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Abstract. In this paper, we introduce a new iterative algorithm for finding a common element
of the set of solutions of a general variational inequality and the set of common fixed points of
an infinite family of nonexpansive mappings in g-uniformly smooth Banach space. We obtain some
strong convergence theorems under suitable conditions. Furthermore we give an appropriate example
such that all conditions of this result are satisfied. Our results extend the recent results announced
by many others.
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1. INTRODUCTION

Throughout this paper, we denote by X and X* a real Banach space and the
dual space of X, respectively. Let C' be a subset of X and T be a self-mapping of
C. We use F(T) to denote the fixed points of T. Let ¢ > 1 be a real number.
The(generalized)duality mapping J, : X — 2% " is defined by

Jy(@) = {z" € X" (w27 = o], 2" = [l2]"'}, Vo€ X.

In particular, J = J, is called the normalized duality mapping and J,(z) =
2|72 Ja(x) for & # 0. If X is a Hilbert space, then J = I, where I is the identity
mapping. It is well-known that if X is smooth, then .J; is single-valued, which is
denoted by j,.

Recall that a mapping T : C' — C is said to be nonexpansive, if

[Tz =Tyl < |z —yl, Va,y € C. (L.1)

A mapping T : C — (' is said to be L-Lipschitzian, if there exists a constant L > 0
such that
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A mapping A : C — X is said to be a-strongly accretive if there exists j,(z —y) €
Jq(z —y) and a constant o > 0 such that

(Az — Ay, j,(x —y)) > allz —y||*, Vo,y € C. (1.3)

A mapping A : C — X is said to be a-inverse-strongly accretive if there exists
Jq(z —y) € Jy(z —y) and a constant o > 0 such that

(Az — Ay, jo(z —y)) > a||Az — Ay||?, Vz,y € C. (1.4)

A mapping A : C — X is said to be relaxed (c, d)-cocoercive if there exists j,(x —
y) € Jy(z — y) and two constants ¢, d > 0 such that

(Az — Ay, jo(z — y)) = (=) [|[Az — Ay||" + dlz —y[", Y2,y € C. (1.5)

A mapping f : C — C is said to be a contraction if there exists a constant « € (0, 1)
such that

If(x) = f)| <allr—vy|, Va,y € C.

We use the notation Il to denote the collection of all contractions on C, i.e., IIo =
{f : C — C a contraction}.

Example 1.1. Let C be a subset of Hilbert space H. Define Az = %x,Vm € C, then
Ais %—strongly accretive.

Example 1.2. Let C be a subset of Hilbert space H. Define Az = %x,Vm € C, then

Ais %—inverse—strongly accretive.

Example 1.3. Let C be a subset of Hilbert space H. Define Az = %x,‘dm € C, then
A is relaxed (3, 3)-cocoercive.

Let D be a nonempty subset of C. A mapping @ : C' — D is said to be sunny
if Q(Qx + t(x — Qx)) = Qx, whenever Qz + t(x — Qx) € C for x € C and ¢t > 0.
Furthermore, @ is a sunny nonexpansive retraction from C onto D if @ is a retraction
from C onto D which is also sunny and nonexpansive.

A subset D of C is called a sunny nonexpansive retraction of C' if there exists a
sunny nonexpansive retraction from C onto D. A retraction @ is said to be orthogonal
if for each z,x — Q(z) is normal to D in the sense of R.C. James [9].

It is well known (see [4]) that if X is a Banach space, a projection mapping is
a sunny nonexpansive retraction ¢ of X onto C. If X is uniformly smooth and
there exists a nonexpansive retraction of X onto C, then there exists a nonexpansive
projection of X onto C. If X is a real smooth Banach space, then @) is an orthogonal
projection of X onto C'if and only if

Q(x) € C and (Q(z) — =, jy(Q(x) —y)) <0, Vy € C. (1.6)

Example 1.4 ([10]). If X is strictly convex and uniformly smooth and T': C' — C'is
a nonexpansive mapping having a nonempty fixed point set F'(T"), then the set F(T')
is a sunny nonexpansive retraction of C'.
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let C' be a nonempty closed convex subset of a real Hilbert space H. Recall that
the classical variational inequality, denoted by VI(A,(C), is to find an z* € C such
that

(Az*,z —2*) >0, Vo € C.

Several numerical methods have been developed for solving variational inequalities
and related optimization problems, see [3-12] and the references therein.

Let A,B : C — H be two mappings. Recently, Ceng et al. [6] considered the
following general variational inequality problem of finding (z*,3*) € C' x C such that

{ (My* +2* —y*,z—a*) >0, Va € C,

(uBx* +y* —ax*,x —y*) >0, Va € C, (1.7)

where A > 0 and p > 0 are two constants. In particular, if A = B and z* = y*, then
problem (1.7) reduces to the classical variational inequality VI(A, C).

Let C be a nonempty closed convex subset of a real Banach space X. Very recently,
Yao et al. [20] considered the following problem of finding (z*,y*) € C' x C such that

(Ay* + 2" —y*, j(x —a")) 20, Vo € C,

which is called the system of general variational inequalities in a real Banach spaces,
where A, B : C — X are two operators.

