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Abstract. Both implicit and explicit methods are introduced to find the minimum-norm fixed point

of a nonexpansive nonself mapping from a closed convex subset C of a Hilbert space H into H and

satisfying the weak inwardness condition. Our idea is to apply the nearest point projection PC to
the well-known Browder’s implicit and Halpern’s explicit methods.
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1. Introduction

Throughout this paper, it is assumed that H is a real Hilbert space, C a nonempty
closed convex subset of H, and T : C → H a non-self nonexpansive mapping (i.e.,
‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C). We use F (T ) to denote the set of fixed points
of T ; that is, F (T ) = {x ∈ C : Tx = x}, and always assume that F (T ) 6= ∅. Since
now F (T ) is closed, convex and nonempty, there exists a unique point x† ∈ F (T )
satisfying the property:

‖x†‖ = min{‖x‖ : x ∈ F (T )}. (1.1)

Namely, x† is the nearest point projection of the original onto the fixed point set
F (T ).

In many occasions, it is of interest to find a particular solution of a problem (assume
the problem has multiple solutions); in particular, the solution with least norm (e.g., in
least-squares problems, the least-norm solutions are used to define the pseudoinverse
of bounded linear operators).

In this paper we are concerned with the least-norm fixed point x† of a nonexpansive
nonself-mapping T . We will introduce two methods (one implicit and one explicit)
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to find x†. First let us review some literature in which iterative methods for finding
fixed points of nonexpansive mappings are studied.

In the case where T is assumed to be a nonexpansive self-mapping of C with
F (T ) 6= ∅, Browder [1] and Halpern [6] introduced an implicit method and an explicit
method, respectively.

Browder’s implicit method generates a net {xt} in an implicit way: for each t ∈
(0, 1), xt ∈ C is the unique fixed point of the contraction

x 7→ Ttx := tu + (1− t)Tx, x ∈ C (1.2)

where u ∈ C is a fixed point. (See [26] for another implicit method.)
Halpern’s explicit method generates a sequence {xn} explicitly by the recursive

manner:
xn+1 = tnu + (1− tn)Txn, n ≥ 0 (1.3)

where the initial guess x0 ∈ C is arbitrarily fixed, and where {tn} is a sequence in
the unit interval (0, 1).

The convergence of the net {xt} and of the sequence {xn} is as follows.

Theorem 1.1. [1] Suppose T : C → C is a nonexpansive self-mapping of C with
F (T ) 6= ∅. Then the net {xt} strongly converges as t → 0 to the fixed point x∗ of T
that is closest to u from F (T ) (i.e., PF (T )(u)).

Theorem 1.2. [6, 18, 19, 20] Suppose T : C → C is a nonexpansive self-mapping of
C with F (T ) 6= ∅. Assume the conditions:

(C1) limn→∞ tn = 0;
(C2)

∑∞
n=1 tn = ∞;

(C3) either
∑∞

n=1 |tn+1 − tn| < ∞ or limn→∞(tn/tn+1) = 1.
Then the sequence {xn} generated by (1.3) strongly converges as t → 0 to the fixed
point x∗ of T that is closest to u from F (T ) (i.e., PF (T )(u)).

A number of authors made contributions to Theorem 1.2 on different choices of
the parameters {tn}; see [8, 15, 16, 18, 19, 20]. Related work can be found in [10, 11,
12, 14, 17, 21, 22, 23, 24, 25, 27]. A recent survey on Halpern’s method can be found
in [9].

Browder’s implicit method is extended to the case where T is assumed to be a
nonslf-mapping by Xu and Yin [28].

Note that if 0 ∈ C then indeed the limit in both Theorems 1.2 and 1.3 are the
minimum-norm fixed point of T . However, if 0 6∈ C, then this is no longer true, and in
this case, an additional projection is needed to apply to both Browder’s and Halpern’s
methods. This has recently been done in [3]. In this paper we further investigate the
case where the nonexpansive mapping T is nonself. We prove that if T satisfies the
wean inwardness condition, then the results in [3] for self-mappings hold fully for the
implicit method and partially for the explicit method.

It is observed that minimum-norm solutions of fixed point equations and variational
inequalities have recently been paid attention (see the references [3, 7, 29, 30]).

