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Abstract. Recently, Nadezhkina and Takahashi [N. Nadezhkina, W. Takahashi, Strong conver-

gence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone

mappings, SIAM J. Optim. 16 (4) (2006) 1230-1241] introduced an iterative algorithm for finding a
common element of the fixed point set of a nonexpansive mapping and the solution set of a variational

inequality in a real Hilbert space via combining two well-known methods: hybrid and extragradient.

In this paper, we investigate the problem of finding a common solution of a variational inequality, a
variational inclusion and a fixed point problem of a nonexpansive mapping in a real Hilbert space.

Motivated by Nadezhkina and Takahashi’s hybrid-extragradient method we propose and analyze

Mann type hybrid-extragradient algorithm for finding a common solution. It is proven that three
sequences generated by this algorithm converge strongly to the same common solution under very

mild conditions. Based on this result, we also construct an iterative algorithm for finding a common

fixed point of three mappings, such that one of these mappings is nonexpansive and the other two
mappings are taken from the more general class of Lipschitz pseudocontractive mappings and from

the more general class of strictly pseudocontractive mappings, respectively.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be
a nonempty closed convex subset of H and let PC be the metric projection from H
onto C. A mapping A of C into H is called monotone if

〈Au−Av, u− v〉 ≥ 0, ∀u, v ∈ C.

A mapping A of C into H is called k-Lipschitz continuous if there exists a constant
k > 0 such that

‖Au−Av‖ ≤ k‖u− v‖, ∀u, v ∈ C.

Let the mapping A from C to H be monotone and Lipschitz continuous. The varia-
tional inequality is to find a u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.1)

The solution set of the variational inequality (1.1) is denoted by VI(C,A). The varia-
tional inequality was first discussed by Lions [16] and now is well known; there are var-
ious approaches to solving this problem in finite-dimensional and infinite-dimensional
spaces, and the research is intensively continued. This problem has many applications
in partial differential equations, optimal control, mathematical economics, optimiza-
tion, mathematical programming, mechanics, and other fields; see, e.g., [10,20,31]. In
the meantime, to construct a mathematical model which is as close as possible to a
real complex problem, we often have to use more than one constraint. Solving such
problems, we have to obtain some solution which is simultaneously the solution of two
or more subproblems or the solution of one subproblem on the solution set of another
subproblem. Actually, these subproblems can be given by problems of different types.
For example, Antipin considered a finite-dimensional variant of the variational in-
equality, where the solution should satisfy some related constraint in inequality form
[1] or some system of constraints in inequality and equality form [2]. Yamada [30]
considered an infinite-dimensional variant of the solution of the variational inequality
on the fixed point set of some mapping.

A mapping A of C into H is called α-inverse strongly monotone if there exists a
constant α > 0 such that

〈Au−Av, u− v〉 ≥ α‖Au−Av‖2, ∀u, v ∈ C;

see [6,17]. It is obvious that an α-inverse strongly monotone mapping A is monotone
and Lipschitz continuous. A mapping S of C into itself is called nonexpansive if

‖Su− Sv‖ ≤ ‖u− v‖, ∀u, v ∈ C;

see [28]. We denote by F (S) the fixed point set of S; i.e., F (S) = {x ∈ C : Sx = x}.
A set-valued mapping M with domain D(M) and range R(M) in H is called

monotone if its graph G(M) = {(x, f) ∈ H ×H : x ∈ D(M), f ∈ Mx} is a monotone
set in H ×H; i.e., M is monotone if and only if

(x, f), (y, g) ∈ G(M) ⇒ 〈x− y, f − g〉 ≥ 0.

A monotone set-valued mapping M is called maximal if its graph G(M) is not properly
contained in the graph of any other monotone mapping in H.
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Let Φ be a single-valued mapping of C into H and M be a multivalued mapping
with D(M) = C. Consider the following variational inclusion: find u ∈ C, such that

0 ∈ Φ(u) + Mu. (1.2)

We denote by Ω the solution set of the variational inclusion (1.2). In particular, if
Φ = M = 0, then Ω = C.

In 1998, Huang [7] studied problem (1.2) in the case where M is maximal mono-
tone and Φ is strongly monotone and Lipschitz continuous with D(M) = C = H.
Subsequently, Zeng, Guu and Yao [13] further studied problem (1.2) in the case which
is more general than Huang’s one [7]. Moreover, the authors [13] obtained the same
strong convergence conclusion as in Huang’s result [7]. In addition, the authors also
gave the geometric convergence rate estimate for approximate solutions.

In 2003, for finding an element of F (S)∩VI(C,A) under the assumption that a set
C ⊂ H is nonempty, closed and convex, a mapping S of C into itself is nonexpansive
and a mapping A of C into H is α-inverse strongly monotone, Takahashi and Toyoda
[29] introduced the following iterative algorithm:

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn), (1.3)

for every n = 0, 1, 2, ..., where x0 = x ∈ C chosen arbitrarily, {αn} is a sequence
in (0, 1), and {λn} is a sequence in (0, 2α). They showed that, if F (S) ∩ VI(C,A)
is nonempty, the sequence {xn} generated by (1.3) converges weakly to some z ∈
F (S) ∩VI(C,A).

In 2006, to solve this problem (i.e., to find an element of F (S)∩VI(C,A)), Iiduka
and Takahashi [12] introduced the following iterative scheme by a hybrid method:

yn = αnxn + (1− αn)SPC(xn − λnAxn),
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x,

(1.4)

for every n = 0, 1, 2, ..., where x0 = x ∈ C chosen arbitrarily, 0 ≤ αn ≤ c < 1 and
0 < a ≤ λn ≤ b < 2α. They proved that if F (S) ∩ VI(C,A) is nonempty, then the
sequence {xn} generated by (1.4) converges strongly to PF (S)∩VI(C,A)x. Generally
speaking, the algorithm suggested by Iiduka and Takahashi is based on two well-
known types of methods, i.e., on the projection-type method for solving variational
inequality and so-called hybrid or outer-approximation method for solving fixed point
problem. The idea of “hybrid” or “outer-approximation ” types of methods was
originally introduced by Haugazeau in 1968 and was successfully generalized and
extended in many papers; see, e.g., [3-5,8,18,25].

