t) + Ao(T(BTn-1))(t)

= /0 (Ge(t, s) + MG(t,8))(BTwn-1)(s) > 0.
So by (3.10), the following inequality holds
(He)'(t) + Xo(He)(t) = (T) () + Mo(T)(t), € [0,d].

It means that relations (3.5) holds according to arbitrariness of d > 0.
Step 3.

Let P = {y € Ely(t) 2 0,t € J, H[lirg][y’(t) + Aoy(t)] = Tollylll},where 70 =eo(1—
tely,

L). Obviously, P # () noting that § € P(§ =0,¢t € J), and P is a cone in E. Putting
Q) = Hf, since H : X — FE is completely continuous, by Lemma 9 together with (3.2),
we have Q : ET — E™T is completely continuous.
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For any y € P, we have fy € X*. In view of (3.1) and Remark 3, for any t €
[v,6],5 € I, we get

(HEy)'(t) + Xo(HEy)(t) = (Tfy)'(t) + Mo(THy)(t)

_ / T (il ) + MGt 5)) () (5))ds

Y

eof /0 (Gl ) + Gl ))) (By) (s)ds)e"

eo(Tty)(<) + [(Ty)' (<) )e ™",

Y]

and so
(HEy)'(t) + Ao(HEy)(t) 2 cosup[(TF)(<) + [(THy)' (5) ]e™, Yt € [, 4].
So by (2.6), we have

i () (1) + Do () ()] > o[ T8y .

On the other hand, inequality (3.4) yields ||Tfy||; > (1 — L)||Hfy||1. Therefore

min [(Hfy)'(t) + Xo(HEy)(t)] > eo(1 — L)||Heyllr.

te[y,0]
Namely ,
tg[li%][(Qy)/(t) + 20(Qy)(1)] = 70[|Qyll1(T0 = eo(1 — L)).
Thus, we arrive at QQ : P — P.
Step4.
L1
The hypothesis Ay < (35%)7TB; " together with v > 1 implies 1214% < (g—g)%.

2A0 Ao 1 14 Ao B() v AO
We take a number ry € (1_L,(B—O)v - Then r§ < 32, and so =7y < 1=%. Thus,
we have

AO By v 2A0

1-L 1-L°°1-1L

Set Q., = {y € P:|lyll1 <mo}. For any y € 9Q,,, we have (ys + us,y, + ul,) €
Z*t x Z, and ||y||1 = ro. Thus, by (Hy), it follows that

Fs,ys +us, yg + ) < als) +0(s)([lys + usllg + [lys + uillg), s € 1.
It is easy to see that ||us||o + ||u}]|o < do. By argument similar to (2.10), we obtain
lysllo + [1¥ello < 2lylle"*,s € 1. (3.12)
So, by Lemma 10 together with (3.12) we have
[lys + usllg + [lys + usllg (Ilys + usllo + [|ys + usllo)”
(Hysllo + lysllo + do)”

2 ((Ilysllo + [lyallo)” + dg)
227 lyll{e"™ + 27 Ndg, s € 1.

<70 (3.11)

VAN VAN VAN VAN

Thus,
F(5,ys +us,ys +ul) < (als) + 277 dgb(s)) + 227 b(s)e"*|[y[[, s € 1.
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Then, by proving as paper [10], we have

[(Tfy)(t) + |(TFy)") (t)[Je~+*

< e (Gt 5) + |Galt 5)) £ (5, ys + uadf, + ul)ds

< (14 h) J)° (G(s,5) + Ha(s)) fs,y + us ) + e ™*ds
< (1+h) [y (G(s, 5) + Ha(s))(a(s) + 2/ dgb(s))e " *ds
+22 711+ h) [ (G(s,8) + Ha(s))b(s)eVrm)3ds||y|[¥
= Ao + Bollyl|7,Vt € 1.

Thus, by (2.6), it follows that ||Tfy||s < Ao + Bolly||y- So by (3.4) and (3.12), we
have

1 Ay By
= ||Hfyll1s < ——=||Tfy|1 < v
lQull = 11Hfyl < =Tyl < == + = yly
Ao By
- 1_L+1—LTO<TO_||y||1
So, the fixed point index theorem implies
i(Q,Q,, P) = 1. (3.13)

(2) Take Ry > max{2edomod JoldotFy) o4 ang set Qr, ={y € P |lylh <

TomoM—AO ) T0O
Ro}. Now, we shall prove the following inequality is true

1@yl = [lyll1, Vy € Og,. (3.14)

In fact, for any y € 0Qg,, we have ys +us € ZT,y. +ul, € Z,Vs € I, and ||y|[ = Ro.
Owing to ||us||o + ||ul]lo < do, Vs € I, we have