We adopt the following notions as popularized in literature:
• xn → x means that {xn} converges to x in norm;
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• xn ⇀ x means that {xn} converges to x in the weak topology;
• ωw(xn) is the weak ω-limit set of {xn}; that is, the set of all those points x

such that xnj
⇀ x as j →∞ for some subsequence {xnj

} of {xn}.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H and let
T : C → H be nonexpansive; namely, T satisfies the property:

‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ C.

The following result, the so-called demiclosedness principle for nonexpansive map-
pings, will play an important role in our argument in the subsequent sections.

Lemma 2.1. (cf. [4, 5, 13]) If {xn} is a sequence in C weakly converging to x and if
{(I − T )xn} converges strongly to y, then (I − T )x = y. In particular, if y = 0, then
x ∈ F (T ).

Our methods depend on (nearest point or metric) projections. Recall that the
projection from H onto C is a mapping that assigns to each x the point PCx that is
closest to x from C; that is, PC is the unique point in C satisfying the property:

‖x− PCx‖ = min{‖x− y‖ : y ∈ C}.
The proposition below collects some characterizations of projections.

Proposition 2.2. The following hold.
(i) Given x ∈ H and z ∈ C. Then z = PCx if and only there holds the inequality

〈x− z, y − z〉 ≤ 0, y ∈ C.

(ii) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 for all x, y ∈ H.
(iii) ‖x− PCx‖2 ≤ ‖x− y‖2 − ‖y − PCx‖2 for all x ∈ H and y ∈ C.

Since we deal with nonself-mappings, we need boundary conditions for the map-
pings. Recall that for a point x ∈ C, the inward set to C at x is the set

IC(x) = {y ∈ H : y = x + a(z − x) for some a ≥ 0 and z ∈ C}.
Recall also that a nonself-mapping T : C → H is said to satisfy the inwardness
condition if Tx ∈ IC(x) for all x ∈ C, and the weak inwardness condition if Tx ∈ IC(x)
for all x ∈ C.

We need the following result which appeared implicitly in [28] (see also [2]) and
which states the relationship between the fixed point sets of T and PCT .

Lemma 2.3. Let T : C → H be a nonexpansive nonself mapping satisfying the weak
inwardness condition. Then the mappings PCT and T have the same fixed points;
namely, F (PCT ) = F (T ).

Proof. It is evident that F (T ) ⊂ F (PCT ). Conversely, we take x ∈ F (PCT ); namely,
PC(Tx) = x. Since T satisfies the weak inwardness conditions, there exists a sequence
{yn} converging to Tx strongly, where

yn = x + an(zn − x) (2.1)
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By Proposition 2.2(i), we have

〈Tx− x, zn − x〉 ≤ 0.

This implies that
〈Tx− x, yn − x〉 ≤ 0

which in turn implies that

‖Tx− x‖2 = lim
n→∞

〈Tx− x, yn − x〉 ≤ 0.

Therefore, Tx = x and x ∈ F (T ). �

In our convergence argument for the explicit method, we need the following result.

Lemma 2.4. (cf. [19]) Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that
(i)

∑∞
n=1 γn = ∞;

(ii) either
∑∞

n=1 γn|δn| < ∞ or lim supn→∞ δn ≤ 0.
Then limn→∞ an = 0.

3. Methods for Finding Minimum-norm Fixed Point

3.1. Implicit Method. In this section we introduce an implicit method that can be
used to find minimum-norm fixed point.

Let C be a nonempty closed convex subset of a real Hilbert space H and let
T : C → H be a (possibly nonself) nonexpansive mapping such that F (T ) 6= ∅. Let
PC be the projection from H onto C. For each t ∈ (0, 1), the mapping

x 7→ Ttx := PC((1− t)Tx), x ∈ C

is a self-contraction of C; hence it has a unique fixed point which is denoted by xt ∈ C.
Consequently, xt is the unique solution in C of the fixed point equation

xt = PC((1− t)Txt). (3.1)

Theorem 3.1. Assume in addition that T satisfies the weak inwardness condition.
Then the net {xt} defined by (3.1) converges strongly as t → 0 to the minimum-norm
fixed point of T .