It is easy to see that the class of α-inverse strongly monotone mappings in the
above mentioned problem of Takahashi and Toyoda [29] is the quite important class
of mappings in various classes of well-known mappings. It is also easy to see that while
α-inverse strongly monotone mappings are tightly connected with the important class
of nonexpansive mappings, α-inverse strongly monotone mappings are also tightly con-
nected with a more general and also quite important class of strictly pseudocontractive
mappings. (A mapping T : C → C is called κ-strictly pseudocontractive if there exists
a constant 0 ≤ κ < 1 such that ‖Tx−Ty‖2 ≤ ‖x− y‖2 + κ‖(I −T )x− (I −T )y‖2 for
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all x, y ∈ C.) That is, if a mapping T : C → C is nonexpansive, then the mapping
I−T is 1

2 -inverse strongly monotone; moreover, F (T ) = VI(C, I−T ) (see, e.g., [29]).
At the same time, if a mapping T : C → C is κ-strictly pseudocontractive, then the
mapping I − T is 1−κ

2 -inverse-strongly monotone and 2
1−κ -Lipschitz continuous.

In 1976, for finding a solution of the nonconstrained variational inequality in the
finite-dimensional Euclidean space Rn under the assumption that a set C ⊂ Rn

is nonempty, closed and convex and a mapping A : C → Rn is monotone and k-
Lipschitz-continuous, Korpelevich [15] introduced the following so-called extragradi-
ent method: {

yn = PC(xn − λAxn),
xn+1 = PC(xn − λAyn), (1.5)

for every n = 0, 1, 2, ..., where x0 = x ∈ C chosen arbitrarily and λ ∈ (0, 1
k ). He

showed that if VI(C,A) is nonempty, then the sequences {xn} and {yn} generated by
(1.5) converge to the same point z ∈ VI(C,A). The idea of the extragradient iterative
algorithm introduced by Korpelevich [15] was successfully generalized and extended
not only in Euclidean but also in Hilbert and Banach spaces; see, e.g., [11,9,19,26,24].

In 2006, by combining hybrid and extragradient methods, Nadezhkina and Taka-
hashi [22] introduced an iterative algorithm for finding a common element of the fixed
point set of a nonexpansive mapping and the solution set of the variational inequality
for a monotone, Lipschitz-continuous mapping in a real Hilbert space. They gave a
strong convergence theorem for three sequences generated by this algorithm.
Theorem 1.1 [22, Theorem 3.1] Let C be a nonempty closed convex subset of a real
Hilbert space H. Let A : C → H be a monotone and k-Lipschitz-continuous mapping
and let S : C → C be a nonexpansive mapping such that F (S) ∩ VI(C,A) 6= ∅. Let
{xn}, {yn} and {zn} be the sequences generated by

yn = PC(xn − λnAxn),
zn = αnxn + (1− αn)SPC(xn − λnAyn),
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx,

(1.6)

for every n = 0, 1, 2, ..., where x0 = x ∈ C chosen arbitrarily, {λn} ⊂ [a, b] for some
a, b ∈ (0, 1

k ) and {αn} ⊂ [0, c] for some c ∈ [0, 1). Then the sequences {xn}, {yn} and
{zn} converge strongly to PF (S)∩VI(C,A)x.

On the other hand, the construction of fixed points of nonexpansive mappings via
Mann’s algorithm [14] has extensively been investigated in literature (see, e.g., [32,33]
and references therein). Mann’s algorithm generates, initializing with an arbitrary
x0 ∈ C, a sequence according to the recursive manner

xn+1 = αnxn + (1− αn)Sxn, (1.7)

for every n = 0, 1, 2, ..., where S : C → C is a nonexpansive mapping and {αn}∞n=0 is a
real control sequence in the interval [0, 1]. If S is a nonexpansive mapping with a fixed
point and if the control sequence {αn}∞n=0 is chosen so that

∑∞
n=0 αn(1 − αn) = ∞,

then the sequence {xn} generated by Mann’s algorithm (1.7) converges weakly to a



MANN TYPE HYBRID EXTRAGRADIENT METHOD 407

fixed point of S. (This is indeed true in a uniformly convex Banach space with a
Frechet differential norm [33].)

In this paper, let A : C → H be a monotone and k-Lipschitz-continuous mapping,
Φ : C → H be an α-inverse strongly monotone mapping, M be a maximal mono-
tone mapping with D(M) = C and S : C → C be a nonexpansive mapping such
that F (S) ∩ Ω ∩ VI(C,A) 6= ∅. By combining Nadezhkina and Takahashi’s hybrid-
extragradient algorithm (1.6) and Mann’s algorithm (1.7) we introduce the following
Mann type hybrid-extragradient algorithm

yn = PC(xn − λnAxn),
tn = PC(xn − λnAyn),
t̂n = JM,µn

(tn − µnΦ(tn)),
zn = (1− αn − α̂n)xn + αnt̂n + α̂nSt̂n,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x

(1.8)

for every n = 0, 1, 2, ..., where JM,µn
= (I + µnM)−1, x0 = x ∈ C chosen arbitrarily,

{λn} ⊂ (0, 1
k ), {µn} ⊂ (0, 2α] and {αn}, {α̂n} ⊂ (0, 1] such that αn + α̂n ≤ 1. It is

proven that under very mild conditions three sequences {xn}, {yn}, {zn} generated
by (1.8) converge strongly to the same point PF (S)∩Ω∩VI(C,A)x. It is worth pointing
out that whenever Φ = M = 0, we have Ω = C. In this case, the problem of
finding an element of F (S)∩Ω ∩VI(C,A) reduces to the one of finding an element of
F (S)∩VI(C,A). Thus, our result improves and extends Nadezhkina and Takahashi’s
corresponding one [22], i.e., the above Theorem NT. Based on our main result, we also
construct an iterative algorithm for finding a common fixed point of three mappings,
one of which is nonexpansive and the other two ones are taken from the more general
class of Lipschitz pseudocontractive mappings and from the more general class of
strictly pseudocontractive mappings, respectively.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and C be a
nonempty closed convex subset of H. We write → to indicate that the sequence {xn}
converges strongly to x and ⇀ to indicate that the sequence {xn} converges weakly
to x. Moreover, we use ωw(xn) to denote the weak ω-limit set of the sequence {xn},
i.e.,

ωw(xn) := {x : xni
⇀ x for some subsequence {xni

} of {xn}}.

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx,
such that

‖x− PCx‖ ≤ ‖x− y‖, ∀x ∈ C.