[lys +usllo + [l +uillo = lysllo + lyello = (Hlusllo + [lugllo)
> Alysllo + llyillo — do, s € . (3.15)

According to y € P, \g > 1, it follows that

1 1
y(s) + 1y (s)| 3 Poy(s) + Aoly'(s)]) = g Poy(s) + [y (s)])
> 2yl ¥s € [r,9] (3.16)
0
Since ||ys|lo + [[¥illo = y(s) + ¥/ (s)]], Vs € [y, 6], by (3.15)-(3.16), we have

[lys + usllo + llys + uillo

Y

70
D ylly - d
" [lyllx = do
= %mf%>mﬁemﬁ (3.17)
0
Consequently, by (Hz) together with (3.17), we have

F(s,ys +us,ys +ug) > M(Jlys +usllo + [lys +u'lo)
> M;—ORO—MdO,se[%é].
0
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Thus,

(T'ty)(0)

oo
/ G(0,8) f(8,ys + us,ys + ul)ds
0

\%

o
/ G ,strUeaquFu )d
v

> (/ G(O,s)ds)(M;—ZRo—Mdo)

moTo
= M
A

Ro — Mmody > Ry. (318)
0

From (3.18) and (3.3), it follows that

1Qyll1 = (Qy)(0) = (Hfy)(0) = (Tty)(0) > Ro = [lyl]:-
Hence, (3.14) holds, and so
i(Q,Qpr,, P) =0.
Thus i(Q, Qr,\Qr,, P) = —1, and so 3y* € Qr,\Q,, with Qy* = y*. It means that
y* € P\{0} is a positive solution BVP(4), and so x = y* + u is a positive solution
BVP (1.2), satisfying =(¢) > u(t),t € J, v # u.This completes the proof of theorem

1.
Example 1. Consider the following BVP

" — (1 —e 955" —6(1 — e 605 + f(t,24,2}) = 0,t € I = [0,00),

4o —2' =1-e* te[-1,0], (3.19)
x(o0) = 0.
Set v = 4,8 = 1,£(t) = 1 — e p(t) = 1 — e %5 ¢(t) = 6(1 — ¢ 5). Then,
p=1,q=06,p(t) = e 6> ,ql( ) = 67905ty = 3, 7“2 =-2,5=4X=5h=
&.do=5e* —e * — 2L Take p = 3.5, then b = fo t) 4+ qu(t))elr—mtat = =, d=
Tl_rz[2+rl—7‘2( +h))=2L=bd=1 <1 Takev—l.l, set

[t e, 0) = f(t) + fz(lt)e’o‘g‘%t(/oo k)" (dt + llello! +llollo ),

0

Vt € I,(p,¢) € Z* x Z, where function fi, fo,k € C(I, RT) satisfy [J° k(t)dt <1,
and [° fi(s)e 3*ds < +o0.
In addition, fo satisfies the following conditions :
(D1) [° f2(s)ds < min {1, p}, where p = (3=) )10 ( (fy° fr(s)e3ds + (2dg)*1)~10.
(Dg) Exists to € (0, +00) such that fa(to) > 0.
Obviously, after f; has been given, above function fs can be found easily.
It is to see that function f satisfies the following relation;

f(t,0,0) < a(t) + (&) (lelle” + llgllo™), ¥t € I, (¢, ¢) € Z¥ x Z. (3.20)

ftp.0) 2 e ) (lellg! + llglle!), Vel (p,0) € ZT x 2. (3.21)
where a(t) = f1(t),b(t) = 2e7 085 fo(t).
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Again, we easily know that
4 1 5

G(s,8) + Ha(s) = =+ %e—“ <gsel (3.22)

By carefully calculating, taking account of (3.22), we obtain

35 [ 35 [
Ay < %(/ Fils)e 5 ds + (2do)"), By <207 x 5/ fols)ds.  (3.23)
0 0
Thus, by the choice of fy together with (3.23), we have
1-L, v L 1 1
“_1Bl—u — (— 117
5B = ()" B

On the other hand, from (Ds) , it follows that exists 0 < v < 4, and b > 0 such
that e=0-85 f5(t) > b, t € [, ]. Consequently, from (3.21), and Lemma 10, we have

1
fto,0) = b(llellg" + llollo ) > o1 0(lello + ollo)' .t € [v,6], (¢, 0) € ZF x Z.
Thus

> Ap.

t
inf i M > 5T lim
t€[7,8] llello+Iéllo—+oo [[@llo + [|6llo — 291 llello+lI¢llo—o0

Hence, for M > m’\OOTO, exists R; > 0 such that the follows inequality holds.

ft,0,0) = M([lgllo + [16]l0), t € [,6], (9, 8) € ZT x Z with [l¢llo + [|llo > R
So by Theorem 1, BVP (3.19) has a positive solution z = y + u.

(lello +11610)*" = +oo.
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