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Abstract. In the paper we study the truncation method for solvability of the Fourier first bound-
ary problem for infinite countable systems of nonlinear parabolic-reaction-diffusion equations with

Volterra functionals in Banach sequences spaces. These systems arise as discrete models of processes

considered. In the truncation method a solution of the infinite countable system is defined as the
limit when N →∞ of the sequence of approximations {zN}N=1,2,..., where zN = (z1

N , z2
N , . . . , zN

N )

are defined as solutions of the finite systems of the first N equations in N unknown functions with

corresponding initial and boundary conditions. The truncation method plays an important role
among approximation methods; it is very useful and commonly used in numerical computation of

approximate solutions. The main results of the paper are an existence and uniqueness theorem for
infinite countable systems of nonlinear parabolic-reaction-diffusion equations with Volterra function-

als and a new method for the construction of truncated systems when a lower or an upper solution

of the problem considered is known. This method may be used also to research of positive solutions
of discrete models in infinite-dimensional Banach spaces.
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1. Introduction

Infinite systems of nonlinear ordinary differential equations and parabolic partial
differential equations have been emerging in mathematics in response to problems
arising in mathematics itself, e.g., numerical method of lines1 (see Leszczyński [33],

∗∗∗Corresponding author.
1The numerical method of lines consists of replacing spatial derivatives with difference expressions.

Solutions of the problem considered are approximated by means of solutions of the infinite countable
system of ordinary differential-functional equations.
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Kamont and Zacharek [24]), as well as in physics, chemistry, biology, neurology and
other sciences. These infinite systems of differential equations arise in the theory
of branching processes, the birth process, the theory of neural nets and neuronal
models, the theory of dissociation in polymers, the degenerations of polymers, and in
other problems (see Tadeusiewicz [55, 56]). An infinite countable system of ordinary
differential equations was originally introduced by Marian Smoluchowski 2 in 1917
[50, 49], as a model for coagulation of colloids moving according to a Brownian motion.

The application of infinite systems of differential equations to describing difficult
and important processes and phenomena observed in reality, purely mathematical
aspects and large computational capabilities of contemporary computers have all
encouraged numerous mathematicians to focus their interest and research on such
systems.

Certain important processes and phenomena (e.g., particles coagulation and poly-
mers fragmentation in continuous mechanics) lead to physical models where it is from
the very beginning assumed that the number of particles involved in the process dis-
cussed is unbounded. This assumption, in turn, leads to mathematical models which
involve infinite systems of equations.

There are two main approaches to the construction of mathematical models of
physical processes: a discrete version or a continuous version of description. If a
variable taking countable infinite number of values is used to describe a process, a
discrete model of the process is obtained. Discrete models are expressed in terms of
infinite countable systems of equations.

On the other hand, if a variable taking arbitrary real values ranging over some
interval (such as volume) is used, then a continuous model is obtained and expressed
in terms of infinite uncountable systems of equations.

We remark that it is not possible to directly solve infinite countable and uncount-
able systems of differential equations. In the case of infinite systems of such equations,
no existence theorems are known in the literature other than those quoted in the au-
thor’s publications [9, 10, 11, 12, 13, 14, 15, 16, 17, 19]. Therefore, in practice the
infinite systems of differential equations are replaced by finite systems of suitably
defined differential equations. However, examples have been provided (see Szafirski3

[52]) proving, that not always is this the case.
Under appropriate assumptions, the studying and solving of infinite countable sys-

tems an be replaced with studying and solving of finite systems, which may be solved
with well-known numerical methods. The subject is comprehensively covered in re-
cently published papers (see e.g. Pao [42, 43]. Moreover, assuming that the right-hand
sides of system equations are monotone with respect to the function and functional

2Marian Smoluchowski (28th May 1872—5th September 1917) born in the town of Vonderbrühl

near Vienna. Professor of physics, Head of the Department of Theoretical Physics at the John

Casimir University of Lviv (1903–1913) and Head of the Experimental Physics Department at the
Jagiellonian University (1913–1917). Elected Rector of the Jagiellonian University (15th July 1917).

Smoluchowski died in Cracow. He was a prominent Polish scientist, theoretical physicist, pioneer of
statistical physics and a mountaineer. His works on the Brownian motion theory play a fundamental

role in theoretical physics. Extensive information about M. Smoluchowski see Fuliński [23].
3This information has never been published yet. It is available in [52].
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arguments, and that Condition A holds, the method yields monotone sequences of
approximations: one increasing and the other decreasing, both converging to the so-
lution sought for. And what is perhaps most important here, the N -th approximation
of the solution sought for may be found without the previous approximations.

The most difficult task is to give conditions under which that is possible, as such
conditions depend on not only the equation, but also on the space and adopted defi-
nition of a solution.

We will be interested in finite systems of the first N equations in N unknown
functions of an infinite system. Such transition from infinite systems of equations to
finite ones, known as truncation, may be effected in various ways. One of the ways to
describe the truncation process is assuming that we have a projection from an infinite
dimensional space onto its finite dimensional subspace.

In this method a solution of the infinite system of differential equations is defined as
the limit, when N →∞, of the sequence of approximations which are solutions of the
truncated systems of the first N equations in N unknown functions with appropriate
initial and boundary conditions [18, 20]. In other words, solution of the original
problem is approximated by means of solutions of the infinite systems of differential
equations.

In the second step of the method, one has to prove that each truncated system (that
is for each positive integer N) has a solution in some Banach space. In the case of an
infinite countable system of parabolic equations, this is the classical Banach space of
convergent sequences of real-valued functions. The purpose of our next considerations
is to give some conditions which will guarantee that this is the case. It is easy to see
that we do not need to know the previous approximations to determine the next
approximations.

It should be stressed here that there are existence theorems for finite systems
of semilinear parabolic differential-functional equation of the reaction-diffusion type
in the extensive literature on this subject. In this scope, existence theorems for
finite systems of equations Ugowski [58, 59, 60, 61] have been proved with monotone
iterative methods (see Ladde et al. [29]), based on the topological fixed point method
(giving “exact” solutions), on the theory of continuous semigroups of linear operators
with evolution system techniques, as well as finite difference methods, to mention just
a few most commonly used.

The finite difference method, including its monotone variants, i.e., the three basic
monotone iteration schemes of Picard, Jacobi and Gauss-Seidel (see Pao [42, 43]) is not
only one of the simplest methods used in numerical analysis, but also an important
theoretical method of proving existence theorems for partial differential equations.
It is highly advantageous to select a finite difference method to prove the existence
and uniqueness for any truncated system for the problem considered, because we
thus arrive at numerically proved constructive theorems on existence. Each of these
solutions is an approximation of a solution of this problem and may be numerically
calculated and plotted, or tabulated.

In [2, p. 344] Amman notices that in the case of solving countable systems of
equations as the discrete coagulation-fragmentation models with diffusion, the tech-
nique used in practically all papers is the natural one: it starts with a study of finite
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systems obtained by truncation to the first N equations followed by passing to the
limit as N →∞.

We remark that to solve infinite countable systems of ordinary differential equa-
tions, parabolic partial differential equations and integro-differential equations of par-
abolic type, numerous authors have applied also the truncation method; see for ex-
ample: Ball and Carr [4], Deimling [21], Lachowicz and Wrzosek [28], Moszyński
and Pokrzywa [39] Persidskǐı [44], Rzepecki [48], Tychonov [57], Wrzosek [63, 64, 65],
Valeev [62] and Zautykov [62].

It should be emphasized here that with his research in numerous paper, Dariusz
Wrzosek has made a important and lasting contributions to the development of the
theory of infinite countable systems of semilinear parabolic differential equations, and
in particular to the theory of infinite systems of discrete coagulation-fragmentation
equations with diffusion.