PC is called the metric projection of H onto C. We know that PC is a firmly nonex-
pansive mapping of H onto C; that is, there holds the following relation

〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.
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Consequently, PC is nonexpansive and monotone. It is also known that PC is char-
acterized by the following properties: PCx ∈ C and

〈x− PCx, PCx− y〉 ≥ 0, (2.1)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, (2.2)
for all x ∈ H, y ∈ C; see [28,34] for more details. Let A : C → H be a monotone
mapping. In the context of the variational inequality, this implies that

x ∈ VI(C,A) ⇔ x = PC(x− λAx) ∀λ > 0. (2.3)

It is also known that H satisfies the Opial condition [21]. That is, for any sequence
{xn} with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ (2.4)

holds for every y ∈ H with y 6= x.
A set-valued mapping M : D(M) ⊂ H → 2H is called monotone if for all x, y ∈

D(M), f ∈ Mx and g ∈ My imply

〈f − g, x− y〉 ≥ 0.

A set-valued mapping M is called maximal monotone if M is monotone and (I +
λM)D(M) = H for each λ > 0, where I is the identity mapping of H. We denote
by G(M) the graph of M . It is known that a monotone mapping M is maximal if
and only if, for (x, f) ∈ H × H, 〈f − g, x − y〉 ≥ 0 for every (y, g) ∈ G(M) implies
f ∈ Mx.

Let A : C → H be a monotone, k-Lipschitz-continuous mapping and let NCv be
the normal cone to C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, ∀u ∈ C}.
Define

Tv =
{

Av + NCv, if v ∈ C,
∅, if v 6∈ C.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(C,A); see [23].
Assume that M : D(M) ⊂ H → 2H is a maximal monotone mapping. Then, for

λ > 0, associated with M , the resolvent operator JM,λ can be defined as

JM,λx = (I + λM)−1x, ∀x ∈ H.

In terms of Huang [7] (see also [13]), there holds the following property for the resol-
vent operator JM,λ : H → H.
Lemma 2.1 JM,λ is single-valued and firmly nonexpansive, i.e.,

〈JM,λx− JM,λy, x− y〉 ≥ ‖JM,λx− JM,λy‖2, ∀x, y ∈ H.

Consequently, JM,λ is is nonexpansive and monotone.
Lemma 2.2 [35] There holds the relation:

‖λx + µy + νz‖2 = λ‖x‖2 + µ‖y‖2 + ν‖z‖2 − λµ‖x− y‖ − µν‖y − z‖2 − λν‖x− z‖2

for all x, y, z ∈ H and λ, µ, ν ∈ [0, 1] with λ + µ + ν = 1.
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Lemma 2.3 Let M be a maximal monotone mapping with D(M) = C. Then for any
given λ > 0, u ∈ C is a solution of problem (1.2) if and only if u ∈ C satisfies

u = JM,λ(u− λΦ(u)).

Proof.
0 ∈ Φ(u) + Mu ⇔ u− λΦ(u) ∈ u + λMu

⇔ u = (I + λM)−1(u− λΦ(u))
⇔ u = JM,λ(u− λΦ(u)).

�

Lemma 2.4 [13] Let M be a maximal monotone mapping with D(M) = C and let
V : C → H be a strongly monotone, continuous and single-valued mapping. Then for
each z ∈ H, the equation z ∈ V x + λMx has a unique solution xλ for λ > 0.
Lemma 2.5 Let M be a maximal monotone mapping with D(M) = C and A : C →
H be a monotone, continuous and single-valued mapping. Then (I+λ(M +A))C = H
for each λ > 0. In this case, M + A is maximal monotone.

Proof. For each fixed λ > 0, put V = I + λA. Then V : C → H is a strongly
monotone, continuous and single-valued mapping. In terms of Lemma 2.4, we obtain
(V +λM)C = H. That is, (I +λ(M +A))C = H. It is clear that M +A is monotone.
Therefore, M + A is maximal monotone. �

3. Strong Convergence Theorem

In this section we prove a strong convergence theorem by Mann type hybrid-
extragradient method for finding a common solution of a variational inequality, a
variational inclusion and a fixed point problem of a nonexpansive mapping in a real
Hilbert space.
Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A : C → H be a monotone and k-Lipschitz-continuous mapping, Φ : C → H
be an α-inverse strongly monotone mapping, M be a maximal monotone mapping
with D(M) = C and S : C → C be a nonexpansive mapping such that F (S) ∩ Ω ∩
VI(C,A) 6= ∅. For x0 = x ∈ C chosen arbitrarily, let {xn}, {yn} and {zn} be the
sequences generated by

yn = PC(xn − λnAxn),
tn = PC(xn − λnAyn),
t̂n = JM,µn

(tn − µnΦ(tn)),
zn = (1− αn − α̂n)xn + αnt̂n + α̂nSt̂n,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x

for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {µn} ⊂ [ε, 2α] for

some ε ∈ (0, 2α], and {αn}, {α̂n} ⊂ [c, 1] for some c ∈ (0, 1], such that αn + α̂n ≤ 1
for every n = 0, 1, 2, .... Then the sequences {xn}, {yn} and {zn} converge strongly to
PF (S)∩Ω∩VI(C,A)x.
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Proof. It is obvious that Cn is closed and Qn is closed and convex for every n =
0, 1, 2, .... As

Cn = {z ∈ C : ‖zn − xn‖2 + 2〈zn − xn, xn − z〉 ≤ 0},

we also have that Cn is convex for every n = 0, 1, 2, .... As

Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},

we have 〈xn − z, x− xn〉 ≥ 0 for all z ∈ Qn and hence xn = PQnx by (2.1).
For the remainder of the proof, we divide it into several steps.

Step 1. We claim that F (S) ∩ Ω ∩ VI(C,A) ⊂ Cn ∩ Qn for every n = 0, 1, 2, ....
Indeed, take a fixed u ∈ F (S)∩Ω ∩VI(C,A) arbitrarily. From (2.2), monotonicity of
A, and u ∈ VI(C,A), we have

‖tn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn, u− tn〉
= ‖xn − u‖2 − ‖xn − tn‖2

+ 2λn(〈Ayn −Au, u− yn〉+ 〈Au, u− yn〉+ 〈Ayn, yn − tn〉)
≤ ‖xn − u‖2 − ‖xn − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − tn〉 − ‖yn − tn‖2

+ 2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2〈xn − λnAyn − yn, tn − yn〉.

