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Abstract. Recently, Bucur, Guran and Petrusel presented some results on fixed point of multivalued
operators on generalized metric spaces which extended some old fixed point theorems to the multi-
valued case ([1]). In this paper, we shall give some results on fixed points of multivalued operators
on ordered generalized metric spaces by providing different conditions in respect to [1].
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1. INTRODUCTION

There are many works about fixed points of multivalued mappings (see for example,
[2]-[4]) and weakly Picard maps (see for example, [6]-[8]). Let (X, p) be a metric
space. We shall denote the set of all nonempty closed subsets of X by P (X). Also,
we shall denote the set of fixed points of a multifunction T' by Fiz(T). Let X be
a nonempty set and consider the space R endowed with the usual component-wise
partial order. The mapping d : X x X — R’ which satisfies all the usual axioms of
the metric is called a generalized metric space in the sense of Perov ([1]). If v, € R™,
v := (v1,v2,  , V) and r = (r1,r9, -+ ,Ty), then by v < r we mean v; < r;, for
each i € {1,2,---,m}, while v < r stands for v; < r;, for each i € {1,2,--- ,m}.
Also, |v] := (Ju1], Jv2], -+, |vm|), max(v, ) := (max(vy,71), -, max (v, ry)), and if
¢ € R, then v < ¢ means v; < ¢, for each ¢ € {1,2,--- ,;m}. In a generalized metric
space in the sense of Perov, the concepts of Cauchy sequence, convergent sequence and
completeness are similar defined as those in a metric space. We denote by M,, ., (R4)
the set of all m x m matrices with positive elements and by I the identity m x m
matrix. A matrix A € M, »(Ry) is said to be convergent to zero whenever A™ — 0.
We appeal next result in the following which has been proved in ([5]).

Theorem 1.1. Let A € M, .,,(R4). The following are equivalents:

(i) A" — 0;

(ii) The eigenvalues of A are in the open unit disc, i.e. || < 1, for all X € C with
det(A — M) = 0;

(iii) The matriz I — A is non-singular and (I — A) "' =T+ A+ -+ A" +---;
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(iv) The matriz I — A is non-singular and (I — A)™1 has nonnegative elements;
(v) A"q — 0 and gA™ — 0, for all ¢ € R™.

If (X, <) is a partially ordered set, then we define
Xc={(z,y) e X xX:x<yory<uz}
Let X be a nonempty set and T : X — P(X) be a multivalued operator. We set
(T xT)(z,y) = {(u,v) :u €Tz, veTy},

for all z,y € X. Note that, for each x € X there exists b, € R’} such that b, < d(z,y)
for all y € Tx. At least, we can set b, = 0. Now, for each z € X we denote
largest of these vectors by d(x,Tx), that is, d(x,Tx) is a vector in R’} such that
d(z,Tx) < d(x,y) for all y € Tx and b, < d(z,Tx) for all b, € R} with b, < d(z,y)
for all y € Tz.

2. MAIN RESULTS

We say that (X, d, <) is an ordered generalized metric space whenever (X, d) is a
generalized metric space in Perov’ sense, and (X, <) is a partially ordered set.

Theorem 2.1. Let (X,d, <) be a complete ordered generalized metric space, A a
matriz in M, m(R4) convergent to zero and T : X — Py(X) a multivalued operator.
Suppose that (T x T)(X<) C X< and

(i) For each (z,y) € X< and u € T(x) there exist v € T(y) and L(z,y) € Az, such
that d(u,v) < A L(z,y), where Ay, = {d(z,y),d(z,Tx),d(y,Ty)},

(i1) For each sequence {y}n>1 in X with x,, — x, there exists a subsequence {xy, }r>1
of {xn}n>1 such that (x,,,z) € X< for allk >1,

(i11) There exist xo,x1 € X such that (z9,x1) € X< and x1 € Txo.

Then T has a fized point.