The truncation method is also the fundamental approximation method of studying
solvability of infinite uncountable systems of ordinary differential equations, as well as
integro-differential and differential-functional equations of parabolic type (Lamb [31],
McLaughlin et al. [34, 35, 36, 37] and Laurençot [32]). A finite truncated system may
be obtained from an uncountably infinite system with use of a projection. The trun-
cation method for infinite uncountable systems of parabolic-reaction-diffusion equa-
tions has been investigated in a separates paper. Therefore, the truncation method
described above is extremely useful and widely used in practice.

2. Preliminaries

2.1. Notation and definitions. 4

Let D be a domain in the time-space (t, x) = (t, x1, x2, . . . , xm) and S be an
arbitrary set of indices (finite or infinite).

Let B(S) be the real Banach space of mappings

w : S → R, i 7→ w(i) := wi,

with the finite norm
‖w‖B(S) := sup

{∣∣wi∣∣ : i ∈ S
}
.

We use the symbol |·| to denote the absolute value of a real number, and we use index
notation w = {wi}i∈S , where S is a non-empty index set.

The space `∞ is the Banach sequence space of all real-valued bounded sequences
w = {wj}j∈N = (w1, w2, . . .), with the finite norm

‖w‖`∞ := sup
{∣∣wj∣∣ : j ∈ N

}
.

The partial order “≤” in the space `∞ is defined by the positive cone

`∞+ :=
{
w : w = {wj}j∈N ∈ `∞, wj ≥ 0 for j ∈ N

}
4The notation w or w(·, ·) (where w ≡ w(·, ·)) denotes that w is regarded as an element of the

set of admissible functions, while w(t, x) stands for the value of this function at the point (t, x).

However, sometimes, to stress the dependence of a function w on the variables t and x, we will write

w = w(t, x) and hope that this will not confuse the reader.
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in the following way
u ≤ v ⇐⇒ v − u ∈ `∞+ .

If S is a finite set of indices with r-elements, i.e., S = {1, 2, . . . , r} then B(S) =
Rr. For an infinite countable set S, there is B(S) = B(N) = `∞. For an infinite
uncountable set S, there is B(S) = B(R∞).

We introduce three spaces of sequences of real-valued functions (see Kantorovič et
al. [26, pp. 147–149]) equipped with the norms induced by the norm of the space `∞.

Denote by CN(D) := C 0
N(D) the space of infinite sequences z = (z1, z2, . . .) of real-

valued functions zj = zj(t, x), j ∈ N, defined and continuous in a domain D, with
the finite supremum norm

‖z‖CN(D) := sup{
∣∣zj∣∣

0
: j ∈ N},

where zj ∈ C(D) := C0(D), j ∈ N, and∣∣zj∣∣
0

:= sup{
∣∣zj(t, x)

∣∣ : (t, x) ∈ D}

is the norm in the space C(D).
The partial order “≤” in the space CN(D) is defined by means of the positive cone

C +
N (D) :=

{
w : w = {wj}j∈N ∈ CN(D), wj(t, x) ≥ 0 for (t, x) ∈ D and j ∈ N

}
in the following way

u ≤ v ⇐⇒ v − u ∈ C +
N (D).

From this it follows that the inequality u ≤ v is to be understood componentwise
(natural ordering), i.e., uj ≤ vj for all j ∈ N.

Inequality u ≤ v is to be understood both componentwise and pointwise, i.e.,
uj(t, x) ≤ vj(t, x) for arbitrary (t, x) ∈ D and all j ∈ N.

We also introduce the space CN,0(D) consisting of those infinite sequences in CN(D)
which have a finite number of non-zero terms (i.e., almost all terms of each such
sequences are equal to 0), namely zN,0 = (z1

N , z
2
N , . . . , z

N
N , 0, 0, . . .) with the finite

norm
‖zN,0‖CN,0(D) = max{

∣∣∣zjN ∣∣∣
0

: j = 1, 2, . . . , N}.

The space CN (D) is the space of finite sequences zN = (z1
N , z

2
N , . . . , z

N
N ) of real-

valued functions zjN = zjN (t, x) for j = 1, 2, . . . , N , defined and continuous in a domain
D, with the finite norm

‖zN‖CN (D) := max{
∣∣zj∣∣

0
: j = 1, 2, . . . , N}.

Convention. We adhere to the convention that every finite sequence

zN = (z1
N , . . . , z

j
N , . . . , z

N
N ) ∈ CN (D)

is treated as infinite one

zN,0 = (z1
N , . . . , z

j
N , . . . , z

N
N , 0, 0, . . .) ∈ CN,0(D)

and we note
zN ∼= zN,0 for all N ∈ N.
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In this sense, the space CN (D) is identified with the space CN,0(D) and we note

CN (D) ∼= CN,0(D).

Finally in this sense, the space CN (D) may be treated as the subspace of the space
CN(D).

We remark that the partial ordering in the space CN(D) induces a corresponding
partial ordering in the subspaces CN,0(D) and CN (D).

2.2. Formulation of problems. Let us consider weakly coupled5 infinite countable
systems of semilinear parabolic-reaction-diffusion equations with functionals of the
form

Fj [zj ](t, x) = f j(t, x, z(t, x), z) for j ∈ N, (1)
where

Fj := Dt − Lj , Lj :=
m∑

i,k=1

ajik(t, x)D2
xixk

−
m∑
i=1

bji (t, x)Dxi

x = (x1, . . . , xm), (t, x) ∈ (0, T ] × G := D, 0 < T < ∞, where T can be arbitrarily
large, G ⊂ Rm and G is an open, bounded domain, whose boundary ∂G is an (m−1)-
dimensional surface of a class C2+α (0 < α < 1), S0 := {(t, x) : t = 0, x ∈ G},
σ := [0, T ] × ∂G is a lateral surface of the cylindrical domain D, Γ := S0 ∪ σ is the
parabolic boundary of domain D and D := D∪Γ, N is the set of natural numbers and
N is an arbitrary fixed natural number. Diagonal operators6 Fj , j ∈ N are uniformly
parabolic in D, z stands for the mapping

z : N×D → `∞, (j, t, x) 7→ z(j, t, x) := zj(t, x),

composed of unknown functions z = {zj}j∈N, and f = {f j}j∈N are given nonlinear
functions

f : N×D × `∞ × CN(D) → `∞, (j, t, x, y, s) 7→ f(j, t, x, y, s) := f j(t, x, y, s).

The reaction functions (reaction terms) describing kinetic behavior of the problem
are functionals with respect to the last variable and we assume that they are Volterra
functionals (i.e. satisfy the Volterra condition). This means that the values of these
functions depend on the past history of the modelled processes.

If we introduce the function f̃ = {f̃ j}j∈N setting

f̃ j(t, x, z) := f j(t, x, z(t, x), z), j ∈ N,

where

f̃ : N×D × CN(D) → `∞, (j, t, x, s) 7→ f̃(j, t, x, s) := f̃ j(t, x, s),

then we will write the equations of system (1) in another form

Fj [zj ](t, x) = f̃ j(t, x, z), j ∈ N (2)

which may be useful in our further considerations.

5This means that every equation contains derivatives of one unknown function only.
6Operators Fj , j ∈ N, are diagonal if Fj depends on zj only, for all j ∈ N.
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Both forms (1) and (2) of the system considered have some disadvantages (Kamont
[25]). Namely, if the reaction functions containing operators are of the form

f(t, x, z(t, x), z) or f̃(t, x, z)

then it is difficult to formulate conditions concerning the existence of solutions. For
instance, we have not been able to do so in the case of equations with deviated
argument.

The situation is different if the right-hand sides are of the form

f̂ j(t, x, z(t, x), V [z](t, x)), j ∈ N,
i.e., are superpositions of functions defined on certain subsets of the space Rm+1 ×
`∞ × `∞ and some operators V = {V j}j∈N.