Further, since yn = PC(xn − λnAxn) and A is k-Lipschitz-continuous, from (2.1) we
have

〈xn − λnAyn − yn, tn − yn〉 = 〈xn − λnAxn − yn, tn − yn〉
+ 〈λnAxn − λnAyn, tn − yn〉
≤ 〈λnAxn − λnAyn, tn − yn〉
≤ λnk‖xn − yn‖‖tn − yn‖.

So, we obtain

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+2λnk‖xn − yn‖‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+λ2
nk2‖xn − yn‖2 + ‖yn − tn‖2

= ‖xn − u‖2 + (λ2
nk2 − 1)‖xn − yn‖2

≤ ‖xn − u‖2.

(3.1)
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Also, since zn = (1−αn−α̂n)xn+αnt̂n+α̂nSt̂n, u = Su and u = JM,µn(u−µnΦ(u)),
utilizing Lemma 2.2 we get from (3.1)

‖zn − u‖2 = ‖(1− αn − α̂n)(xn − u) + αn(t̂n − u) + α̂n(St̂n − u)‖2

≤ (1− αn − α̂n)‖xn − u‖2 + αn‖t̂n − u‖2 + α̂n‖St̂n − u‖2 − αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)‖t̂n − u‖2 − αnα̂n‖t̂n − St̂n‖2

=(1−αn−α̂n)‖xn − u‖2 + (αn + α̂n)‖JM,µn
(tn − µnΦ(tn))− JM,µn

(u− µnΦ(u))‖2

−αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)‖(tn − µnΦ(tn))− (u− µnΦ(u))‖2

−αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)[‖tn − u‖2 + µn(µn − 2α)‖Φ(tn)− Φ(u)‖2]
−αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)‖tn − u‖2 − αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)[‖xn − u‖2 + (λ2
nk2 − 1)‖xn − yn‖2]

−αnα̂n‖t̂n − St̂n‖2

= ‖xn − u‖2 + (αn + α̂n)(λ2
nk2 − 1)‖xn − yn‖2 − αnα̂n‖t̂n − St̂n‖2

≤ ‖xn − u‖2

(3.2)
for every n = 0, 1, 2, ... and hence u ∈ Cn. So, F (S) ∩ Ω ∩ VI(C,A) ⊂ Cn for every
n = 0, 1, 2, .... Next, let us show by mathematical induction that {xn} is well-defined
and F (S) ∩ Ω ∩ VI(C,A) ⊂ Cn ∩ Qn for every n = 0, 1, 2, .... For n = 0 we have
Q0 = C. Hence we obtain F (S) ∩Ω ∩VI(C,A) ⊂ C0 ∩Q0. Suppose that xk is given
and F (S)∩Ω ∩VI(C,A) ⊂ Ck∩Qk for some integer k ≥ 0. Since F (S)∩Ω ∩VI(C,A)
is nonempty, Ck ∩ Qk is a nonempty closed convex subset of C. So, there exists a
unique element xk+1 ∈ Ck ∩ Qk such that xk+1 = PCk∩Qk

x. It is also obvious that
there holds 〈xk+1−z, x−xk+1〉 ≥ 0 for every z ∈ Ck∩Qk. Since F (S)∩Ω∩VI(C,A) ⊂
Ck ∩ Qk, we have 〈xk+1 − z, x − xk+1〉 ≥ 0 for z ∈ F (S) ∩ Ω ∩ VI(C,A) and hence
F (S)∩Ω∩VI(C,A) ⊂ Qk+1. Therefore, we obtain F (S)∩Ω∩VI(C,A) ⊂ Ck+1∩Qk+1.

Step 2. We claim that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn − zn‖ = 0.

Indeed, let l0 = PF (S)∩Ω∩VI(C,A)x. From xn+1 = PCn∩Qn
x and l0 ∈ F (S) ∩ Ω ∩

VI(C,A) ⊂ Cn ∩Qn, we have

‖xn+1 − x‖ ≤ ‖l0 − x‖ (3.3)

for every n = 0, 1, 2, .... Therefore, {xn} is bounded. From (3.1) and (3.2) we also
obtain that {tn} and {zn} are bounded. Since xn+1 ∈ Cn∩Qn ⊂ Qn and xn = PQnx,
we have

‖xn − x‖ ≤ ‖xn+1 − x‖

for every n = 0, 1, 2, .... Therefore, there exists lim
n→∞

‖xn − x‖. Since xn = PQn
x and

xn+1 ∈ Qn, utilizing (2.2), we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2
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for every n = 0, 1, 2, .... This implies that

lim
n→∞

‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn, we have ‖zn − xn+1‖ ≤ ‖xn − xn+1‖ and hence

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ ≤ 2‖xn+1 − xn‖

for every n = 0, 1, 2, .... From ‖xn+1 − xn‖ → 0 it follows that

lim
n→∞

‖xn − zn‖ = 0.

Step 3. We claim that

lim
n→∞

‖xn − yn‖ = lim
n→∞

‖xn − tn‖ = lim
n→∞

‖St̂n − t̂n‖ = lim
n→∞

‖t̂n − tn‖ = 0.

Indeed, for u ∈ F (S) ∩ Ω ∩VI(C,A), we obtain from (3.2)

‖zn − u‖2 ≤ ‖xn − u‖2 + (αn + α̂n)(λ2
nk2 − 1)‖xn − yn‖2 − αnα̂n‖t̂n − St̂n‖2.

Therefore, we have

‖xn − yn‖2 + c2

1−a2k2 ‖t̂n − St̂n‖2 ≤ ‖xn − yn‖2 + αnα̂n

(αn+α̂n)(1−λ2
nk2)‖t̂n − St̂n‖2

≤ 1
(αn+α̂n)(1−λ2

nk2) (‖xn − u‖2 − ‖zn − u‖2)
= 1

(αn+α̂n)(1−λ2
nk2) (‖xn − u‖ − ‖zn − u‖)×

(‖xn − u‖+ ‖zn − u‖)
≤ 1

(αn+α̂n)(1−λ2
nk2) (‖xn − u‖+ ‖zn − u‖)‖xn − zn‖

≤ 1
2c(1−b2k2) (‖xn − u‖+ ‖zn − u‖)‖xn − zn‖.

(3.4)
Since ‖xn − zn‖ → 0 and the sequences {xn} and {zn} are bounded, we deduce that

lim
n→∞

‖xn − yn‖ = lim
n→∞

‖t̂n − St̂n‖ = 0.