In order to find a solution of problem (1.8), Yao et al. [20] proved the following
strong convergence theorem.

(1.8)

Theorem 1.1. Let C' be a nonempty closed convex subset of a uniformly convexr and
2-uniformly smooth Banach space X which admits a weakly sequentially continuous
duality mapping. Let Q¢ be the sunny nonexpansive retraction from X onto C. Let
the mappings A,B : C — X be a-inverse-strongly accretive with o > K? and (-
inverse-strongly accretive with B > K2, respectively, where K is defined by Lemma
2.83. Suppose the set of fized points Q of the mapping G : C — C defined by G(x) =
QclQc(x — Bx) — AQc(x — Bz)|,Va € C is nonempty. For a given xg € C, let the
sequence {x,} be generated iteratively by

{ Yn = QC(xn - an)

1.
Tpi1 = QpU + ﬂnxn + ’YnQC(yn - Ayn)a n > 0. ( 9>

Suppose {an}, {Bn} and {yn} are sequences in (0,1) satisfying the following condi-
tions:
o0

(ii) lim o, =0 and 3. ap = oo;

n—oo n=0
(i) 0 < liminf 3, <limsup (3, < 1.

n—0o0 n—oo

Then {x,,} converges strongly to Q'u, where Q'u is the sunny nonexpansive retraction
of C onto F(G).

Some questions arise naturally:
(1) Could we extend a system of variational inequality problem (1.8) to more
general variational inequality problem which includes (1.8) as a special case?
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(2) Could we extend Theorem 1.1 from 2-uniformly smooth Banach space to g-
uniformly smooth Banach space,where 1 < g < 27 At the same time, could we
remove the space condition that X is uniformly convex Banach Space which admits
a uniformly sequentially continuous duality mapping?

(3) Could we modify the iterative algorithm (1.9) such that we can find the common
element of the set of solutions of the general variational inequality problem (1.10) and
the set of common fixed points of an infinite family of nonexpansive mappings?

(4) Could we replace u with f(x,,), where f € II¢?

(5) Could we extend Theorem 1.1 from inverse-strongly accretive mappings to
Lipchitzian and relaxed cocoercive mappings?

(6) Could we weaken the condition lim «, = 0 such that Theorem 1.1 also holds

when lim «,, # 07 e

n—oo

The purpose of this paper is to give affirmative answers to the questions raised

above. Let C be a nonempty closed convex subset of a real Banach space X. For

given two operators A, B : C'— X, we consider the problem of finding (z*,y*) € CxC
such that

{ (MNy* + 2" —y*, jo(z —2*)) >0, Ve € C, (1.10)

(uBzx* +y* —z*, j(x —y*)) >0, Vx € C, '

where A > 0 and p > 0 are two constants. If A = u =1 and ¢ = 2, the problem (1.10)
reduces to problem (1.8). If X is a Hilbert space, then (1.10) becomes the problem
(1.7). Consequently, our variational inequality problem (1.10) contains (1.7) or (1.8)
as a special case.

In this paper, we introduce a new iterative algorithm for finding a common element
of the set of solutions of a general variational inequality (1.10) and the set of common
fixed points of an infinite family of nonexpansive mappings in g-uniformly smooth
Banach space. Furthermore we prove some strong convergence theorems under suit-
able conditions. Then we give an appropriate example such that all conditions of
this result are satisfied and the condition «,, — 0[Theorem 1.1] is not satisfied. The
results presented in this paper extend and improve the results of Yao et al. [20], Ceng
et al. [6] and many others.

2. PRELIMINARIES

Let S(X) = {x € X : ||z|| = 1}.Then the norm of X is said to be Gateaux differ-
entiable if
o 12 A tyll — 2]

i
t—0 t

(A)
exists for each z,y € S(X). In this case, X is said to be smooth. The norm of X is said
to be uniformly Gateaux differentiable if for each y € S(X), the limit(A)is attained
uniformly for z € S(X). The norm of the X is said to be Fréchet differentiable, if
for each z € S(X), the limit(A)is attained uniformly for y € S(X). The norm of
X is called uniformly Fréchet differentiable, if the limit(A)is attained uniformly for
z,y € S(X). It is well-known that(uniform)Fréchet differentiability of the norm X
implies(uniform)Gateaux differentiability of norm X.
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Let px : [0,00) — [0,00) be the modulus of smoothness of X defined by
1
px(®) =sup {5 + vl + o = yl) = 1+ 2 € S0, ol < ¢

t
A Banach space X is said to be uniformly smooth if LU — 0ast — 0. A

Banach space X is said to be g-uniformly smooth, if there exists a fixed constant
¢ > 0 such that px(¢t) < ct?. Tt is well-known that X is uniformly smooth if and
only if the norm of X is uniformly Fréchet differentiable. If X is g-uniformly smooth,
then ¢ < 2 and X is uniformly smooth, and hence the norm of X is uniformly Fréchet
differentiable, in particular, the norm of X is Fréchet differentiable. Typical examples
of both uniformly convex and uniformly smooth Banach spaces are LP, where p > 1.
More precisely, L? is min {p, 2}-uniformly smooth for every p > 1.
In order to obtain our main results, we collect the following Lemmas.

