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Abstract. Let (X,—) be an L-space, G : X x X — X and f : X — X be two operators. Let
fo : X — X be defined by fg(z) := G(z, f(z)). If the operator G satisfies the following conditions:

(A1) G(z,x) =z, Vz € X

(A2) G(z,y) =z =y ==,
then we call fg admissible perturbation of f.

We introduce some iterative algorithms in terms of admissible perturbations. We suppose that
these algorithms are convergent.

In this paper we study the impact of this hypothesis on the theory of fixed point equations:
Gronwall lemmas (when (X, —, <) is an ordered L-space), data dependence, stability and shadowing
property (when (X, d) is a metric space). Some open problems are presented.
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