Thus
f̂ j : D × `∞ × `∞ → R, (t, x, y, s) 7→ f̂ j(t, x, y, s), j ∈ N,

and
V j : CN(D,R) → R, z 7→ V j [z], j ∈ N,

that is
V : CN(D,R) → `∞, z 7→ V [z].

Therefore, differential-functional system (1) will take the following form

Fj [zj ](t, x) = f̂ j(t, x, z(t, x), V [z](t, x)), j ∈ N, (3)

where V [z] = {V j [z]}j∈N.
Now we may adopt separate assumptions on the functions f̂ j and operator V .

We may assume different conditions concerning the type of dependence of f̂ j on the
variables t and x.

The objective of using different expressions is to facilitate the understanding of
the problem, as well as to facilitate, if not make possible, a precise formulation and
wording of appropriate assumptions.

Finally, it should be noted that, formally, all three expressions (1), (2) and (3) are
equivalent and may be used alternately, as the context requires.

For system (1) (or (2)) we will consider the so-called Fourier first boundary value
problem:

Find the regular (classical) solution of infinite countable system of equation (1)
( (2) or (3)) in D fulfilling the initial-boundary condition

z(t, x) = φ(t, x) for (t, x) ∈ Γ. (4)

Remark 2.1. Initial-boundary condition (4) is equivalent to the initial condition

z(0, x) = φ0(x) for x ∈ G (5)

and the Dirichlet boundary condition

z(t, x) = h(t, x) for (t, x) ∈ σ (6)

with the compatibility condition7

h(0, x) = φ0(x) for x ∈ ∂G. (7)

7For the definition of a compatibility condition see, e.g., Ladyzhenskaya et al. [30, p. 319].
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The truncation method is one of the basic approximation methods of solving initial
and initial-boundary problems for countable infinite systems of equations and it is
very useful and commonly used in practical computations of applied solutions. In
this method, a solution z of infinite countable system (1) is defined as the limit, when
N →∞, of the approximation sequence {zN}N=1,2,..., where zN = (z1

N , z
2
N , · · · , zNN ),

are defined as solutions of finite systems of the first N equations of the system (1)
in N unknown functions for an arbitrary N , N ∈ N, (which are called truncated
systems) of the form

Fj [zj ](t, x) =

= f̃ jN,ψ
(
t, x, zN,ψ(t, x), zN,ψ

)
:=

= f̃ jN,ψ
(
t, x, z1

N (t, x), . . . , zjN (t, x), . . . , zNN (t, x), ψN+1(t, x), ψN+2(t, x), . . . ,

z1
N , . . . , z

j
N , . . . , z

N
N , ψ

N+1, ψN+2, . . .
)

for (t, x) ∈ D and j = 1, 2, . . . , N

(8)

with the corresponding initial condition

zjN (0, x) = φj0(x) for x ∈ G and j = 1, 2, . . . , N, (9)

and the boundary condition

zjN (t, x) = hj(t, x) for (t, x) ∈ σ and j = 1, 2, . . . , N, (10)

with the compatibility condition (7) under appropriate assumptions which would guar-
antee the existence and uniqueness of a solution of problem (8), (9), (10).

The remaining terms zN+1
N , zN+2

N , . . . of the approximation sequence {zN} are de-
fined as follows:

zjN (t, x) = ψj(t, x) for (t, x) ∈ D and j = N + 1, N + 2, . . . , (11)

where the function ψ = {ψj}j∈N, ψj = ψj(t, x) for (t, x) ∈ D, satisfies the initial
condition

ψ(0, x) = φ0(x) for x ∈ G, (12)

and the boundary condition

ψ(t, x) = h(t, x) for (t, x) ∈ σ (13)

with the compatibility condition (7) and will be defined some way later on.

2.3. Examples of Volterra functionals. The following examples of Volterra func-
tionals have been considered in papers by Bellout [8], Nickel [40, 41], Redlinger [46, 47]
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and Rzepecki [48]:

f̃1(t, x, z) =

t∫
0

m(t− τ)K(z(τ, x)) dτ, (14)

f̃2(t, x, z) =

t∫
0

K(t, τ, x, z(τ, x)) dτ, (15)

f̃3(t, x, z) =

t∫
0

∫
G

K(t, τ, x, ξ, z(τ, ξ)) dτ dξ, (16)

f̃4(t, x, z) = z(θt, x) with 0 ≤ θ ≤ 1, (17)

f̃5(t, x, z) = z(t− τ, x) with τ > 0. (18)

Equations including such functionals need to be considered in appropriately chosen
domains. For instance, the example including z(t − τ, x) leads to an equation with
retarded argument and such equations require a modified domain of the initial con-
dition.

Other examples include (see Wrzosek [63, 64, 65]):

f̃1
6 (t, x, z) = −z1(t, x)

∞∑
k=1

a1
kz
k(t, x) +

∞∑
k=1

b1kz
1+k(t, x),

f̃ j6 (t, x, z) =
1
2

j−1∑
k=1

aj−kk zj−k(t, x)zk(t, x)− zi(t, x)
∞∑
k=1

ajkz
k(t, x) +

+
∞∑
k=1

bikz
j+k(t, x)− 1

2
zj(t, x)

j−1∑
k=1

bj−kk for j = 2, 3 . . . ,

(19)

and (see Lachowicz and Wrzosek [28]):

f̃1
7 (t, x, z) = −z1(t, x)

∞∑
k=1

∫
G

a1
k(x, ξ)zk(t, ξ)dξ +

∞∑
k=1

∫
G

B1
k(x, ξ)z1+k(t, ξ)dξ,

f̃ j7 (t, x, z) =
1
2

j−1∑
k=1

∫
G×G

Aj−kk (x, ξ, η)zj−k(t, ξ)zk(t, η)dξdη −

− zj(t, x)
∞∑
k=1

∫
G

ajk(x, ξ)zk(t, ξ)dξ +
∞∑
k=1

∫
G

Bjk(x, ξ)zj+k(t, ξ)dξ−

− 1
2
zj(t, x)

j−1∑
k=1

bj−kk (x) for j = 2, 3, . . . ,

(20)
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where
∫
G

Ajk(x, ξ, η)dx = ajk(ξ, η) and
∫
G

Bjk(x, ξ)dx = bjk(ξ) are the nonnegative co-

efficients of coagulation ajk and fragmentation bjk rates, while f j6 , f j7 are Volterra
functionals.

The theory of monotone iterative methods covers some of these examples only,
namely the examples f̃1, f̃2 and f̃3. The theory presented does not cover the examples
f4 and f̃5; the same applies to the examples f̃ j6 , f̃ j7 . Systems with right-hand sides of
this type are, however, considered in the literature, but other methods are required to
solve them. In the case of examples f̃ j4 , f̃ j6 , f̃ j7 , the truncation method applied by the
authors may be used. Thus they obtain a solution which is global in time, uniquely
defined and mass-preserving.

2.4. Methods for the construction of truncated systems. Now we will give a
few examples of the construction of truncated systems of N equations in N unknown
functions corresponding to the infinite countable system (1) or (2), as applying by
various authors.
1. Let us consider the infinite countable system of parabolic-reaction-diffusion equa-
tions of the form (2) with initial and boundary conditions (5)–(7), where nonlinear
reaction functions are given as in paper [28] by Lachowicz and Wrzosek. Therefore,
we consider the system

Fj [zj ](t, x) = f̃ j(t, x, z) := f̃ j(t, x, z1, z2, . . .) (21)

for (t, x) ∈ D and j ∈ N, where z = (z1, z2, . . .) ∈ CN(D) and the functions f̃ j =
f̃ j(t, x, z), j ∈ N, have the special form

f̃1(t, x, z) = −z1(t, x)
∞∑
k=1

a1
kz
k(t, x) +

∞∑
k=1

b1kz
1+k(t, x),

f̃ j(t, x, z) =
1
2

j−1∑
k=1

aj−kk zj−k(t, x)zk(t, x)− zj(t, x)
∞∑
k=1

ajkz
k(t, x)+

+
∞∑
k=1

bjkz
j+k(t, x)− 1

2
zj(t, x)

j−1∑
k=1

bj−kk for j = 2, 3 . . . .