Lemma 2.1 ([19]). Assume {a,} is a sequence of nonnegative real numbers such
that ant1 < (1 — ap)ayn + dp, n >0, where {ay,} is a sequence in (0,1) and {d,} is
a sequence in R such that

(1) 2y = o0;

(1) limsup,,_, o i—’; <0 or Y0710, < .

Then lim,,_, o a,, = 0.

Lemma 2.2 ([17]). Let {z,} and {z,} be bounded sequences in a Banach space
X and let {B,} be a sequence in [0,1] which satisfies the following condition: 0 <
liminf, o By < limsup,, . Bn < 1. Suppose xpi1 = Bnxn + (1 — Bn)zn, n >0 and
limsup,, oo (|2Zn+1 — 2nll = |Tn+1 — zn]]) < 0. Then lim, o ||2n — zn| = 0.

Lemma 2.3 ([18]). Let X be a real g-uniformly smooth Banach space, then there
exists a constant Cq > 0 such that

lz+yll" < 2 + q (v, dgz) + Cq llyll*

for all x,y € X. In particular, if X is real 2-uniformly smooth Banach space, then
there exists a best smooth constant K > 0 such that

lz + yl” < ll=]* + 2 (v, jz) + 2| Ky|?,
forallx,y € X.
Lemma 2.4 ([12], p. 63). Let ¢ > 1. Then the following inequality holds:

1 -1
ab < faq—&—qibcf%l
q q

for arbitrary positive real numbers a,b.

Lemma 2.5. Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space X. Let Pc be the sunny nonexpansive retraction from X onto C. Let
A, B :C — X be two nonlinear mappings. For given xz*,y* € C, (z*,y*) is a solution
of problem (1.10) if and only if * = Po(y* — NAy*) where y* = Po(x* — uBx*).
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Proof. We can rewrite (1.10) as

<(y*—)\Ay*)—.’E*,]q($—fE*)> §07 VmEC, (2 1)
((z* — pBz*) — y*, jo(x —y*)) <0, Vz € C. '
From (1.6), we can deduce that (2.1) is equivalent to
{ a* = Po(y* — My*),
y* = Po(a* — uBx*).
This completes the proof. O

Lemma 2.6. Let C' be a nonempty closed convex subset of a real q-uniformly smooth
Banach space X. Let the mapping A : C — X be relazed (c,d)-cocoercive and L 4-
Lipschitzian. Then, we have

11 = XAz — (I = AMA)y[|! < |lz = y[|* + (gAeL — gAd + CALY) lz — y*
where X > 0. In particular, if A < (%)ﬁ, then I — M\A is nonexpansive.
Proof. From Lemma 2.3, we have for all z,y € C

I = Ad)z — (I = Ad)y|°

=z —y — A(Az — Ay)|*

< lz = yll* = gA (A — Ay, jo(x — y)) + Co A7 [| Az — Ay]*

<z —yl* = gM—cllAz — Ay||* + d ||z — y||) + CeAILY |z — y]*

< llz = yll* + (gAeLf — gAd + CoATLY) |z — y||* .
ngg qchi‘ )71. This completes the
proof. O

It is easy to see that I — AA is nonexpansive if A < (

Lemma 2.7. Let C be a nonempty closed convex subset of a real g-uniformly smooth
Banach space X. Let Po be the sunny nonexpansive retraction from X onto C. Let
the mapping A : C — X be (¢, d)-cocoercive and L 4-Lipschitzian and let B : C — X
be (¢, d")-cocoercive and Lg-Lipschitzian. Let G : C — C be a mapping defined by

G(z) = Po [Po(x — uBx) — MAPo(x — pBz)|, Yz € C.

1

Ifo< A< (%)ﬁ and 0 < pp < (%)qj, then G : C — C is nonexrpan-
sive.
Proof. For all z,y € C, by Lemma 2.6, we have

1G(z) = G(y)ll

= [|Pc [Pc(z — pBx) — AMAPc(y — pBy))

— Pc [Pe(y — pBy) — AMAPc(y — nBy)] ||

< |I(F = AA)Po(I = pB)x — (I = AA)Po(I — pnB)y||

< | Pe(I = pB)x — Po(I — uB)y||

< = pB)x — (I — pB)yl

<llz—yll,
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which implies that G is nonexpansive. This completes the proof. O

Motivated and inspired by Theorem 4.1 of Xu [19], we obtain the following Lemma.

Lemma 2.8. Let X be a q-uniformly smooth Banach space, C' be a closed convez
subset of X, T : C' — C be a nonexpansive mapping with F(T) # 0 and f € g with
contractive constant o € (0,1). Then {x;} defined by xy = tf(zy) + (1 — t)Tx¢ for
t € (0,1) converges strongly to a point in F(T). If we define Q : llc — F(T') by

Q(f) = th_{%xh f € H07

then Q(f) solves the variational inequality
(I =1NQ(f),1(Q(f) —p)) <0, fellg,p e F(T).