By the same process as in (3.1), we also have

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+2λnk‖xn − yn‖‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + ‖xn − yn‖2

+λ2
nk2‖yn − tn‖2

= ‖xn − u‖2 + (λ2
nk2 − 1)‖yn − tn‖2

≤ ‖xn − u‖2.
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Then, in contrast with (3.2),

‖zn − u‖2 = ‖(1− αn − α̂n)(xn − u) + αn(t̂n − u) + α̂n(St̂n − u)‖2

≤ (1− αn − α̂n)‖xn − u‖2 + αn‖t̂n − u‖2 + α̂n‖St̂n − u‖2 − αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)‖t̂n − u‖2 − αnα̂n‖t̂n − St̂n‖2

= (1−αn−α̂n)‖xn − u‖2 + (αn + α̂n)‖JM,µn(tn − µnΦ(tn))− JM,µn(u− µnΦ(u))‖2

−αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)‖(tn − µnΦ(tn))− (u− µnΦ(u))‖2

−αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)[‖tn − u‖2 + µn(µn − 2α)‖Φ(tn)− Φ(u)‖2]
−αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)‖tn − u‖2 − αnα̂n‖t̂n − St̂n‖2

≤ (1− αn − α̂n)‖xn − u‖2 + (αn + α̂n)[‖xn − u‖2 + (λ2
nk2 − 1)‖yn − tn‖2]

−αnα̂n‖t̂n − St̂n‖2

= ‖xn − u‖2 + (αn + α̂n)(λ2
nk2 − 1)‖yn − tn‖2 − αnα̂n‖t̂n − St̂n‖2

≤ ‖xn − u‖2

and, rearranging as in (3.4),

‖tn − yn‖2 + c2

1−a2k2 ‖t̂n − St̂n‖2 ≤ ‖tn − yn‖2 + αnα̂n

(αn+α̂n)(1−λ2
nk2)‖t̂n − St̂n‖2

≤ 1
(αn+α̂n)(1−λ2

nk2) (‖xn − u‖2 − ‖zn − u‖2)
= 1

(αn+α̂n)(1−λ2
nk2) (‖xn − u‖ − ‖zn − u‖)×

(‖xn − u‖+ ‖zn − u‖)
≤ 1

(αn+α̂n)(1−λ2
nk2) (‖xn − u‖+ ‖zn − u‖)‖xn − zn‖

≤ 1
2c(1−b2k2) (‖xn − u‖+ ‖zn − u‖)‖xn − zn‖.

Since ‖xn − zn‖ → 0 and the sequences {xn} and {zn} are bounded, we deduce that

lim
n→∞

‖tn − yn‖ = lim
n→∞

‖t̂n − St̂n‖ = 0.

As A is k-Lipschitz-continuous, we have ‖Ayn −Atn‖ → 0. From ‖xn − tn‖ ≤ ‖xn −
yn‖+‖yn−tn‖ we also have ‖xn−tn‖ → 0. Since zn = (1−αn−α̂n)xn+αnt̂n+α̂nSt̂n,
we have

zn − xn = αn(t̂n − xn) + α̂n(St̂n − xn)
= αn(t̂n − xn) + α̂n(St̂n − t̂n + t̂n − xn)
= (αn + α̂n)(t̂n − xn) + α̂n(St̂n − t̂n).

Then
2c‖t̂n − xn‖ ≤ (αn + α̂n)‖t̂n − xn‖

= ‖zn − xn − α̂n(St̂n − t̂n)‖
≤ ‖zn − xn‖+ α̂n‖St̂n − t̂n‖
≤ ‖zn − xn‖+ ‖St̂n − t̂n‖

and hence ‖t̂n−xn‖ → 0. This together with ‖xn−tn‖ → 0, implies that ‖t̂n−tn‖ → 0.

Step 4. We claim that ωw(xn) ⊂ F (S) ∩ Ω ∩ VI(C,A). Indeed, as {xn} is
bounded, there is a subsequence {xni} of {xn} such that {xni} converges weakly to
some u ∈ ωw(xn). We can obtain that u ∈ F (S) ∩ Ω ∩ VI(C,A). First, we show
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u ∈ VI(C,A). Since xn − tn → 0 and xn − yn → 0, we conclude that tni ⇀ u and
yni

⇀ u. Let

Tv =
{

Av + NCv, if v ∈ C,
∅, if v 6∈ C.

where NCv is the normal cone to C at v ∈ C. We have already mentioned that in this
case the mapping T is maximal monotone, and 0 ∈ Tv if and only if v ∈ VI(C,A);
see [23]. Let G(T ) be the graph of T and let (v, w) ∈ G(T ). Then, we have w ∈ Tv =
Av + NCv and hence w − Av ∈ NCv. So, we have 〈v − t, w − Av〉 ≥ 0 for all t ∈ C.
On the other hand, from tn = PC(xn − λnAyn) and v ∈ C we have

〈xn − λnAyn − tn, tn − v〉 ≥ 0

and hence
〈v − tn,

tn − xn

λn
+ Ayn〉 ≥ 0.

From 〈v − t, w −Av〉 ≥ 0 for all t ∈ C and tni
∈ C, we have

〈v − tni
, w〉 ≥ 〈v − tni

, Av〉
≥ 〈v − tni

, Av〉 − 〈v − tni
,

tni
−xni

λni
+ Ayni

〉
= 〈v − tni

, Av −Atni
〉+ 〈v − tni

, Atni
−Ayni

〉 − 〈v − tni
,

tni
−xni

λni
〉

≥ 〈v − tni , Atni −Ayni〉 − 〈v − tni ,
tni
−xni

λni
〉.

Hence, we obtain 〈v − u, w〉 ≥ 0 as i → ∞. Since T is maximal monotone, we have
u ∈ T−10 and hence u ∈ VI(C,A).

Secondly, let us show u ∈ F (S). Assume u 6∈ F (S). Since ‖t̂n−xn‖ → 0 and xni ⇀
u, we have t̂ni

⇀ u. In terms of Opial’s condition, we have from ‖t̂ni
− St̂ni

‖ → 0

lim inf
i→∞

‖t̂ni
− u‖ < lim inf

i→∞
‖t̂ni

− Su‖
= lim inf

i→∞
‖t̂ni

− St̂ni
+ St̂ni

− Su‖
≤ lim inf

i→∞
‖St̂ni

− Su‖ ≤ lim inf
i→∞

‖t̂ni
− u‖.

