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1. INTRODUCTION

In recent years, boundary value problems of nonlinear fractional differential equa-
tions have been studied by many researchers. Fractional differential equations appear
naturally in various fields of science and engineering, and constitute an important
field of research. As a matter of fact, fractional derivatives provide an excellent tool
for the description of memory and hereditary properties of various materials and pro-
cesses [11, 12]. Some recent work on boundary value problems of fractional order can
be found in [1, 2, 3, 4, 5, 6, 7, 8, 10, 16] and the references therein.

In this paper, we study the nonlinear differential equation of fractional order

D%u(t) = f(t,u(t)), te€]0,T], ac(l,2] (1.1)
with the boundary conditions of fractional order
D72 (07) = b D> 2u(T7), (1.2)
and
D>ty (0) = by D tu(T7), (1.3)

where D% denotes the Riemann-Liouville fractional derivative of order o and by # 1
and by # 1.
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For a = 2, we have the second order problem u”(t) = f(t,u(t)),t € [0,T] with
the classical boundary conditions w(0) = bou(T"), u'(0) = byu/(T). For by = by = 0,
we have the initial conditions, u(0) = 0 and «/(0) = 0. If by = by = —1, we get the
anti-periodic boundary conditions. The theorems we present include and extend some
previous results.

2. PRELIMINARIES
Let us recall some basic definitions [9, 13].

Definition 2.1. The Riemann-Liouville fractional integral of order a > 0 for a
continuous function u : (0,00) — R is defined as

1 ! a—1
F(a)/ (t— ) Tuls),

Definition 2.2. For a function u : (0,00) — R, the Riemann-Liouville derivative of
fractional order a > 0, n = [a] +1 ([a] denotes the integer part of the real number o)
is defined as

Deult) = M(;)"/Ot(t — )y (s)ds = (%)"In*au(t),

I%u(t) =

provided the integral exists.

provided it exists.

For ae < 0, we use the convention that D*u = I~ %u. Also for § € [0, ), it is valid
that DIy = 1 Pu.

We note that for A\ > -1, A\#a—1,a—2,...,a —n, we have

rax+1
Dat)\ _ ( + ) t)\—a7
'A—a+1)
and _
D**'=0 , i=12,...,n.
In particular, for the constant function u(t) = 1, we obtain
1
Dl = ———t7¢ N.
ri—a) ’ ¢
For o € N, we get, of course, D*1 = 0 due to the poles of the gamma function at the
points 0, —1, -2, ...,.
For o > 0, the general solution of the homogeneous equation

D%u(t) =0
in C(0,7) N L(0,T) is
u(t) = cot® " et by ot by gt

where ¢;, 1 =1,2,...,n — 1, are arbitrary real constants.
We always have D*I“u = u, and

ID*u(t) = u(t) + cot® ™ + et "4 ey ot E gt



FRACTIONAL BOUNDARY VALUE PROBLEMS 331

3. LINEAR PROBLEM
For T > 0, and a € (1, 2], we consider the linear equation
D%u(t) = o(t), te]0,T], (3.1)

with the boundary conditions (1.2) and (1.3). The general solution of (3.1) is given
by

u(t) = et + ot % + I% (1) (3.2)

with 7% the usual Riemann-Liouville fractional integral of order a.
Using (3.2), we have

D lu(t) = e T(a) + I'o(t)

and imposing the boundary condition (1.3), we get

by 4
= MM/O o(s)ds. (3.3)

Since I2~%(te—1) = I'(a)t and I2~%(t>-2) = I'(a — 1), therefore, from (3.2), we have
D 2u(t) = erT(a)t + coT(a — 1) + 2o (). (3.4)

Using the boundary condition (1.2) in (3.4), we get

b T
co = m {ch(a)T—l—/o (T — s)a(s)ds]
Thus,
T
u(t) :/0 G(t, s)o(s)ds, (3.5)
where

bltail botaiQ[T — (1 — bl)S] 1 a1

@ bT@ T @) b -1 T~
G(t,s) = 0<s<t<T, (3.6)

blta_l bota_Q[T — (1 — b1)8]
(I-=0)T() (1 —=Dp)(1—=b1)T(x—1) - -
Theorem 3.1. Let o € (1,2] and by, by # 1. The linear problem (3.1) together with

the boundary conditions (1.2) and (1.8) has a unique solution for any continuous
function o, given by (3.5).