Proof. First we show that {z;} is bounded. Indeed take a p € F(T'), we have
e = pll = |(1 = )(T (1) — p) + t(f (x:) = f(p)) +£(f(p) = D)

<A =t) 1T (xe) = pll + 11 f () = FR)I+ 11 f(p) — 2l
< (I =t)[Jwe — pll + ta |z — pl| + [ f(p) — 2l

which implies that
1
_ < _
lwe = pll < 37— 1F(p) =l
and hence {z;} is bounded. Assume t,, — 0. Set z,, := x;, and define p: C' — R by
w(z) = LIM ||z, — z||?, z € C,

where LIM is a Banach limit on [*°. Let
K= {x € C: pu(x) =min LIM ||z, — $||q} .
zeC

We see easily that K is a nonempty closed convex bounded subset of X. Since
|z — Tzl = tn || f(2n) — Tan|| — 0 as n — oo,
and hence
w(Tz) = LIM ||z, — Tx||?
< LIM([|zn — Tap|| 4 [[Ton — Tal])?
< LIM ||Tz, — Tz
< LIM ||z, — x|/
= p(x).

It follows that T'(K) C K; that is, K is invariant under T'. Since a uniformly smooth
Banach space has the fixed point property for nonexpansive mappings, 1" has a fixed
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point, say z in K. Since z is also a minimizer of p over C, it follows that, for ¢t € (0,1)
and x € C,
u(z + ta = 2) = p(z)
t
[(@n — 2) +t(z —2)||? — [|lzn — 2]
t
((n — 2) +t(z — 2), jg (T — 2) + t(z — 2))) — [lzn — 2|/
; :
The uniform smoothness of X implies that the duality map j, is norm-to-norm uni-
formly continuous on bounded sets of X. Letting ¢ — 0, we find that two limits above
can be interchanged and obtain

0<LIM (z—=z,js(z, — 2)),

0<

=LIM

=LIM

which implies
LIM (z — z, jg(zn, — 2)) <0, z € C. (2.2)
Since zp — z = t(f(z) — 2) + (1 = t)(Txy — 2),
lwe = 2l = (f(22) = 2, Jq (e — 2)) + (1 = ) Ty — 2, jg(1 — 2))
<t (f(ze) = 2, Jq(me — 2)) + (L= 1) [l — 2]

Hence
e = 2l < (f(2e) = 2, dg (s = 2))
< (f(@e) =2, Jg(@e = 2)) + (2 = 2, 4g (w1 — 2)) - (2.3)
Therefore by (2.2), we have for z € C
LIM ||z, — z||* < LIM (f(zn) — @, jq(xn — 2)) + LIM (x — 2z, jo(xp, — 2))
< LIM (f(zn) — 2, jo(xn — 2))
< LIM ||f(xn) = @] lzn — 2"
In particular,
LIM = 2% < LIM || f(wa) — £(2)] [z — 27"
<aLIM ||z, — z||*.
Hence LIM ||z, — z||? = 0 and there exists a subsequence which is still denoted {z,, }
such that z,, — z.

Now assume there exists another subsequence {x,,} of {z:} such that z,, — 2’ €
F(T). Tt follows from (2.3) that

12" = 21" < (f(") = 2,44 (2" = 2)). (2.4)
Interchange 2z’ and z to obtain

lz = 21" < (f(2) = 2, Jq (2 — ) (2.5)
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Adding up (2.4) and (2.5) yields
2(|2" = 2]|T < (f(") = f(2) + 2" = 2,5q (2" = 2))
S@A+a)f -2
Since « € (0, 1), this implies 2z’ = z. Hence xy — z as t — 0.

Define @ : Il — F(T) by Q(f) := ];51(1) x¢. Since xy = tf (x) + (1 —t)Tx, we have

(I = fla, = f$(1 T,

Hence for p € F(T),

(1 = fa gl = p)) = ———L (1 = T)ars = (I = T,y — p)

t
<0.

Letting t — 0 yields

(I = NR)3q(Q(F) —p)) <0.
This completes the proof. O

Lemma 2.9. Let C be a closed convex subset of a real q-uniformly smooth Banach
space X, andT : C — C be a nonexpansive mapping with F(T) # 0. Assume {x,} is a
bounded sequence such that x,—Tx, — 0 asn — co. Letx; = tf(xy)+(1—t)Tas, Vit €
(0,1),where f € Iz with contractive constant o € (0,1). Assume that Q(f) = tlg% Ty

exists. Then

limsup ((f — DQ(f), jq(zn — Q(f))) <O0.

Proof. Set M = sup {||zn — |7 it e (0,1),n > O}. Then we have

[
=t f(@t) = znsdg(ze — )| + (1 =) (Tt — T, Jo (@0 — 20))
=t (f(xs) = x4, jo (w0 — 20)) +t]2p — 20|
+ (1 =t)(Tay — Tan, jo(zve — ) + (1 —t) (Tp — @0, Jg(ze — T0))
St (@) = 2, Jg(@e — ) +t[Jzg — 2n |+ (1 = 1) [z — 2 |*
+ M ||z — Txy|
=t(f(xr) = mt, jo(xr — 20)) + ll2e — 20|
+ M ||z — Tyl ,

which implies

M
<f(‘rt) - xt;jq(xn - xt)> < 7 lzn — T{EnH .