(22)

where the coagulation rates ajk and fragmentation rates bjk are nonnegative constants
such that ajk = akj and bjk = bkj .

We truncate system (21), (22), assuming

ajk ≡ 0 and bjk ≡ 0 for j > N or k > N. (23)

Then we obtain the following associated truncated system of N equations in N un-
known functions of the form

Fj [zjN ](t, x) = f̃ jN (t, x, zN ) := f̃ jN (t, x, z1
N , . . . , z

j
N , . . . , z

N
N ) (24)
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for (t, x) ∈ D and j = 1, 2, . . . , N , where zN = (z1
N , . . . , z

j
N , . . . , z

N
N ) ∈ CN (D) and

f̃ jN (t, x, zN ) =
1
2

j−1∑
k=1

aj−kk zj−kN (t, x)zkN (t, x)− zjN

N−j∑
k=1

ajkz
k
N (t, x)+

+
N−j∑
k=1

bjkz
j+k
N (t, x)− 1

2
zjN (t, x)

j−1∑
k=1

bj−kk for j = 2, 3 . . . ,

(25)

with the corresponding initial and boundary conditions.
Ball and Carr [4] used such truncating for systems of ordinary differential equations,

while Wrzosek [63] applied it to coagulation-fragmentation systems with diffusion.
2. Wrzosek in [63] considered the truncated systems of 2N equations in 2N unknown
functions defined for any integer N ≥ 2, by setting in (21)–(22):

ajk ≡ 0 for j > N or k > N and bjk ≡ 0 for j + k > N. (26)

The truncated systems corresponding to the first 2N equations of system (21), (22)
have the following form

Fj [zjN ](t, x) = f̃ jN
(
t, x, z1

N , . . . , z
j
N , . . . , z

N
N

)
(27)

where

f̃1
N (t, x, zN ) = −z1

N (t, x)
N∑
k=1

a1
kz
k
N (t, x) +

N−1∑
k=1

b1kz
i+k
N (t, x),

f̃ jN (t, x, zN ) =
1
2

j−1∑
k=1

aj−kk zj−kN (t, x)zkN (t, x)− zjN (t, x)
N∑
k=1

ajkz
k
N (t, x)+

+
N∑
k=1

bjkz
j+k
N (t, x)− 1

2

j−1∑
k=1

bj−kk zjN (t, x) for j = 2, 3 . . . , N,

f̃ jN (t, x, zN ) =
1
2

N∑
k=1

aj−kk zj−kN (t, x)zkN (t, x) for N + 1 ≤ j ≤ 2N.

(28)

3. The discrete model of nonlocal coagulation-fragmentation process is expressed in
terms of an infinite countable system of integro-differential semilinear equations of
the form (see Lachowicz and Wrzosek [28]):

Fj [zj ](t, x) = Fj [zj ](t, x) for (t, x) ∈ D and j ∈ N (29)

where
Fj [z](t, x) := f j(t, x, z(t, x), z), j ∈ N

are the nonlinear nonlocal, coagulation-fragmentation operators. They are the non-
linear Nemytskǐı operators8 generated by the functions f j , j ∈ N.

8The nonlinear Nemytskǐı operator is sometimes also called the superposition operator, composi-
tion operator, or substitution operator. This type of operators plays an important role in the theory

of nonlinear equations. The nonlinear Nemytskǐı operatorF = {Fj}j∈N, is generated by the function

fj = fj(t, x, y, s) or f̃j = f̃j(t, x, s) , j ∈ N, and defined for sufficiently regular functions

β : D 3 (t, x) 7→ β(t, x) ∈ `∞
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There is

F1[z](t, x) = −z1(t, x)
∞∑
k=1

∫
G

a1
k(x, y)zk(t, y)dy+

+
∞∑
k=1

∫
G

B1
k(x, y)zk(t, y)dy,

Fj [z](t, x) =
1
2

j−1∑
k=1

∫
G×G

Aj−kk (x, y, ξ)zj−k(t, y)zk(t, ξ)dydξ−

− zj(t, x)
∞∑
k=1

∫
G

ajk(x, y)zk(t, y)dy+

+
∞∑
k=1

∫
G

Bj
k(x, y)zj−k(t, y)dy−

− 1
2
zj(t, x)

j−1∑
k=1

bj−kk (x) for j = 2, 3, . . .

(30)

Truncated systems may be obtained from infinite countable system (29), (30) by
setting

ajk ≡ 0 and bjk ≡ 0 for j + k > N. (31)

There is Fj [zjN ](t, x) = FjN [zN ](t, x) for (t, x) ∈ D and j = 1, 2, . . . , N where

F1
N [zN ](t, x) = −z1

N (t, x)
N−1∑
k=1

∫
G

a1
k(x, y)zkN (t, y)dy+

+
N−1∑
k=1

∫
G

B1
k(x, y)zk+1

N (t, y)dy,

FjN [zN ](t, x) =
1
2

j−1∑
k=1

∫
G×G

Aj−kk (x, y, ξ)zj−kN (t, y)zkN (t, ξ)dydξ−

− zjN (t, x)
N−1∑
k=1

∫
G

ajk(x, y)zkN (t, y)dy+

+
∞∑
k=1

∫
G

Bj
k(x, y)zj+kN (t, y)dy−

− 1
2
zjN (t, x)

j−1∑
k=1

bj−kk (x) for j = 2, 3, . . . , N.

(32)

as follows: F : β 7→ F[β], where Fj [β](t, x) := fj(t, x, β(t, x), β), j ∈ N. Extensive information about

the nonlinear Nemytskǐı operator can be found in the book by Krasnosel’skǐı [27] and the monograph
by Appell and Zabrejko [3].
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4. Another approach is possible, whereby the truncating is performed by accepting
that

zN+1
N,0 (t, x) = zN+2

N,0 (t, x) = . . . = 0 for (t, x) ∈ D (33)

and considering the system comprising the first N equations of system (2) in N
unknown functions

Fj [zjN,0](t, x) = f̃ j
(
t, x, z1

N,0, . . . , z
j
N,0, . . . , z

N
N,0, 0, 0, . . .

)
:=

:= f̃ jN,0(t, x, z1
N,0, . . . , z

j
N,0, . . . , z

N
N,0) for (t, x) ∈ D and j = 1, 2, . . . , N,

(34)

with the homogeneous initial condition

zjN,0(0, x) = 0 for x ∈ G and j = 1, 2, . . . , N (35)

and boundary condition

zjN,0(t, x) = 0 for (t, x) ∈ σ and j = 1, 2, . . . , N. (36)

We observe that in all four examples, while constructing truncated systems, the
authors made a material use of the specific form of nonlinear term (22), that is func-
tions of the type f̃ j(t, x, z), which are finite sums of expressions linear with respect to
the unknown functions z1, z2, . . . as well as sums of series of those unknown functions.
This specific form supports the construction of truncated systems by assuming that
certain coefficients ajk and bjk in the first N equations of the system are identically
equal to zero and omitting the equations with numbers larger than N . It means,
though, that a truncated system changes with the number N of the approximation
zN , that is it changes with the number of the unknowns.
5. Finally, we present a well known idea for the construction of truncated systems by
using the projection operator.

Let us consider the infinite-dimensional Banach space CN(D) and the finite N -
dimensional subspace CN,0(D).