3.1. Fractional anti-periodic boundary conditions. We point out that for by,
by = —1, the boundary conditions (1.2) and (1.3) reduce to the boundary conditions
of anti-periodic type:

D 2y(0") = —D*2u(T7) , D*'u(0h) = —D*1u(T7).
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In this case the Green’s function (3.6) takes the form
—teml 42225 - 1T) 1 1

t—s)*" 0<s<t<T

M) T Ma-1) Tt Y o 0ss<tsT
G(t,s) = (3.7)
—to—l N t*=2(2s —1T)
2T () AN —1) - -

For a = 2, we have the problem

D*u(t) =o(t), t€0,T], u(0)=—u(T), u'(0)=—u/(T),

whose solution is given by

with

G(t,s) = . (3-8)

Note that it is the Green’s function obtained in [15]. Also, when aw — 27 in (3.7), we
obtain (3.8).

4. NONLINEAR FRACTIONAL BOUNDARY VALUE PROBLEM

Let C[0,T] denote the Banach space of all continuous real valued functions defined
on [0, 7] with the norm |lu|| = sup{|u(t)| : ¢ € [0,T]}. For ¢t € [0, T], we define u,(t) =
t"u(t), » > 0. Let C,.[0,T] be the space of all functions u such that u, € C[0,T] which
turn out to be a Banach space when endowed with the norm |ul|, = sup{t"|u(¢)| :
te0,7T1}.

If u is a solution of (1.1) and (1.2)-(1.3), then

0 =gy [ st + 2 [ s
u = — —s)” s,u(s))ds + —————— s,u(s))ds
I'(a) Jo (1 =b)l(e) Jo

(4.1)
bota—Q

*u_mm—%wm_né @—“—hﬁﬁ@w@m&
Define an operator P : Cy_4[0,T] — C2_,[0,7T] as

(Pu)(t) = ﬁ / <t—s>“-1f<s,u<s>>ds+(lflzﬁ / f(s,u(s))ds

bO toc72 /T
+ (T— 1-0 s) s,u(s))ds,t € [0,T].
(1—b1)(1—b0)F(a—1) 0 ( 1) f( ( )) [ }
Observe that the problem (1.1) and (1.2)-(1.3) has solutions if and only if the
operator equation Pu = u has fixed points.
To prove the existence of solutions, we need the following fixed point theorem.
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Theorem 4.1. [14] Let E be a Banach space. Assume thatT : E — E be a completely
continuous operator and the set V ={x € E | x = pTz,0 < px < 1} be bounded. Then
T has a fixed point in E.

Lemma 4.1. Suppose that [ :[0,T] x R — R is continuous. Then the operator P is
compact.

Proof. (i) Let B be a bounded set in Cy_,[0,T]. Hence B is bounded on C[0,T]
and there exists a constant M such that |f(¢,u(t))| < M, Yu € B, ¢ € [0,T]. Thus

Mt>—e [t by Mt
t2*°‘|(77u)(t)|§7/0(tfs)“ 1ds+‘ — \/ ds

INGY! —0)T
‘(1—51)(1—50 a—l‘/ — (1= by)slds
SMTQ(F(Q1+1)+‘(1—b1 ‘”2 1_bf§((11jz|)$r)(a—1) ):
which implies that
IPullz—o < MTQ(F(al + ‘ 1 b1 ‘ + ‘2 1- bl)((l +l|7$)(a 1) D

Hence P(B) is uniformly bounded.
(it) For any t1, t2 € [0,T],u € B, we have

67 (Pu)(t1) — 857 (Pu)(t2)]

_ \ﬁ / Y B - 9 e - 9 f(s.ue)ds

1

2 e a— bi(t1 —t2)
I‘(og)/tl t5 % (t2 — s) 1f(5,u(s))d5+(1_b1 Mo —1) / f(s,u(s))ds

< M(‘ﬁ /Otl {t%‘a(tl —8) T 37ty — s)afl}ds

1 2 ) bi(t; — to) T
—— | &ty —s) d’ ‘—/dD 0 as t; — to.
r(a)/tl 2 "(t2 =) o Zmra-n ), @) 70w h=h

Thus t2~*P(B) and hence P(B) is equicontinuous. Consequently, the operator P is
compact. This completes the proof.