Fixing ¢ and letting n — oo yields

limsup (f(x¢) — @, jg(@n — 21)) < 0.

n—oo
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Since X is uniformly smooth, j, : X — X* is uniformly continuous on any bounded
set of X, which ensures that the limits lim sup and lim sup are interchangeable, we

n— o0 t—0
have
limsup ((f = DQ(f), jq(zn — Q(f))) < 0.
This completes the proof. O

Lemma 2.10 ([1]). Let C' be a nonempty closed convexr subset of a Banach space
X. Let T1,Ts,--- be a sequence of mappings of C into itself. Suppose that
Yoot ysup{||Ths1z — Tzl : x € C} < co. Then for each y € C, {T,y} converges
strongly to some point of C. Moreover, let T be a mapping of C into itself defined by
Ty = lim, oo Ty for ally € C. Then lim, o sup{||Tz — T,x| : . € C} = 0.

Lemma 2.11 ([3]). Let C be a closed convex subset of a strictly convex Banach space
X. Let Ty and Ty be two nonexpansive mappings from C into itself with F(Ty) N
F(T3) # 0. Define a mapping S by

Sz = Tz+ (1 - NThz,Vr e C,
where X is a constant in (0,1). Then S is nonexpansive and F(S) = F(1T1) N F(Ty).

3. MAIN RESULTS

Theorem 3.1. Let C be a closed convex subset of a real q-uniformly smooth Banach
space X (q > 1) which is also a sunny nonexpansive retraction of X. Let the mapping
A: C — X be (c,d)-cocoercive and L 4-Lipschitzian and let B : C — X be (¢, d')-
cocoercive and Lp-Lipschitzian. f € g with the coefficient 0 < a < 1. Let G be the
mapping defined by Lemma 2.7. Let {T,,}.-_, be a sequence of nonezpansive mappings
of C into itself with F := F(G) NN F(T;) # 0. For a given x, € C, let {x,} be a
sequence generated by

Yn = QC(xn - ,U/an)7

Zn = QC(yn - AAyn)v

kn = 0pnThxn + (1 — 0n)2y

Tnit1 = anf($n) + BnTn + nkn,n > 1,

(3.1)

. ) ) d—qeLd \ 1
where Q¢ is a sunny nonexpansive retraction of X onto C, 0 < A < (qc#)‘r1
A

and 0 < p < (%)ﬁ. Suppose that {an}, {Bn},{m} and {0,} are sequences
in (0,1) satisfying the following conditions:
(i) an + B + 7 = 1;
(oo}
(i) > a, = 00;
n=1
(#i) 0 < liminf 5, < limsup B, < 1;
n—oo n—oo
w) limsup |22t — 2o | —();
( ) ’fL—>OOp 1_Bn+1 1_677,
(v) liminf ~, > 0;
(vi) lim §, =¢ € (0,1).
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Assume that >, sup ||Thr12 — Tnx|| < 0o for any bounded subset D of C' and let
n=1xz€D
T be a mapping of C into itself defined by Tx = lim T,x for all x € C' and suppose

that F(T) = NS, F(Ty,).Then x,, — Q(f) © an(f(xn) — xn) — 0, where Q(f) € F
solves the variational inequality

(I =NQ(f)4q(Q(f) —=p)) <0, fellg,pe F.

Proof. Take z* € F. From Lemma 2.5, we have 2* = Q¢[Qc¢(v* —pBx*)—AAQc (x* —

uBx*)]. Put y* = Qo(z* — pBx*), then a* = Q¢ (y* — AAy*). It follows from Lemma
2.7 that

[2n — 2| = |Qc(yn — AMyn) — Qc(y™ — AMAy™)||
< = AA)yn — (I = AA)y"||
< llyn =y
= HQC(xn - Man) - QC(m* - MBx*)”
< | = pB)zn — (I — pB)z”|

< oy — 27
It follows that

||kn - x*ll = ||5n(Tnxn — ")+ (1 - 5n)(2n — -%'*)H
< 0y ||Tnxn - 37*” + (1 — 6n) HZn — l‘*H
< O flon — 2| + (1 = 6p) [0 — 27|
= [lzn — 2" (3.2)

By (3.2), we have

[ent1 = 2% = [lom(f(2n) — %) + Bu(@n — &%) + 0 (kn — 27)||
< an [|f(n) = 2" + Bn llen — 2" 4+ 1k — 27
< an [|f(n) = F@O) + an |f(27) = 27| + Bn l|on — 27|
+ |2 — 27|

< anallen — 2| 4+ (1= an) lzn — 2" + an [|f(27) — 27|

= [t~ a1~ )] — 27 a1 — )L
< max{”xl _m*|’|f(9:*):1fk||} ,Vn> 1.
l1-«a

Therefore {x,} is bounded. Hence {yn},{kn},{2n},{Ayn} and {Bz,} are also
bounded.
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Suppose that o, (f(z,) —x,) — 0 as n — co. We observe that

[2n41 = zll = Q0 (Ynt1 = AAYns1) — Qo (yn — Ay,
< T = AA)ynt1 — (I = AA)ya|
< [yn+1 — ynll
= ||Qc(xn+1 — uBxpt1) — Qc(xy — nBxy,)||
< = pB)zns1 — (I — pB)ay ||

< ||xn+1 - xn” .