We define the operator ρN as follows

ρN : CN(D) → CN,0(D),

(z1, z2, . . .) = z 7→ ρN [z] := zN,0 = (z1, . . . , zj , . . . , zN , 0, 0, . . .)
(37)

for all z ∈ CN(D) and N ∈ N.
This means that

ρN [z] :=

{
zj if 0 ≤ j ≤ N,

0 if j > N
(38)

for all z ∈ CN, N ∈ N.
It is easy to see that

ρ2
N [z] = ρN

[
ρN [z]

]
= ρN [zN,0] = zN,0 = ρN [z]

for all z ∈ CN(D) and for an arbitrary N , N ∈ N. Therefore, ρN is the projection
operator from an infinite-dimensional space onto its finite-dimensional subspaces.

Using Convention, we obtain

ρN : CN(D) → CN (D), z 7→ ρN [z] := zN (39)



370 STANIS LAW BRZYCHCZY AND MIROS LAW LUŚTYK

for all z ∈ CN(D) and all N ∈ N.
Therefore, the truncating of the infinite system of differential equations considered

in CN(D) may be treated as a projection of this system onto the finite-dimensional
subspace CN (D).

2.5. Conditions and assumptions. We will assume that the operators Lj , j ∈ N,
are uniformly elliptic in D i.e., that there exists a constant µ0 > 0 independent of t,
x, ξ and j, such that the following inequalities hold:

m∑
i,k=1

ajik(t, x)ξiξk ≥ µ0|ξ|2 for all ξ ∈ Rm, (t, x) ∈ D and j ∈ N

where |ξ|2 =
∑m
j=1 ξ

2
j .

If the operators Lj , j ∈ N, are uniformly elliptic in D, then the operators Fj ,
j ∈ N, are uniformly parabolic in D and infinite system of equations (1) is called
uniformly parabolic in D.

We will assume that the nonlinear reaction functions f j = f j(t, x, y, s) or functions
f̃ j = f̃ j(t, x, s), j ∈ N, are continuous functions in their respective domains and we
will introduce the following conditions:

Condition W . Functions f j = f j(t, x, y, s), j ∈ N, are increasing with respect
to the functional argument s, i.e., for arbitrary s, s̃ ∈ CN(D), there is

s ≤ s̃ =⇒ f j(t, x, y, s) ≤ f j(t, x, y, s̃) for (t, x) ∈ D, y ∈ `∞.

Condition V . Functions f j = f j(t, x, y, s), j ∈ N, are Volterra functionals with
respect to the last argument s (or satisfy the Volterra condition), if for arbitrary
(t, x) ∈ D, y ∈ `∞ and for all s, s̃ ∈ CN(D) such that sj(t, x) = s̃j(t, x) for 0 ≤ t ≤ t,
j ∈ N, there is f j(t, x, y, s) = f j(t, x, y, s̃).

Condition L. Functions f j = f j(t, x, y, s), j ∈ N, fulfil the Lipschitz condition
with respect to y and s, if for arbitrary y, ỹ ∈ `∞ and s, s̃ ∈ CN(D) the inequality∣∣f j(t, x, y, s)− f j(t, x, ỹ, s̃)

∣∣ ≤ L1 ‖y − ỹ‖`∞ + L2 ‖s− s̃‖0 for (t, x) ∈ D

holds, where L1, L2 are positive constants.
Condition L∗. Functions f j(t, x, y, s), j ∈N, fulfil the Lipschitz-Volterra con-

dition with respect to the functional argument s if for arbitrary s, s̃ ∈ CN(D) the
inequality∣∣f i(t, x, y, s)− f i(t, x, y, s̃)

∣∣ ≤ L ‖s− s̃‖0,t for (t, x) ∈ D, y ∈ `∞

holds, where L is a positive constant.9

9It is easy to see that (V ) and (L) ⇐⇒ (L∗). The fact that in Condition (L∗) there is ‖s− s̃‖0,t

means that for functions s, s̃ ∈ CN(D), such that, s(t, x) = s̃(t, x) for 0 ≤ t ≤ t, there is fj(t, x, y, s) =

fj(t, x, y, s̃), j ∈ N, i.e., the functions fj are functionals in s taking the same values. Therefore, the
functions fj satisfy Volterra conditions (V ), i.e., the functions f i are functionals in s of the Volterra

type. Moreover, if fj , j ∈ N, satisfy Condition (L∗), then Lipschitz Condition (L) holds, because
‖s− s̃‖0,t ≤ ‖s− s̃‖0. The reverse implication is obvious.



TRUNCATION METHOD FOR INFINITE COUNTABLE SYSTEMS 371

Assumption Ha. We will assume that all the coefficients aijk = aijk(t, x), aijk =
aikj and bij = bij(t, x) (j, k = 1, . . . ,m, i ∈ S) of the operators Li, i ∈ S, are uniformly
Hölder continuous with respect to t and x in D with exponent α (0 < α < 1) and
their Hölder norms are uniformly bounded, i.e.,∣∣aijk∣∣0+α

≤ k,
∣∣bij∣∣0+α

≤ k, j, k = 1, . . . ,m, i ∈ S,

where k is a positive constant.
Assumption Hf . Functions f i(t, x, y, s), i ∈ S, are uniformly Hölder continuous

with exponent α (0 < α < 1) with respect to t and x in D, and their Hölder norms
|f i|0+α are uniformly bounded, i.e., f(·,·, s) ∈ C0+α

S (D).
Assumption Hφ0,h. If initial-boundary conditions are of form (5), (6) then we

assume that φ0 ∈ C2+α
S (G), h ∈ C2+α

S (σ), where 0 < α < 1, and the compatibility
condition

h(0, x) = φ0(x) for x ∈ ∂G
holds.

Remark 2.2. If the initial boundary-condition is of the form (4), φ ∈ C2+α
N (Γ) and a

boundary ∂G ∈ C2+α, then without loss of generality we can consider the homogeneous
initial-boundary condition

z(t, x) = 0 for (t, x) ∈ Γ (40)

(cp. [17, p. 35]).

A function w ∈ CN(D) will be called regular in D if wj , j ∈ N, have continuous
derivatives Dtwj , Dxwj , D2

xxw
j in D, i.e., w ∈ C reg

N (D) := CN(D) ∩ C 1,2
N (D).

Functions u, v ∈ C reg
N (D) satisfying the infinite countable systems of inequalities

Fj [uj ](t, x) ≤ f j(t, x, u(t, x), u) for (t, x) ∈ D,

uj(0, x) ≤ φj0(x) for x ∈ G,
uj(t, x) ≤ hj(t, x) for (t, x) ∈ σ and j ∈ N,

(41)


Fj [vj ](t, x) ≥ f j(t, x, v(t, x), v) for (t, x) ∈ D,

vj(0, x) ≤ φj0(x) for x ∈ G,
vj(t, x) ≤ hj(t, x) for (t, x) ∈ σ and j ∈ N,

(42)

are called, respectively, a lower and an upper solution of parabolic problem (1), (5)–
(7) in D.

We will adopt the following fundamental assumptions:
Assumption A. We assume that there exists at least one pair u0 and v0, respec-

tively of a lower and an upper solution of problem (1), (5)–(7) in D.
A pair u and v of a lower and an upper solution of problem (1), (5)–(7) in D, is

called an ordered pair , if u ≤ v in D.
We notice that the inequality u0 ≤ v0 does not follow directly from inequalities

(41) and (42). Therefore, we will adopt the following assumption:
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Assumption A0. We assume that there exists at least one ordered pair u0 and
v0 of a lower and an upper solution of problem (1), (5)–(7) in D, respectively.