This is a contradiction. So, we obtain u ∈ F (S).
Next, let us show u ∈ Ω . Since Φ is α-inverse strongly monotone and M is maximal

monotone, by Lemma 2.5 we know that M + Φ is maximal monotone. Take a fixed
(y, g) ∈ G(M +Φ) arbitrarily. Then we have g ∈ My +Φ(y). So, we have g−Φ(y) ∈
My. Since t̂ni

= JM,µni
(tni

− µni
Φ(tni

)) implies 1
µni

(tni − t̂ni − µniΦ(tni)) ∈ Mt̂ni ,
we have

〈y − t̂ni
, g − Φ(y)− 1

µni

(tni
− t̂ni

− µni
Φ(tni

))〉 ≥ 0,

which hence yields

〈y − t̂ni
, g〉≥ 〈y − t̂ni

,Φ(y) + 1
µni

(tni
− t̂ni

− µni
Φ(tni

))〉
= 〈y − t̂ni

,Φ(y)− Φ(tni
)〉+ 〈y − t̂ni

, 1
µni

(tni
− t̂ni

)〉
≥ α‖Φ(y)− Φ(t̂ni)‖2 + 〈y − t̂ni ,Φ(t̂ni)− Φ(tni)〉+ 〈y− t̂ni ,

1
µni

(tni− t̂ni)〉
≥ 〈y − t̂ni ,Φ(t̂ni)− Φ(tni)〉+ 〈y − t̂ni ,

1
µni

(tni − t̂ni)〉.
(3.5)
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Observe that
|〈y − t̂ni

,Φ(t̂ni
)− Φ(tni

)〉+ 〈y − t̂ni
, 1

µni
(tni

− t̂ni
)〉|

≤ ‖y − t̂ni
‖‖Φ(t̂ni

)− Φ(tni
)‖+ ‖y − t̂ni

‖‖ 1
µni

(tni
− t̂ni

)‖
≤ 1

α‖y − t̂ni
‖‖t̂ni

− tni
‖+ 1

ε ‖y − t̂ni
‖‖tni

− t̂ni
‖

= ( 1
α + 1

ε )‖y − t̂ni
‖‖t̂ni

− tni
‖.

It follows from ‖tn − t̂n‖ → 0 that

lim
i→∞

|〈y − t̂ni
,Φ(t̂ni

)− Φ(tni
)〉+ 〈y − t̂ni

,
1

µni

(tni
− t̂ni

)〉| = 0.

Letting i →∞, we get from (3.5)

〈y − u, g〉 ≥ 0.

This shows that 0 ∈ Φ(u) + Mu. Hence, u ∈ Ω . Therefore, u ∈ F (S)∩Ω ∩VI(C,A).

Step 5. We claim that

lim
n→∞

‖xn − l0‖ = lim
n→∞

‖yn − l0‖ = lim
n→∞

‖zn − l0‖ = 0,

where l0 = PF (S)∩Ω∩VI(C,A)x.
Indeed, from l0 = PF (S)∩Ω∩VI(C,A)x, u ∈ F (S)∩Ω ∩VI(C,A), and (3.3), we have

‖l0 − x‖ ≤ ‖u− x‖ ≤ lim inf
i→∞

‖xni
− x‖ ≤ lim sup

i→∞
‖xni

− x‖ ≤ ‖l0 − x‖.

So, we obtain
lim

i→∞
‖xni

− x‖ = ‖u− x‖.

From xni
− x ⇀ u − x we have xni

− x → u − x (due to the Kadec-Klee property
of Hilbert spaces [34]) and hence xni → u. Since xn = PQnx and l0 ∈ F (S) ∩ Ω ∩
VI(C,A) ⊂ Cn ∩Qn ⊂ Qn, we have

−‖l0 − xni
‖2 = 〈l0 − xni

, xni
− x〉+ 〈l0 − xni

, x− l0〉 ≥ 〈l0 − xni
, x− l0〉.

As i →∞, we obtain −‖l0 − u‖2 ≥ 〈l0 − u, x− l0〉 ≥ 0 by l0 = PF (S)∩Ω∩VI(C,A)x and
u ∈ F (S) ∩ Ω ∩ VI(C,A). Hence we have u = l0. This implies that xn → l0. It is
easy to see that yn → l0 and zn → l0. This completes the proof. �

Corollary 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A : C → H be a monotone and k-Lipschitz-continuous mapping and S : C → C
be a nonexpansive mapping such that F (S) ∩ VI(C,A) 6= ∅. For x0 = x ∈ C chosen
arbitrarily, let {xn}, {yn} and {zn} be the sequences generated by

yn = PC(xn − λnAxn),
zn = (1− αn − α̂n)xn + αnPC(xn − λnAyn) + α̂nSPC(xn − λnAyn),
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ) and {αn}, {α̂n} ⊂

[c, 1] for some c ∈ (0, 1], such that αn + α̂n ≤ 1 for every n = 0, 1, 2, .... Then the
sequences {xn}, {yn} and {zn} converge strongly to PF (S)∩VI(C,A)x.
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Proof. Putting Φ = M = 0 in Theorem 3.1, we have Ω = C and F (S)∩Ω∩VI(C,A) =
F (S) ∩ VI(C,A). Let α be any positive number in the interval (0,∞) and take any
sequence {µn} ⊂ [ε, 2α] for some ε ∈ (0, 2α]. Then Φ is α-inverse strongly monotone
and we have

tn = PC(xn − λnAyn),
t̂n = JM,µn(tn − µnΦ(tn)) = (I + µnM)−1tn = tn,
zn = (1− αn − α̂n)xn + αnt̂n + α̂nSt̂n
= (1− αn − α̂n)xn + αntn + α̂nStn
= (1− αn − α̂n)xn + αnPC(xn − λnAyn) + α̂nSPC(xn − λnAyn).

Therefore, by Theorem 3.1 we obtain the desired result. �

Remark 3.1 Compared with Theorem 3.1 in Nadezhkina and Takahashi [22], our
Theorem 3.1 improves and extends Nadezhkina and Takahashi [22, Theorem 3.1] in
the following aspects:

(a) Nadezhkina and Takahashi’s hybrid-extragradient method in [22, Theorem
3.1] is extended to develop Mann type hybrid-extragradient method in our
Theorem 3.1.