Proof. We divide the proof into three steps.
(i) We prove that {xt} is bounded. As a matter of fact, taking any point p ∈ F (T ),

we derive that

‖xt − p‖ = ‖PC((1− t)Txt)− p‖
≤ ‖(1− t)Txt − p‖
= ‖(1− t)(Txt − Tp)− tp‖
≤ ‖(1− t)‖xt − p‖+ t‖p‖.

This implies that, for all t ∈ (0, 1),

‖xt − p‖ ≤ ‖p‖. (3.2)
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So {xt} is bounded. Let M > 0 satisfy M ≥ max{‖xt‖, ‖Txt‖} for all t ∈ (0, 1).
(ii) We prove that ωw(xt) ⊂ F (T ). Namely, if {tn} is a null sequence in (0, 1) such

that xtn
⇀ x̄, then x̄ ∈ F (T ).

Since, for each t ∈ (0, 1),

‖xt − PCTxt‖ = ‖PC((1− t)Txt)− PCTxt‖
≤ ‖(1− t)Txt − Txt‖
= t‖Txt‖ ≤ tM → 0 as t → 0.

In particular, ‖xtn
−PCTxtn

‖ → 0 as n →∞. Therefore, by Lemma 2.1 and Lemma
2.3, we know that x̄ ∈ F (T ).

(iii) We prove that xt → x† as t → 0, where x† is the minimum-norm fixed point
of T ; that is, x† = arg min{‖x‖ : x ∈ F (T )}.

Set yt = (1− t)Txt. Then we have xt = PCyt and for x̃ ∈ F (T ) we deduce that

xt − x̃ = PCyt − x̃ = (yt − x̃) + PCyt − yt

= (1− t)(Txt − x̃) + t(−x̃) + (PCyt − yt).

Using xt − x̃ to make inner product from both sides of the above equation, we get

‖xt − x̃‖2 = (1− t)〈Txt − x̃, xt − x̃〉+ t〈−x̃, xt − x̃〉+ 〈PCyt − yt, xt − x̃〉
≤ (1− t)‖xt − x̃‖2 + t〈−x̃, xt − x̃〉+ 〈PCyt − yt, PCyt − x̃〉. (3.3)

However, 〈PCyt − yt, PCyt − x̃〉 ≤ 0 by Proposition 2.2(i). It then follows from (3.3)
that

‖xt − x̃‖2 ≤ 〈−x̃, xt − x̃〉. (3.4)

Now if x̄ ∈ ωw(xt) and xtn ⇀ x̄ for some null sequence (tn) in (0, 1). Then, from
Step (ii), we get x̄ ∈ F (T ). We can therefore substitute x̄ for x̃ and tn for t in (3.4)
to obtain that xtn

→ x̄. This shows that {xt} is indeed relatively compact (as t → 0)
in the norm topology.

Note that (3.4) is equivalent to

‖xt‖2 ≤ 〈xt, x̃〉. (3.5)

Hence,
‖xt‖ ≤ ‖x̃‖, t ∈ (0, 1), x̃ ∈ F (T ). (3.6)

This clearly implies that if x̄ ∈ ωw(xt) = ω(xt), then

‖x̄‖ ≤ ‖x̃‖ ∀x̃ ∈ F (T ).

Therefore, x̄ = x†, and x† is the only limit point of the net {xt} as t → 0. This is
sufficient to conclude that xt → x† as t → 0. �

Corollary 3.2. Let H be a real Hilbert space, C a nonempty closed convex subset of
H , and T : C → C a nonexpansive self-mapping with F (T ) 6= ∅. For each t ∈ (0, 1),
let xt be the unique fixed point in C of the contraction PC((1− t))T mapping C into
C. Then s− limt↓0 xt = x†.
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3.2. Explicit Method. In this section we introduce an explicit method that gener-
ates a sequence converging in norm to the minimum-fixed point of T . Our scheme
is the discretization of the implicit method studied in the last section. Consider a
sequence {tn} in (0, 1) and an arbitrary initial guess x0 ∈ C, and define a sequence
{xn} iteratively by the recursion:

xn+1 = PC((1− tn)Txn), n ≥ 0. (3.7)

The convergence of {xn} depends on the choice of the parameters {tn}.