For a given ordered pair of a lower and an upper solution, respectively, of problem
(1), (5)–(7) in D we define10 the sector 〈u0, v0〉 in the space CN(D) as the functional
interval formed by u0 and v0:

〈u0, v0〉 :=
{
s ∈ CN(D) : u0(t, x) ≤ s(t, x) ≤ v0(t, x) for (t, x) ∈ D

}
. (43)

This sector is a closed set in the space CN(D).
Analogously, we define the sector

〈
m,M

〉
in the space `∞ as follows〈

m,M
〉

:=
{
y ∈ `∞ : m ≤ y ≤M

}
,

where
mj = inf

D
uj0(t, x), m = {mj}j∈N,

M
j

= sup
D

vj0(t, x), M = {M j}j∈N.

Finally we define the set

K :=
{

(t, x, y, s) : (t, x) ∈ D, y ∈
〈
m,M

〉
, s ∈ 〈u0, v0〉

}
. (44)

Remark 2.3. If Assumption A0 holds and we define the sector 〈u0, v0〉 generated by
the lower u0 and upper v0 solution, and the set K then the remaining assumptions on
the functions f j may be weakened to hold locally only in the set K. Therefore, all our
considerations will be true within the sector 〈u0, v0〉, only.

Analogously, we define an ordered pair of a lower u0 and an upper v0 solution of
problem (2), (5)–(7) in D. Next, for a given ordered pair of a lower u0 and an upper
v0 solution of problem (2), (5)–(7) in D, we define the sector 〈u0, v0〉 and the set K̃
as

K̃ :=
{

(t, x, s) : (t, x) ∈ D, s ∈ 〈u0, v0〉
}
. (45)

3. A new method for the construction of truncated systems

3.1. A new truncation method. While using the method, theorems are exploited
concerning differential inequalities of the parabolic type, as Mlak and Olech’s ([38])
idea of proving an existence theorem for infinite countable systems of ordinary differ-
ential equations.
A. If α = α(t, x) is a lower solution of problem (2), (5)–(7) in D such that:

Fj [αj ](t, x) ≤ f̃ j(t, x, α) for (t, x) ∈ D,
αj(0, x) = φj0(x) for x ∈ G,
αj(t, x) = hj(t, x) for (t, x) ∈ σ and j ∈ N,

(46)

10The partial ordering in a set X induces also a corresponding partial ordering in a subset W of

X and if u, v ∈ W with u ≤ v, then

〈u, v〉 := {s ∈ W, u ≤ s ≤ v}
denotes the sector, formed by the ordered pair u and v.
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then we construct the finite system of N equations, where N is an arbitrary natural
number (N ∈ N) by truncating this system to the first N equations and substituting

zjN,α(t, x) = αj(t, x) for (t, x) ∈ D and j = N + 1, N + 2, . . . .

We obtain the finite truncated system of equations

Fj [zjN,α](t, x) = f̃ j
(
t, x, z1

N,α, . . . , z
j
N,α, . . . , z

N
N,α, α

N+1, αN+2, . . .
)

:=

:= f̃ jN,α(t, x, z1
N,α, . . . , z

j
N,α, . . . , z

N
N,α) for (t, x) ∈ D and j = 1, 2, . . . , N,

(47)

with the corresponding initial condition

zjN,α(0, x) = φj0(x) for x ∈ G and j = 1, 2, . . . , N (48)

and boundary condition

zjN,α(t, x) = hj(t, x) for (t, x) ∈ σ and j = 1, 2, . . . , N (49)

for an arbitrary N , N ∈ N.
Moreover, if we define the remaining terms of the approximation sequence

{zN,α}N=1,2,... received

zjN,α(t, x) := αj(t, x) for (t, x) ∈ D and j = N + 1, N + 2, . . . . (50)

then this approximation sequence is defined as follows:

zN,α =
(
z1
N,α, . z

j
N,α, . . . , z

N
N,α, α

N+1, αN+2, . . .
)

for N = 1, 2, . . .

B. Analogously, if β = β(t, x) is an upper solution of problem (2), (5)–(7) in D such
that: 

Fj [βj ](t, x) ≥ f̃ j(t, x, β) for (t, x) ∈ D,
βj(0, x) = φ0(x) for x ∈ G,
βj(t, x) = h(t, x) for (t, x) ∈ σ and j ∈ N,

(51)

then we construct the finite system of N equations by truncating this system to the
first N equations, for an arbitrary N , N ∈ N, and substituting

zjN,β(t, x) = βj(t, x) for (t, x) ∈ D and j = N + 1, N + 2, . . . .

We obtain the finite truncated system of equations

Fj [zjN,β ](t, x) = f̃ j
(
t, x, z1

N,β , . . . , z
j
N,β , . . . , z

N
N,β , β

N+1, βN+2, . . .
)

:=

:= f̃ jN,β(t, x, z1
N,β , . . . , z

j
N,β , . . . , z

N
N,β) for (t, x) ∈ D, and j = 1, 2, . . . , N,

(52)

with the corresponding initial

zjN,β(0, x) = φj0(x) for x ∈ G and j = 1, 2, . . . , N (53)

and boundary condition

zjN,β(t, x) = hj(t, x) for (t, x) ∈ σ and j = 1, 2, . . . , N. (54)

We define the remaining terms of the approximation sequence {zN,β}N=1,2... received
as follows:

zjN,β(t, x) := βj(t, x) for (t, x) ∈ D and j = N + 1, N + 2, . . . (55)
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and the suitable approximation sequence {zN,β} is defined as follows:

zN,β =
(
z1
N,β , . . . z

j
N,β , . . . , z

N
N,β , β

N+1, βN+2, . . .
)
.

C. Finally, if u0 = u0(t, x) ≡ 0 in D is a lower solution of system (2) with the
homogeneous initial and boundary conditions in D then

0 ≤ f̃ j(t, x, 0) for (t, x) ∈ D and j ∈ N, (56)

and we construct the finite truncated system of N equations in the following form:

Fj [zjN,0](t, x) = f̃ j
(
t, x, z1

N,0, . . . , z
j
N,0, . . . , z

N
N,0, 0, 0, . . .

)
:=

:= f̃ jN,0(t, x, z1
N,0, . . . , z

2
N,0, . . . , z

N
N,0) for (t, x) ∈ D and j = 1, 2, . . . , N,

(57)

with the homogeneous initial

zjN,0(0, x) = 0 for x ∈ G and j = 1, 2, . . . , N (58)

and boundary conditions

zjN,0(t, x) = 0 for (t, x) ∈ Γ and j = 1, 2, . . . , N, (59)

where N is an arbitrary natural number.
We define the remaining functions received

zjN,0(t, x) = 0 for (t, x) ∈ D and j = N + 1, N + 2, . . . , (60)

and the approximation sequence {zN,0} are defined as follows

zN,0 =
(
z1
N,0, . . . , z

j
N,0, . . . , z

N
N,0, 0, 0, . . .

)
.

3.2. Existence of monotone approximation sequences. Now we will study the
solvability of infinite countable problem (2), (6), (7) in the partially ordered Banach
sequence space C 2+α

N (D) by using the truncation method. First, we will define the
successive terms of approximation sequences as regular solutions of the finite truncated
systems with initial and boundary conditions in D. Under appropriate assumptions,
we will prove the existence and uniqueness of a global-in-time regular solution of finite
truncated system in the sector 〈u0, v0〉, which lies in the Banach space C 2+α

N (D).
We will give a theorem on the approximation of the solution of initial-boundary

value problem (2), (5)–(7) by solutions of corresponding truncated approximation
problems. In other words, we shall give some conditions for the reaction functions of
equations of infinite system (2) enabling the consideration of (2) to be reduced to the
consideration of finite truncated systems.