It follows that

Hkn+1 - kn”

= ||5n+1Tn+lxn+1 + (1 — 0nt1)Znt1 — OnTpan — (1 — 5n)zn||

= [|(6n+1 = 6n)(Tn1Znt1 — 2nt1) + On(Tng1@nt1 — Tnan)
+ (1= 6)(zn41 — 20|

< |0ng1 — On ||Tn+1xn+1 - Zn+1|| + 00 | Th17ns1 — Ty ||
+ (1= 6n) [[2n4+1 — 2l

< 10nt1 = Onl [ Tnr1zntr — zngall + 0 [ Tnsrngn — Tnwna |
+ 6 ||Tn95n+1 - Tnl"nH + (1 - 5n) ||Zn+1 - Zn”

<|bn+1 = Onl [ Tnt1Znt1 — 2ns1 |l + 0n | Tns 12041 — Tnnia ||
+ 6n [|Tnt1 — @nll + (1 = 6n) |Tnt1 — @a|

= |5n+1 - 6n| ||Tn+1xn+1 - Zn+1|| +0n ”Tn-i-lxn-i-l - Tnxn-i-lH + ||xn+1 - an .
(3.3)

Put zp41 = Bnxn + (1 — Bp)ly for all n > 1. Then, we have

an-{-lf(xn-‘rl) + 7n+1kn+1 _ anf($n) + 'Ynkn

ln—i—l - ln - 1= ﬁn+1 o ﬂn
_ _On _ o TR T
1= B f@n) 1— ﬁnf(zn) + 1— Bt knta 1-3, kn
o Ony1 Oy an B
= (1 — Bpp1 1— ﬁn)f(xnﬂ) + -3, (f(xny1) — f(zn))
Yn+1 Tn Y

+(1*ﬂn+1 _1iﬂn)kn+l+m(k’n+1—kjn)
= (O Oy () — Fag) 1 (i) — ()
= 1-— Bn+1 1-— ﬂn n+1 n+1 1= ﬂn ntl n

l_ﬁn
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Combining (3.3) and (3.4), we have

||ln+1 - lnH
Qa1 o Q0
< - f@ns)ll + kng1l]) + —— llTny1 — 2
(U @)+ D) + 725 s = 2
Ops1 — O
2 o — )+ 2Oy )
1)
+ M ||Tn+1xn+1 - Tnxn-i-lH
1_671
An41 Qp

(f @)l + Rt lD)

1-0Bnt1 1-06,

]-_Bn_an(]-_a) ’Yn|5n+1 _5n|
— T —
+ 1-3, [#n41 — znll + 1-3, [ Tht1Zn41 — 2n41]|
1)
+ %7” ||Tn+1-73n+1 - Tnxn—l-l”
1- ﬁn

]- - ﬁnJrl a 1 - ﬁn
+ |6n+1 - 6n| ||Tn+1$n+1 - Zn+1|| + ||Tn+1$n+1 - Tnl‘n+1|| )

<

[077ES] (6
\ n 0| @) |+ Wenia ) + st — 2l

which implies that
llnt1 = lnll = [|Tn+1 — 2ol
On41 (7%
- n kn
o ()l + )

+ 10011 = On| [ Tn12n41 — Zngr || + ([ Tag1@ng1 — Tona ]l -

By conditions (iv),(vi) and the assumption on T;,,we obtain

limsup(|[ln41 = ln = [[#n41 — @al]) < 0.
It follows from Lemma 2.2 that lim ||l,, — z,| = 0. Consequently,
lim ||@p41 — 2] = lim (1 —8y) |ln — 24| = 0.
n—0oo n—

From (3.1), we have

[Zns1 — Znll = lan(f(zn) — 20) + yn(kn — 20)||
> Yo | bn — 20| — Han(f(xn) =z,

which implies

1
[ = nll < —=(lln(f(@n) = @)l + ll2nsr = 2all)

n

Noticing that condition (v), (3.5) and lim a,(f(z,) — z,) — 0, we have

n—oo

lim ||ky, — x| = 0.