(b) the technique of proving strong convergence in our Theorem 3.1 is very dif-
ferent from that in Nadezhkina and Takahashi [22, Theorem 3.1] because our
technique depends on the properties for maximal monotone mappings and
their resolvent operators (see, e.g., Lemmas 2.1, 2.3 and 2.5), and the geomet-
ric properties for Hilbert spaces (see, e.g., Opial’s condition and Kadec-Klee’s
property [34]).

(c) our problem of finding an element of Fix(S) ∩ Ω ∩ VI(C,A) is more general
than Nadezhkina and Takahashi’s problem of finding an element of Fix(S) ∩
VI(C,A) in [22, Theorem 3.1].

4. Applications

Utilizing Theorem 3.1, we prove some strong convergence theorems in a real Hilbert
space.
Theorem 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let A : C → H be a monotone and k-Lipschitz-continuous mapping, Φ : C → H be
an α-inverse strongly monotone mapping and M be a maximal monotone mapping
with D(M) = C such that Ω ∩ VI(C,A) 6= ∅. For x0 = x ∈ C chosen arbitrarily, let
{xn}, {yn} and {zn} be the sequences generated by

yn = PC(xn − λnAxn),
tn = PC(xn − λnAyn),
zn = (1− βn)xn + βnJM,µn

(tn − µnΦ(tn)),
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x
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for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {µn} ⊂ [ε, 2α] for

some ε ∈ (0, 2α] and {βn} ⊂ [c, 1] for some c ∈ (0, 1]. Then the sequences {xn}, {yn}
and {zn} converge strongly to PΩ∩VI(C,A)x.

Proof. In Theorem 3.1, putting S = I and αn = α̂n = 1
2βn for all n = 0, 1, 2, ..., we

have
t̂n = JM,µn

(tn − µnΦ(tn)),
zn = (1− αn − α̂n)xn + αnt̂n + α̂nSt̂n
= (1− αn − α̂n)xn + (αn + α̂n)t̂n
= (1− βn)xn + βnt̂n
= (1− βn)xn + βnJM,µn(tn − µnΦ(tn)).

In this case, we know that F (S) ∩ Ω ∩ VI(C,A) = Ω ∩ VI(C,A). Therefore, by
Theorem 3.1 we obtain the desired result. �

Theorem 4.2 [22, Theorem 4.2] Let C be a nonempty closed convex subset of a real
Hilbert space H and let S : C → C be a nonexpansive mapping such that F (S) is
nonempty. For x0 = x ∈ C chosen arbitrarily, let {xn} and {zn} be the sequences
generated by 

zn = (1− α̂n)xn + α̂nSxn,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, 2, ..., where {α̂n} ⊂ [c, 1] for some c ∈ (0, 1]. Then the sequences
{xn} and {zn} converge strongly to PF (S)x.

Proof. Putting A = Φ = M = 0 in Theorem 3.1, we let k and α be any positive
numbers in the interval (0,∞) and take any sequence {λn} ⊂ [a, b] for some a, b ∈
(0, 1

k ) and any sequence {µn} ⊂ [ε, 2α] for some ε ∈ (0, 2α]. Then A is k-Lipschitz-
continuous and Φ is α-inverse strongly monotone. In this case, we know that F (S)∩
Ω ∩VI(C,A) = F (S) and

yn = PC(xn − λnAxn) = xn,
tn = PC(xn − λnAyn) = xn,
t̂n = JM,µn

(tn − µnΦ(tn)) = tn = xn,
zn = (1− αn − α̂n)xn + αnt̂n + α̂nSt̂n = (1− α̂n)xn + α̂nSxn.

Therefore, by Theorem 3.1 we obtain the desired result. �

Remark 4.1 Originally Theorem 4.2 is the result of Nakajo and Takahashi [18].
Theorem 4.3 Let H be a real Hilbert space. Let A : H → H be a monotone and
k-Lipschitz-continuous mapping, Φ : H → H be an α-inverse strongly monotone
mapping, M : H → 2H be a maximal monotone mapping and S : H → H be a
nonexpansive mapping such that F (S) ∩ Ω ∩ A−10 6= ∅. For x0 = x ∈ H chosen
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arbitrarily, let {xn} and {zn} be the sequences generated by
tn = xn − λnA(xn − λnAxn),
zn = (1− αn − α̂n)xn + αnJM,µn

(tn − µnΦ(tn)) + α̂nSJM,µn
(tn − µnΦ(tn)),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x

for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {µn} ⊂ [ε, 2α] for

some ε ∈ (0, 2α] and {αn}, {α̂n} ⊂ [c, 1] for some c ∈ (0, 1], such that αn + α̂n ≤ 1
for every n = 0, 1, 2, .... Then the sequences {xn} and {zn} converge strongly to
PF (S)∩Ω∩A−10x.

Proof. Putting C = H in Theorem 3.1, we have A−10 = VI(H,A) and PC = PH = I.
In this case, we know that

yn = PC(xn − λnAxn) = xn − λnAxn,
tn = PC(xn − λnAyn) = xn − λnA(xn − λnAxn),
t̂n = JM,µn

(tn − µnΦ(tn)),
zn = (1− αn − α̂n)xn + αnt̂n + α̂nSt̂n
= (1− αn − α̂n)xn + αnJM,µn

(tn − µnΦ(tn)) + α̂nSJM,µn
(tn − µnΦ(tn)).

Therefore, by Theorem 3.1 we obtain the desired result. �

Let B : H → 2H be a maximal monotone mapping. Then, for any x ∈ H and
r > 0, consider JB,rx = (I + rB)−1x. It is known that such a JB,r is the resolvent of
B.
Theorem 4.4 Let H be a real Hilbert space. Let A : H → H be a monotone and
k-Lipschitz-continuous mapping, Φ : H → H be an α-inverse strongly monotone
mapping and B,M : H → 2H be two maximal monotone mappings such that A−10 ∩
B−10∩Ω 6= ∅. Let JB,r be the resolvent of B for each r > 0. For x0 = x ∈ H chosen
arbitrarily, let {xn} and {zn} be the sequences generated by

tn = xn − λnA(xn − λnAxn),
zn = (1− αn − α̂n)xn + αnJM,µn

(tn − µnΦ(tn)) + α̂nJB,rJM,µn
(tn − µnΦ(tn)),

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {µn} ⊂ [ε, 2α] for

some ε ∈ (0, 2α] and {αn}, {α̂n} ⊂ [c, 1] for some c ∈ (0, 1], such that αn + α̂n ≤ 1
for every n = 0, 1, 2, .... Then the sequences {xn} and {zn} converge strongly to
PA−10∩B−10∩Ωx.
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Proof. Putting C = H and S = JB,r in Theorem 3.1, we know that PH = I, A−10 =
VI(H,A) and F (JB,r) = B−10. In this case, we have

yn = PC(xn − λnAxn) = xn − λnAxn,
tn = PC(xn − λnAyn) = xn − λnA(xn − λnAxn),
t̂n = JM,µn(tn − µnΦ(tn)),
zn = (1− αn − α̂n)xn + αnt̂n + α̂nSt̂n
= (1− αn − α̂n)xn + αnJM,µn

(tn − µnΦ(tn)) + α̂nJB,rJM,µn
(tn − µnΦ(tn)).