Let us consider the initial-boundary value problem for infinite countable system of
parabolic-reaction-diffusion equations

Fj [zj ](t, x) = f̃ j(t, x, z) := f̃ j(t, x, z1, z2, . . .) for (t, x) ∈ D,
zj(0, x) = φj0(x) for x ∈ G,
zj(t, x) = hj(t, x) for (t, x) ∈ σ and j ∈ N,

(61)
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and the corresponding problems for finite truncated systems
Fj [wjN ](t, x) = f̃ j

(
t, x, w1

N , . . . , w
j
N , . . . , w

N
N , 0, 0, . . .

)
:=

:= f̃ jN,0

(
t, x, w1

N , . . . , w
j
N , . . . , w

N
N

)
for (t, x) ∈ D,

wjN (0, x) = φj0(x) for x ∈ G,
wjN (t, x) = hj(t, x) for (t, x) ∈ σ and j = 1, 2, . . . , N,

(62)

where N is an arbitrary, N ∈ N.
If the remaining terms wN+1

N , wN+2
N , . . . of the approximation sequences {wN,0} are

defined as follows:

wjN (t, x) = 0 for (t, x) ∈ D and j = N + 1, N + 2, . . . , (63)

then these sequences have the following forms

wN,0 = (w1
N , . . . , w

j
N , . . . , w

N
N , 0, 0, . . .) for N = 1, 2, . . . .

Theorem 1. Let us consider infinite countable system (2) with initial and boundary
conditions (5), (6) and compatibility conditions (7). Let assumptions A0, (Ha), (Hf ),
(Hφ0,h) hold, and conditions (L), (V ), (W ) hold in the set K̃.

If we define the successive terms of the approximation sequences {uN,u0} and
{vN,v0} as regular solutions in D of the following truncated systems of semilinear
parabolic differential-functional equations

Fj [ujN,u0
](t, x) = f̃ j

(
t, x, u1

N,u0
, . . . , ujN,u0

, . . . , uNN,u0
, uN+1

0 , uN+2
0 , . . .

)
:=

= f̃ jN,u0
(t, x, z1

N,u0
, . . . , zjN,u0

, . . . , zNN,u0
)

(64)

for (t, x) ∈ D and j = 1, 2, . . . , N , with the initial and boundary conditions

ujN,u0
(0, x) = φj0(x) for x ∈ G and j = 1, 2, . . . , N, (65)

ujN,u0
(t, x) = hj(t, x) for (t, x) ∈ σ and j = 1, 2, . . . , N, (66)

and

ujN,u0
(t, x) = uj0(t, x) for (t, x) ∈ D and j = N + 1, N + 2, . . . , (67)

as well as

Fj [vjN,v0 ](t, x) = f̃ j
(
t, x, v1

N,v0 , . . . , v
j
N,v0

, . . . , vNN,v0 , v
N+1
0 , vN+2

0 , . . .
)

:=

= f̃ jN,v0(t, x, u1
N,u0

, . . . , u2
N,u0

, . . . , uNN,u0
)

(68)

for (t, x) ∈ D and j = 1, 2, . . . , N , with the initial and boundary conditions

vjN,v0(0, x) = φj0(x) for x ∈ G and j = 1, 2, . . . , N, (69)

vjN,v0(t, x) = hj(t, x) for (t, x) ∈ σ and j = 1, 2, . . . , N, (70)

and

vjN,v0(t, x) = vj0(t, x) for (t, x) ∈ D and j = N + 1, N + 2, . . . , (71)



376 STANIS LAW BRZYCHCZY AND MIROS LAW LUŚTYK

where u0 and v0 are an ordered pair of a lower and an upper solution, respectively, of
parabolic problem (2), (5)–(7) in D given by Assumption A0, which is an initial pair
in the iterating process, then

1° these sequences are well defined as a global-in-time regular unique solutions of
suitable problems, and uN,u0 , vN,v0 ∈ C 0+α

N (D), for N = 1, 2, . . .;
2° the sequence {uN,u0} is monotone non-decreasing, the sequence {vN,v0} is mono-

tone non-increasing and the following inequalities hold:
u0(t, x)≤ . . .≤uN,u0(t, x)≤uN+1,u0(t, x)≤ . . .

. . .≤vN+1,v0(t, x)≤vN,v0(t, x)≤ . . .≤v0(t, x)
(72)

for (t, x) ∈ D and N = 1, 2, . . ..

Proof 1°. There is u0, v0 ∈ C 0+α
N (D). By assumptions (Hf ) and (L), we conclude

that the right-hand sides of equations of systems (64) and (68) are of class C 0+α
N (D)

(see [17, Lemma 2.1, p. 42]). If assumptions (Ha), (Hφ,h), (W ), and (L) hold, then
we may prove (see [9, Th. 2.1, p. 40] and [17]) that there exist the regular unique
solutions u1 and v1 of finite systems of equations (64) and (68), with suitable initial
and boundary conditions, u1, v1 ∈ C2+α

N (D), and u1,u0 , v1,v0 ∈ C 0+α
N (D).

Analogously, by induction, we prove that the approximation sequences {uN,u0},
{vN,v0} are well defined, uN,u0 , vN,v0 ∈ C2+α

N (D) and uN,u0 , vN,v0 ∈ C 0+α
N (D). �

Proof 2°. Since u0 is a lower solution of problem (2), (5)–(7) in D, then it satisfies
Fj [uj0](t, x) ≤ f̃ j

(
t, x, u1

0, . . . , u
j
0, . . . , u

N
0 , u

N+1
0 , uN+2

0 , . . .
)

for (t, x) ∈ D
uj0(0, x) ≤ φj0(x) for x ∈ G,
uj0(t, x) ≤ hj(t, x) for (t, x) ∈ σ and j = 1, 2, . . . , N.

(73)

Applying the theorem on weak partial differential-functional inequalities of para-
bolic type for finite systems (see Szarski [53]) to problems (59)–(62) and (68)–(70),
we get

uj0(t, x) ≤ ujN,u0
(t, x) for (t, x) ∈ D and j = 1, 2, . . . , N. (74)

Hence, by (67) there is

u0(t, x) ≤ uN,u0(t, x) for (t, x) ∈ D and N = 1, 2, . . . (75)

The function uN,u0 is the solution of problem (59)–(69), hence there is

Fj [ujN,u0
](t, x) = f̃ j

(
t, x, u1

N,u0
, . . . , ujN,u0

, . . . , uNN,u0
, uN+1

0 , uN+2
0 , . . .

)
(76)

for j = 1, 2, . . . , N , (t, x) ∈ D.
Since u0 is a lower solution then by (75) and (W ) for j = N + 1 there is

FN+1[uN+1
0 ](t, x) ≤ f̃N+1

(
t, x, u1

0, . . . , u
j
0, . . . , u

N
0 , u

N+1
0 , uN+2

0 , . . .
)
≤

≤ f̃N+1
(
t, x, u1

N,u0
, . . . , ujN,u0

, . . . , uNN,u0
, uN+1

0 , uN+2
0 , . . .

)
.

(77)

The function uN+1,u0 is the solution of problem (59)–(69), i.e.,

Fj [ujN+1,u0
](t, x) =

= f̃ j
(
t, x, u1

N+1,u0
, . . . , ujN+1,u0

, . . . , uNN+1,u0
, uN+1
N+1,u0

, uN+2
0 , . . .

) (78)
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for (t, x) ∈ D and j = 1, 2, . . . , N + 1.
Applying the above theorem on weak inequalities to systems (76), (77) and (78)

with suitable initial and boundary conditions, we obtain

ujN,u0
(t, x) ≤ ujN+1,u0

(t, x) for (t, x) ∈ D and j = 1, 2, . . . , N,

and

uN+1
0 (t, x) ≤ uN+1

N+1,u0
(t, x) for (t, x) ∈ D.