395
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Define a mapping U : C — C as Uz = 6Tz + (1 — 0)Gz. From Lemma 2.11, we know
that U is nonexpansive and

FU)=F({T)NF(G) =N, F(T;)NF(G)=F.
Since condition (vi) and the assumption on 7T, we have

Vkn — Uyl = |00 Tnxn + (1 = 6p)2n — 6Tzn — (1 — §)Gay||
= |0 Tnxn + (1 — 6p)zn — 0Txn — (1 — 6) 2|
= |65, — 0)(Tnxn, — 2n) + (T — Txy)||
< |op — 0| | Tnn — zn|| + 6 || Tnan — Ty ||

— 0asn— oo. (3.7)
Combining (3.6) and (3.7), we have
|l —Uzp|| < ||@n — kn|| + [|kn — Uzy| — 0 as n — oo. (3.8)
Next we show that

limsup (f(2) — 2, jq(xn — 2)) <0, (3.9)

where
2= Q). Q) = limr,
and x; is the unique fixed point of the contraction mapping 7} given by
Tix=tf(z)+ (1 —t)Ux,t € (0,1).
By Lemma 2.8, we have Q(f) € F(U) = F solves the variational inequality
(I =1Q(f):4q(Q(f) —p)) <0, Vpe F.

By (3.8) and Lemma 2.9, we see that

limsup ((2) — 2, jg @ — 2)) < 0.

n—oo

Therefore (3.9) holds.

Finally we prove that x,, — z as n — oco. Putting

on = max {(f(2) — 2, jq(Tns1 — 2)), 0},

we have o, — 0 as n — oo.
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By virtue of Lemma 2.4 and (3.2), we have

[2n 1 — 2|

= {on(f(@n) = 2),Jg(@nt1 = 2)) + (Bn(zn — 2),4g(Tni1 — 2))
+ (b = 2), Jq(Tn41 — 2))

= an (f(xn) = f(2),dq(@ns1 = 2)) + an (f(2) = 2, Jq(@n11 — 2))
+ Bn (xn — 2, Jq(@nt1 — 2)) + Vo (kn — 2, Jg(Tnt1 — 2))

< ana e, = 2l |zner = 277" + B llzn = 2| lznes — 277
+ 90 Ik = 2l na1 = 277" + anon,

< ana |y = 2| l|zner = 2"+ Bullzn — 2| lznes — 2"
+ 9 20 = 2l |1zar1 = 217" + anon,

-1
=[1—an(l =)l |lzn — 2| [|[Zns1 — Z”q + anon

1 q—1
< 1= (1 = )l o = 217 + L= [l = 2% + a0,
1—a,(l —« -1
= nc;)|33n_2|q+ 1 [Zn41 —qu—I—anan,
which implies that
qo.
[Zn+1 — 21T < [1—an(l = )] |lzn — 2[|! + an(l — ) 7 _"a-

By Lemma 2.1, we have x,, — z as n — oc.
Conversely, if z,, — Q(f) as n — oco. Then from (3.1) and (3.2) we obtain that

= [[#znt1 — 2n — Yn(kn — z0)|
< ansr = QU+ llzn — QUAOI 4 vn [k — QUAN + 7 llzn — QU
< lzner = QNN+ (14 29m) lzn — QU]

— 0 asn — oo.

This completes the proof. O

Corollary 3.2. Let C be a closed convex subset of a real q-uniformly smooth Banach
space X (q > 1) which is also a sunny nonexpansive retraction of X. Let the mapping
A: C — X be (c,d)-cocoercive and L 4-Lipschitzian and let B : C — X be (¢, d')-
cocoercive and Lp-Lipschitzian. f € g with the coefficient 0 < a < 1. Let G be the
mapping defined by Lemma 2.7. Let {T,,}.-_, be a sequence of nonezpansive mappings
of C into itself with F := F(G) NN F(T;) # 0. For a given x, € C, let {x,} be a
sequence generated by

Yn = QC(xn - ,U/B-Tn)a

Zn = QC(yn - >\Ayn)>
K = 60Tty + (1 — )2 (3.10)

Tn+1 = O‘nf(xn) + ﬁnxn + Vnknvn >1,
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_ . ) d—qeL? L
where Q¢ is a sunny nonexpansive retraction of X onto C, 0 < A < (quch A) g1
- A

d —qc' LY\ 1
and 0 < 1% § (%)q_l
(0,1) satisfying the following conditions:

(Z) Qp +ﬁn + v = 17'

(i1) > a, =00, lim a, =0;
n=1 n—00
(i) 0 < liminf §8,, <limsup 8, < 1;

(i) lim 4, =6 € (0,1).

. Suppose that {an}, {Bn} and {vn} are sequences in

[e.e]
Assume that > sup ||Thy1z — Thz| < oo for any bounded subset D of C and let
n=1xzeD
T be a mapping of C into X defined by Tx = lim T,x for all x € C' and suppose that

F(T) =N, F(T,). Then {z,} converges strongly to Q(f), where Q(f) € F solves

the variational inequality

(I = NQ),4a(Q(f) —p)) <0, fellg,pe F.