Theorem 4.2. Assume that there exists a constant M > 0 such that
|f(t,w)| <M, Vtel0,T], ueR.
Then the problem (1.1) and (1.2)-(1.8) has at least one solution in Ca_4[0,T].
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Proof. Consider the set
V={ueR|u=puPu, 0<p<1},

and show that the set V' is bounded. Let u € V, then u = pPu, 0 < p < 1. For any
t € [0,T], we have

|u(t)§/~b{1/t(t8)CY Y f(s,u(s)) |ds+‘ : bt ! ‘/ (s,u(s))|ds

F(Oé) - bl
bota 2
Haoooieere=D ]/ — (1= bu)sl| £ (s, u(s))lds]
As in part (i) of Lemma 4.1, we have
1 b bo(1 + [b1)
< MT? .
IPu)llo-a < MT (I‘(a+1) +‘(1—b1) ‘ ‘2 1—b1)(1—b0)F(a—1)D

This implies that the set V' is bounded 1ndependently of u € (0,1). Using Lemma 4.1
and Theorem 4.1, we obtain that the operator P has at least a fixed point, which
implies that the problem (1.1) and (1.2)-(1.3) has at least one solution.

Theorem 4.3. Assume that there exists a constant L > 0 such that

[ft,w) — f(t,v)] < Llu—v|, Vtel0,T], u, veR. (4.2)
Then the problem (1.1) and (1.2)-(1.3) has a unique solution in Ca_,[0,T] if
1
L< =~ 4.3
<=, (4.3)

where

V=

(aT—a1) [F(la) +| 1= zfll)r(a) |+ ‘a(1b_0(b11)+(1(oi_bol))r|l();|)_ ) ]

Proof. In view of (4.2), for every t € [0,T], we have
27|(Pu)(t) — (Po)(t)|

t2—a t -
(a)/(t_s) |f(s,u(s)) — f(s,v(s))|ds

+‘ 1—b1 ‘/ (s,u(s)) — f(s,v(s))|ds

<

—

(1= b1)sl[f (s, u(s)) — f(s,v(s))lds

‘(1—51)(1—170 a—l‘/

_L[f(;:;/ot(t—salm()—v( |ds+‘17b1 ]/ 5)|ds

‘(1—b1)(1—b0 I'(a—1) ‘/ —(1—=b1) |‘U(3)—U(S)|ds}
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By the definition of ||.||2—n, we obtain

[(Pu) () = (Pv)(#)ll2—a

SL[?(C;/Ot(ts)ala2ds+’1_bl ’/ 597 2ds

‘(1—b1)(1—b0 a—l’/ 1_b)|a2d8]||u—vllzfa

< LT* |: 1 +‘ by ’_’_‘ b0(1+(04—1)|b1|) ’:| ||'LL—’U||2,Q.
(@=1)[T(e) 11 =b)l(e)! " Ta(l =b1)(1—bo)l'(er = 1)
From the above estimate, it follows by the condition (4.3) that the operator P is a
contraction. Hence, by Banach fixed point theorem, we deduce that P has a unique
fixed point which in fact is a unique solution of problem (1.1) and (1.2)-(1.3). This
completes the proof.

Example 4.1. Consider the fractional boundary value problem
e~ 5213 cos 2t + 71n(22 4 5 cos? z(t)]

Dox(t) = 0<t<T
z(t) 4 + cos x(t) ostsh (4.4)
D 2u(01) = by D> 2u(T7), D 1y (0T) = by DY tu(T7).
where 1 < o < 2.
Clearly
~Isinz®I[3 cos 2t + 7In(22 + 5 cos? (¢
[t ult)] = | Beos2t ¥ T2 5eos” 2Oy 4 715~ ar

4 4 cos z(t)
Thus, by Theorem 4.2, the problem (4.4) has at least one solution.

Example 4.2. Consider the following fractional boundary value problem

Diu(t) = L(sintthan*lu(t)), te o, 1],
(4.5)

1

D™1/2y(0%) = 5D*lﬂu(r), DY2u(0%) = —DY2u(17).

In this case, « =3/2, T =1, by = 1/2, and by = —1. Clearly,
|f(t,u) — f(t,v)| < L|tan ' u —tan~ ' v| < L|u — .
Further,

T [ +‘ ‘+‘ bo(1+ (a —1)[ba]) H_L
T la-1lia 1—b1>r< I laa = —wre-nll = 7=
With L < /7/7, all the assumptions of Theorem 4.3 are satisfied. Hence, there exists
a unique solution for the fractional boundary value problem (4.5).
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