This means that

uN,u0(t, x) ≤ uN+1,u0(t, x) for (t, x) ∈ D. (79)

Analogously, we obtain

vN,u0(t, x) ≤ v0(t, x) for (t, x) ∈ D and N = 1, 2, . . .

and
vN+1,v0(t, x) ≤ vN,v0(t, x) for (t, x) ∈ D. (80)

By (68), A0 and condition (W ), there is

Fj [vjN,v0 ](t, x) = f̃ j
(
t, x, v1

N,v0 , . . . , v
j
N,v0

, . . . , vNN,v0 , v
N+1
0 , vN+2

0 , . . .
)
≥

≥ f̃ j
(
t, x, v1

N,v0 , . . . , v
j
N,v0

, . . . , vNN,v0 , u
N+1
0 , uN+2

0 , . . .
) (81)

for (t, x) ∈ D and j = 1, 2, . . . , N , with conditions (69), (70).
From (64), (81), (67), (71), by the theorem on weak inequalities we get

uN,u0(t, x) ≤ vN,v0(t, x) for (t, x) ∈ D. (82)

By induction, from (79), (80) and (82), we derive inequalities (72).
Therefore, if we assume Condition (W ) then the truncation method is the monotone

approximation method.
�

Remark 3.1. Theorem 1 may be replaced by another theorem on the existence and
uniqueness of solutions of finite (truncated) systems which under appropriate assump-
tions would guarantee the existence and uniqueness of solutions of the problems (64)–
(66) and (68)–(70).

4. Application of the truncation method

4.1. Theorem on existence and uniqueness of global in time regular solu-
tions of infinite countable systems of semilinear parabolic equations. As an
application of the truncation method, we give a theorem on existence and uniqueness
of global-in-time regular solutions of infinite countable systems of parabolic-reaction-
diffusion equations with homogenous initial and boundary conditions of the form

Fj [zj ](t, x) = f̃ j(t, x, z) := f̃ j
(
t, x, z1, z2, . . .

)
for (t, x) ∈ D,

zj(0, x) = 0 for x ∈ G,
zj(t, x) = 0 for (t, x) ∈ σ and j ∈ N.

(83)
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The proof will start with rewriting the differential problem for an infinite countable
system of equations equivalently as the infinite countable system of integral equations

zj(t, x) =

t∫
0

∫
G

Gj(t, x; τ, ξ) f̃ j(τ, ξ, z1, z2, . . .)dτdξ (84)

for (t, x) ∈ D and j ∈ N, where Gj(t, x; τ, ξ), j ∈ N, are Green functions for suitable
linear problems in domain D (see Ladyzhenskaya et al. [30, pp. 406–413]).

Analogously, the problem for the following finite system of differential equations,
truncated with respect to initial system (83), with a homogenous initial-boundary
condition 

Fj [wjN ](t, x) = f̃ j(t, x, w1
N , . . . , w

j
N , . . . , w

N
N , 0, 0, . . .) :=

:= f̃ jN,0(t, x, w1
N , . . . , w

j
N , . . . , w

N
N ) for (t, x) ∈ D,

wjN (0, x) = 0 for x ∈ G,
wjN (t, x) = 0 for (t, x) ∈ σ and j = 1, 2, . . . , N

(85)

is equivalent to the finite system of integral equations

wjN (t, x) =

t∫
0

∫
G

Gj(t, x; τ, ξ) f̃ j(τ, ξ, w1
N , . . . , w

j
N , . . . , w

N
N , 0, 0, . . .)dτdξ (86)

for (t, x) ∈ D and j = 1, 2, . . . , N .
A function z ∈ CN(D) is called a weak C-solution of the initial-boundary value

problem for infinite countable system (83) if it satisfies the following infinite countable
system of integral equations:

zj(t, x) =

t∫
0

∫
G

Gj(t, x; τ, ξ)f̃ j(τ, ξ, z1, z2, . . .)dτdξ (87)

for (t, x) ∈ D and j ∈ N, where Gj(t, x; τ, ξ), j ∈ N, are the Green functions for
suitable linear problems Fj [zj ](t, x) = 0 in domain D.

If Assumption (Ha) holds and ∂G ⊂ C2+α, then Greens functions do exist (see
Ladyzhenskaya et al. [30, pp. 406–413]).

Theorem 2. Let D = (0, T ]×G, 0 < T <∞, where G ⊂ Rm is an open, bounded and
convex domain with the boundary ∂G of class C2+α. Let Conditions (L), (V ), (B)
hold. Assume that every truncated problem (85) has a global regular unique solution
wN = (w1

N , w
2
N , . . . , w

N
N ) ∈ C2+α

N (D).
Then there exists a global regular unique solution z = (z1, z2, . . .) of problem (83)

in whole D such that

lim
N→∞

wN,0(t, x) = z(t, x) uniformly in D,

where wN,0 = (w1
N , w

2
N , . . . , w

N
N , 0, 0, . . .) and z ∈ C2+α

N (D).
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Proof. If wN,0 ∈ C2+α
N (D), then wjN ∈ C2+α(D), for each j = 1, 2, . . . , N and

N = 1, 2, . . . , with a Hölder constant independent of j and N (see [19, Theorem on the
existence and uniqueness for infinite countable system of linear parabolic equations]).

Domain D is bounded and convex, therefore, by imbedding theorems (see Adams
[1, Th. 1.31, p. 11]), there is

C2+α(D) ⊂ C1+α(D) ⊂ C1(D) ⊂ C0+1(D).

This means that wjN ∈ C0+1(D) for each j and N , i.e., these functions satisfy the
Lipschitz condition with a constant independent of j and N . Therefore, the family
{wN} consists of equicontinuous functions.

From (86) and Condition (B), we conclude that∣∣∣wjN (t, x)
∣∣∣ ≤ c = const for (t, x) ∈ D and j = 1, 2, . . . , N where N = 1, 2, . . . ,

So this family consists of uniformly bounded functions.
By virtue of the Arzela-Ascoli theorem, it follows that there exists a subsequence

{wNν} uniformly convergent in D to a continuous function; let

lim
Nν→∞

wjNν
(t, x) = zj(t, x) uniformly in D. (88)

This is the weak C-solution of problem (83).
Now, we prove that z is a regular solution of problem (83) and z ∈ C2+α

N (D). From
Theorem on the unique solvability of the Fourier firs initial-boundary problem (see
Friedman [22, Th. 6 and 7, p. 65]) it follows that wjNν

∈ C0+α(D) with the Hölder
constant independent of j and Nν . Therefore, zj ∈ C0+α(D) for all j ∈ N, with the
same Hölder constant and z ∈ C0+α

N (D).
Let us consider the problem

Fj [zj ](t, x) = f̃ j(t, x, z1, z2, . . .) := F̃j [z](t, x) for (t, x) ∈ D,
zj(0, x) = 0 for (t, x) ∈ G,
zj(t, x) = 0 for (t, x) ∈ σ and j ∈ N.

(89)

From Assumptions (Hf ) and (L) it follows that

F̃ : C 0+α
N (D) → C 0+α

N (D)

i.e., F̃j [z] ∈ C0+α(D), j ∈ N, for z ∈ C 0+α
N (D) (see [19] ).

By Assumption (Ha) and the theorem on the existence and uniqueness for infinite
countable system of linear parabolic equations (see [19]) we conclude that z = z ∈
C 2+α

N (D).
The uniqueness of the solution of the considered problem (83) is guaranteed by the

Lipschitz condition and follows from Szarski’s uniqueness criterion [54]. �

Remark 4.1. Condition (B) plays a crucial role in proving the theorems. An anal-
ogous condition appears in Banaś and Lecko [5, 6, 7], Persidskǐı’s [44, 45], Rzepecki
[48], as well as Valeev and Zhautykov’s [66, 62] papers, where countable systems of
ordinary differential equations are studied. According to Spa lek’s remark [51], such an
assumption makes sense and is physically justified.
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