Proof. By condition (ii), we see that there hold the following
(1) an(f(rn) — -Tn) — 0 as n — oo;

: ntl  _ _an | _ .
(2) hrrlnﬁsotip T—h T~ ToB. =0;

(3) liminf v, = liminf(1 — 3,) > 0.
Therefore, all conditions of Theorem 3.1 are satisfied. So we obtain the desired
result by Theorem 3.1. This completes the proof. O

Corollary 3.3. Let C be a closed convex subset of a real qg-uniformly smooth Banach
space X (q > 1) which is also a sunny nonexpansive retraction of X. Let the mapping
A: C — X be (c,d)-cocoercive and L s-Lipschitzian and let B : C — X be (¢/,d')-
cocoercive and Lp-Lipschitzian. f € llc with the coefficient 0 < o < 1. Let G be the
mapping defined by Lemma 2.7. Let {Tn}zoz1 be a sequence of nonexpansive mappings
of C into itself with F := F(G) NN F(T;) # 0. For a given x1 € C, let {z,} be a
sequence generated by

Yn = QC(J:TL - ,Uan)v

Zn = QC(yn - AAyn)y

b = 00 Totn + (1 — 6u)2n (3.11)
Tn+l = anf(xn) + ann + ’Ynknvn > 17

— a 1
qd chA)qfl

where Q¢ is a sunny nonexpansive retraction of X onto C, 0 < X\ < (“5pq
a-A

and 0 < p < (%)qil . Suppose that {a,}, {Bn} and {v,} are sequences in
a-B
(0,1) satisfying the following conditions:

(Z) Qp, +ﬁn + Y = 17'
(ii) > o, = 00;
=0

(iii) 0< liminf 8, < limsup g3, < 1;

n—oo
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(iv) lim sup |an+1 - an| =0, limsup |ﬁn+1 - 6n| =0;

n—oo n—oo

(v) liminf v, > 0;
(vi) lim 6, =6 € (0,1).
Assume that Y, sup || Thy12 — Thx|| < 0o for any bounded subset D of C' and let

n=1xz€D
T be a mapping of C into X defined by Tx = lim T,x for all x € C' and suppose

that F(T) =N, F(Ty). Then x, — Q(f) < an(f(xn) — xn) — 0, where Q(f) € F
solves the variational inequality

<(Ii f)Q(f)ajq(Q(f) 7p)> <0, f S Hc,p c F.
Proof. We observe that

Ant1  Qp an+1(1 = Bn) — an(l = Bnt1)
1=Bnpr 1=0n (1= Bp+1)(1 = Bn)
Qnt1 — Qp — Qi1 Bn + OnBn — anfBr + anfni1
(1 - 6n+1)(1 - Bn)
_ (Oén-i-l — Ozn)(l - ﬁn) + an(ﬁn-ﬁ-l - Bn)

(1= Bn1)(L = Bn)

By virtue of condition (iv), we deduce from (3.12) that lim SUP(ﬁHL - 125) =0.
n—00 |

Consequently, all conditions of Theorem 3.1 are satisfied. So, utilizing Theorem 3.1
we obtain the desired result. O

: (3.12)

The following example shows that all conditions of Theorem 3.1 are satisfied. But
the condition a,, — 0 in [9,Theorem 3.1] is not satisfied.

Example 3.1. Let X = L? and C be a closed convex subset of L2. We know that
L? is Hilbert space and 2-uniformly smooth Banach space. Then Jjqg = I. Define
mappings A, B: C — C and a contraction f: C — C with contractive constant % as
follows:

1 1
Ax = Bx = —x,Tpx =z and f(z) = 1% Vn>1l,zeC.

2
Take&n:%,anzﬂn:fyn:%,c:c':l,d:d’:%,LA:LB:%. Since
) 1 1 2
(Az — Ay, jo(z —y)) = 5 =~y —y) = S llz —yll
and

2 2 1 2 1 2 1 2
—cllAz = Ay|I” +dllz —ylI" = — 7 lle = yll" + 5 llo =yl = 7 llz — yl"

We know that 3 ||z —y|*> > 1|z —y||>. Therefore A, B are (1, 1)-cocoercive and
%—Lipschitzian.
We observe
2 2 2
= yll™ = ll=lI” + 2 (g, 2) + [ly]”-
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From Lemma 2.3, we obtain Cy = 1. So

(qd—chfq)ﬁ72x%—2xlxi72
CoLy i
We can take A = pu = % Define a mapping G : C' — C as
Gz = Po(I — 1A)PC(I— 1B)::: = gz
2 2 16

Then G is nonexpansive and F(G) = {6}, and hence F = {#}. For any z; € C, let
{z,,} be defined as follows:

Yn = QC(xn - ,UfBl'n),

Zn = QC(yn - >\Ayn)v

kn = 0nThxn + (1 — 0n)2,

Tn+l1 = anf(xn) + ﬁnxn + 'Ynkjnvn > 1

That is
= 37 @)+ 300)
Tnt1 = 3 T T 41'71
RS SRRNE: J
TRl T Ty
2
= —Zy.
3
Hence by induction we get [|zn41 — 0] = [|[2ngr|| < (3)" ||lz1| for all n > 1. This

implies that {z,} converges strongly to the fixed point 6 € F. Thus

[l (f(2n) = zn) || < cn(llf(@n)ll + [lznll)

1.1
= 3(7 lzall + llzal)
>zl — 0
= — — — .
12 Ty as n — 00

Furthermore, it can be seen easily that all conditions of Theorem 3.1 are satisfied.
Since v, = § - 0, the condition a;, — 0 in [9,Theorem 3.1] is not satisfied.
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