Therefore, by Theorem 3.1 we obtain the desired result. �

It is well known that a mapping T : C → C is called pseudocontractive if ‖Tx −
Ty‖2 ≤ ‖x−y‖2+‖(I−T )x−(I−T )y‖2 for all x, y ∈ C. Moreover, whenever T : C →
C is pseudocontractive and m-Lipschitz-continuous, the mapping I − T is monotone
and (m + 1)-Lipschitz-continuous such that F (T ) = V I(C, I − T ) (see, e.g., proof of
Theorem 4.5). It is easy to see that the definition of a pseudocontractive mapping is
equivalent to the one that a mapping T : C → C is called pseudocontractive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 (4.1)

for all x, y ∈ C; see [6]. Obviously, the class of pseudocontractive mappings is more
general than the class of nonexpansive mappings. Let us observe the following example
for Lipschitz continuous and pseudocontractive mappings.

Let B : H → 2H be a maximal monotone mapping and let JB,λ be the resolvent
of B for λ > 0. We define the following operator, which is called the Yosida approx-
imation: Bλ = 1

λ (I − JB,λ). Then the operator T = I − Bλ is Lipschitz-continuous
and pseudocontractive (see, e.g., [28]).

In the meantime, we also know one more definition of a κ-strictly pseudocontractive
mapping, which is equivalent to the definition given in the introduction. A mapping
T : C → C is called κ-strictly pseudocontractive if there exists a constant 0 ≤ κ < 1
such that

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 − 1− κ

2
‖(I − T )x− (I − T )y‖2

for all x, y ∈ C. It is clear that in this case the mapping I−T is 1−κ
2 -inverse strongly

monotone. From [27], we know that if T is a κ-strictly pseudocontractive mapping,
then T is Lipschitz continuous with constant 1+κ

1−κ , i.e., ‖Tx− Ty‖ ≤ 1+κ
1−κ‖x− y‖ for

all x, y ∈ C. We denote by F (T ) the fixed point set of T . It is obvious that the class
of strict pseudocontractions strictly includes the class of nonexpansive mappings and
the class of pseudocontractions strictly includes the class of strict pseudocontractions.

In the following theorem we introduce an iterative algorithm that converges
strongly to a common fixed point of three mappings, one of which is nonexpansive
and the other two ones are Lipschitz-continuous and pseudocontractive mapping and
κ-strictly pseudocontractive mapping, respectively.
Theorem 4.5 Let C be a nonempty closed convex subset of a real Hilbert space H.
Let T : C → C be a pseudocontractive, m-Lipschitz-continuous mapping, Γ : C → C
be a κ-strictly pseudocontractive mapping and S : C → C be a nonexpansive mapping
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such that F (T )∩F (S)∩F (Γ ) 6= ∅. For x0 = x ∈ C chosen arbitrarily, let {xn}, {yn}
and {zn} be the sequences generated by

yn = xn − λn(xn − Txn),
tn = PC(xn − λn(yn − Tyn)),
t̂n = tn − µn(tn − Γ tn),
zn = (1− αn − α̂n)xn + αnt̂n + α̂nSt̂n,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x

for every n = 0, 1, 2, ..., where {λn} ⊂ [a, b] for some a, b ∈ (0, 1
m+1 ), {µn} ⊂ [ε, 1−κ]

for some ε ∈ (0, 1−κ] and {αn}, {α̂n} ⊂ [c, 1] for some c ∈ (0, 1], such that αn+α̂n ≤ 1
for every n = 0, 1, 2, .... Then the sequences {xn}, {yn} and {zn} converge strongly to
PF (T )∩F (S)∩F (Γ)x.

Proof. Putting A = I −T, Φ = I −Γ and M = 0 in Theorem 3.1, we know that A is
monotone and (m+1)-Lipschitz-continuous and that Φ is α-inverse strongly monotone
with α = 1−κ

2 . Noticing {λn} ⊂ [a, b] ⊂ (0, 1
m+1 ), we know that {λn} ⊂ (0, 1) and

hence (1−λn)xn +λnTxn ∈ C. Also, noticing {µn} ⊂ [ε, 1−κ] ⊂ (0, 1−κ], we know
that {µn} ⊂ (0, 1] and hence (1− µn)tn + µnΓxn ∈ C. This implies that

yn = PC(xn − λnAxn) = PC((1− λn)xn + λnTxn) = xn − λn(xn − Txn),
tn = PC(xn − λnAyn) = PC(xn − λn(yn − Tyn)),
t̂n = JM,µn

(tn − µnΦ(tn)) = tn − µn(tn − Γ tn).

Now let us show F (T ) = VI(C,A). In fact, we have, for λ > 0,

u ∈ VI(C,A) ⇔ 〈Au, y − u〉 ≥ 0 ∀y ∈ C
⇔ 〈u− λAu− u, u− y〉 ≥ 0 ∀y ∈ C
⇔ u = PC(u− λAu)
⇔ u = PC(u− λu + λTu)
⇔ 〈u− λu + λTu− u, u− y〉 ≥ 0 ∀y ∈ C
⇔ 〈u− Tu, u− y〉 ≤ 0 ∀y ∈ C
⇔ u = Tu
⇔ u ∈ F (T ).

Next let us show Ω = F (Γ ). In fact, noticing that M = 0 and Φ = I − Γ we have

u ∈ Ω ⇔ 0 ∈ Φ(u) + Mu ⇔ 0 = Φ(u) = u− Γu ⇔ u ∈ F (Γ ).

Consequently,
F (S) ∩ Ω ∩VI(C,A) = F (T ) ∩ F (S) ∩ F (Γ ).

Therefore, by Theorem 3.1 we obtain the desired result. �
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