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Abstract. We prove two general theorems, which appear to be very useful in investigation of the

Hyers-Ulam stability of a higher order linear functional equation in single variable, with constant

coefficients. We give several examples of their applications. In particular we show that we obtain
in this way several fixed point results for a particular operator. The main tool in the proofs is a

complexification of a real normed (or Banach) space X, which can be described as the tensor product

X ⊗ R2 endowed with the Taylor norm.
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Birkhäuser, Boston-Basel-Berlin, 1998.
[14] S.-M. Jung, Functional equation f(x) = pf(x− 1)− qf(x− 2) and its Hyers-Ulam stability, J.

Inequal. Appl., 2009(2009), Article ID 181678, 10 pages.

[15] R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, v. I: Elemen-
tary Theory. Reprint of the 1983 original. American Mathematical Society, Providence, RI,

1997.

[16] M. Kuczma, Functional Equations in a Single Variable, Polish Scientific Publishers, Warszawa,
1968.

[17] M. Kuczma, B. Choczewski, R. Ger, Iterative Functional Equations, Encyclopedia of Mathe-

matics and its Applications, Cambridge University Press, 1990.
[18] A.K. Mirmostafaee, Non-Archimedean stability of quadratic equations, Fixed Point Theory,

11(2010), 67-75.

[19] M.S. Moslehian, A. Najati, An application of a fixed point theorem to a functional inequality,
Fixed Point Theory, 10(2009), 141-149.

[20] Z. Moszner, On the stability of functional equations, Aeq. Math., 77(2009), 33-88.
[21] K. Palmer, Shadowing in Dynamical Systems, Kluwer Academic Press, 2000.

[22] B. Paneah, A new approach to the stability of linear functional operators, Aeq. Math., 78(2009),

45-61.
[23] S. Pilyugin, Shadowing in Dynamical Systems, Lectures Notes in Math. 1706, Springer-Verlag,

1999.

[24] D. Popa, Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl., 309(2005),
591-597.

[25] D. Popa, Hyers-Ulam stability of the linear recurrence with constant coefficients, Adv. Difference

Eq., 2005(2005), 101-107.
[26] J.M. Rassias, H.-M. Kim, Generalized Hyers-Ulam stability for general additive functional equa-

tions in quasi-β-normed spaces, J. Math. Anal. Appl., 356(2009), 302-309.

[27] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009),
305-320.

[28] I.A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes-Bolyai Math.,
54(2009), 125-133.

[29] J. Sikorska, On a pexiderized conditional exponential functional equation, Acta Math. Hungar.,

125(2009), 287-299.
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