Theorem 3.3. Let H be a real Hilbert space, C a nonempty closed convex subset of
H, and T : C → H a nonexpansive mapping such that F (T ) 6= ∅ and satisfying the
weak inwardness condition. Assume {tn} satisfies the following assumptions:

(A1) limn→∞ tn = 0;
(A2)

∑∞
n=1 tn = ∞;

(A3) either
∑∞

n=1
|tn+1−tn|

tn
< ∞ or limn→∞

|tn+1−tn|
t2n

= 0.

Then the sequence {xn} generated by the algorithm (3.7) converges strongly to the
minimum-norm fixed point x† of T .

Proof. We again divided the proof into three steps.
(i) We prove that (xn) is bounded. Indeed, take a p ∈ F (T ) to deduce that

‖xn+1 − p‖ = ‖PC((1− tn)Txn)− p‖
≤ ‖(1− tn)Txn − p‖
= ‖(1− tn)(Txn − p)− tnp‖
≤ (1− tn)‖xn − p‖+ tn‖p‖
≤ max{‖xn − p‖, ‖p‖}.

By induction, we get

‖xn − p‖ ≤ max{‖x0 − p‖, ‖p‖}

for all n ≥ 0. Hence (xn) is bounded. Let M > 0 satisfy M ≥ max{‖xn‖, ‖Txn‖} for
all n.

(ii) We prove that ‖xn+1 − zn‖ → 0 as n →∞, where zn is the unique fixed point
in C of the contraction z 7→ PC((1 − tn)Tz); that is, zn = PC((1 − tn)Tzn). To see
this, we compute, using the fact that PC is nonexpansive,

‖xn+1 − zn‖ = ‖PC((1− tn)Txn)− PC((1− tn)Tzn)‖
≤ ‖(1− tn)Txn − (1− tn)Tzn‖
= ‖(1− tn)(Txn − Tzn) ‖
≤ (1− tn)‖xn − zn‖
≤ ‖xn − zn−1‖+ ‖zn − zn−1‖. (3.8)
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However,

‖zn − zn−1‖ = ‖PC((1− tn)Tzn)− PC((1− tn−1)Tzn−1)‖
≤ ‖(1− tn)Tzn − (1− tn−1)Tzn−1‖
= ‖(1− tn)(Tzn − Tzn−1) + (tn−1 − tn)Tzn−1‖
≤ (1− tn)‖zn − zn−1‖+ |tn−1 − tn|‖Tzn−1‖
≤ (1− tn)‖zn − zn−1‖+ M |tn−1 − tn|.

It turns out that

‖zn − zn−1‖ ≤
M |tn−1 − tn|

tn
. (3.9)

Substituting (3.9) into (3.8), we get

‖xn+1 − zn‖ ≤ (1− tn)‖xn − zn−1‖+
M |tn−1 − tn|

tn
(3.10)

= (1− tn)‖xn − zn−1‖+ tnδn. (3.11)

Where δn = (M |tn−1 − tn|)/t2n. Therefore, an application of Lemma 2.4 to either
(3.10) or (3.11) and observing assumption (A3) to get ‖xn+1 − zn‖ → 0.

(iii) We prove that xn → x†. First observe from Theorem 3.3 that zn → x†. This
together with Step (ii) ensures that xn → x†. The proof is complete. �

Corollary 3.4. Let H be a real Hilbert space, C a nonempty closed convex subset
of H , and T : C → C a nonexpansive self-mapping with F (T ) 6= ∅. Let {tn} be
sequence in (0, 1) satisfying assumptions (A1) − (A3) in Theorem 3.1. starting an
initial x0 ∈ C, we define a sequence {xn} by the algorithm (3.7). Then xn → x†.

Remark 3.5. It is interesting to know if assumption (A3) in Theorem 3.1 can be
weakened to condition (C3) as introduced in the Introduction. For nonexpansive
self-mappings, the answer is affirmative (see [3]). However, for nonexpansive nonself-
mappings, the answer is still unknown.

Also, it is not hard to find that the choice

tn =
1

(n + 1)δ
, n ≥ 0

satisfies the assumptions (A1), (A2), and the second part of (A3) in Theorem 3.1
provided 0 < δ < 1. Indeed, we have

|tn − tn−1|
t2n

∼ 1
n1−δ

→ 0 (as n →∞).
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