Proof. If xy = x1, then z( is a fixed point of T. Let ;1 # x. By (i), there exist
2 € Txy and L(zo,x1) € Agy e, such that d(zq,22) < AL(x0, 1), where Ay, z, =
{d(zg,21),d(xg, Txo), d(x1,Tx1)}. If L(xg,21) = d(x1,T21), then

d((El,.’EQ) S Ad(ifl,TZL'l) S Ad(fEl,.’EQ)
= (I* A)d(zl,xz) <0 = d(IEl,l’Q) =0 = x1 = x9.
If L(xg,21) = d(zg,21) or L(xg,x1) = d(xo,Txp), then
d((El,.’EQ) S Ad(ifo,l’l). (1)

Since (zg,z1) € X<, 21 € Txg, (T x T)(X<) € X< and x5 € Ty, (21,22) € X<.
Now, by using (i) there exist x3 € Tzo and L(x1,x2) € Ay, 4, such that

d(xg,x3) < AL(21, 22).
If L(xy,x9) = d(xe, Txsy), then
d(x9,x3) < Ad(x2,Txs) < Ad(x9,23) = T3 = 3.
If L(zy,29) = d(x1,x2) or L(zg,x1) = d(x1,Tx1), then by using (1) we have
d(xg,23) < Ad(x1,20) < A%d(20,21).
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Now by induction, we construct a sequence {z,}n>0 in X which has the following
properties:

(a) £py1 € Ty, for all n > 0,

(b) (zn,Tnt1) € X< for all m >0,

(¢) d(xn, nt1) < A™d(xg,x1) for all n > 0.

Now, by using these properties and Theorem 1.1 we obtain

d(n, anrp) < d(Tn, Tpi1) + d(Tppr, Tpg2) +o00 + d(anrp*lv xnﬂ?)
< AMd(zg,x1) + A" d(xg, 21) 4 -+ AP (20, 21)
AT+ A+ A2+ 4+ AP Hd(20, 1)
< A™M(I — A) (2o, 21) — 0 (n — 00).
Hence, {2, }n>0 is a Cauchy sequence in the complete metric space (X,d). Choose
x* € X such that z,, — x*. By (ii), there exists a subsequence {x,, }x>1 of {xs }n>0
such that (z,,,2*) € X< for all k > 1. But, z,,, € Tay, 1, (Tn,—1,2*) € X< for all

n > 1. Thus by using (i), for each k > 1 there exist vy, € Tz* and L(z,,_1,2") €
As,. 1+ such that

A(Vnyy s Ty, ) < AL(Tpyy—1,2%).
If L(zp,—1,2%) = d(xpn,—1, "), then d(vy,, zn,) < Ad(zp,—1,2*). Hence,
A(Vn,,, ") < d(vn,, Tn, ) + A Xn,, ") < Ad(xp, —1,2") + d(Tn,—1,2%) — 0 (k — 00).
If L(xp,—1,2%) = d(xpn,—1,TTpn,—1), then d(v,,, zn, ) < Ad(zp, -1, 2n, ). Hence,
d(vn,,, ") < d(vp,,, Tn, ) + d( @, , 2") < Ad(Xn,, -1, Zn,,) + d(Tp,, %) — 0 (K — 00).
If L(zp, —1,2%) = d(z*, Tx*), then d(vy, , Tn, ) < Ad(vn,,z*). Hence,
d(vn,, ") < d(vn,, Tn,) + d(@n,, 2) < Ad(vp,,2*) + d(zp,, z")
= (I — A)d(vp,,z") < d(zp,,z") = 0 (kK — 00).

Therefore, v,, — z* (k — o00). Since u,, € Tz* for all k > 1 and Ta* is a closed
subset of X, z* € Tx*. O

Example 2.1. Let X = [-2,-1JU[1,2]U{0}, » = 2, A = rloxs, k > 0 and
d: X x X — R? defined by d(z,y) = (|v — y|,k|lz — y|) for all z,y € X. Then
(X,d) is a generalized metric space. Define the multivalued mapping T : X — X by
Tz = [-% 4 2, 2] whenever x € [-2,—1), Tz = {0} whenever z € {—1,0,1} and
Tz = [3,—% + 2] whenever z € (1,2]. We show that T satisfies the assumptions of
Theorem 2.1 while it does not satisfy the assumptions of [7; Theorem 3.3]. In this way,
note that if x € {—1,0,1}, then d(z, Tx) = (|z|, k|z|) and if z € [-2,—1) orz € (1,2],
then d(z, Tx) = (|28, k|228). Let 2,y € [-2,-1), <y and u € Tx. Then, for
each v € Ty we have |u—v| < ‘yiﬂl < %'E’y;g‘ < r‘5y;8‘, and so d(u,v) < Ad(y,Ty).
Let ¢ € [-2,-1), y € {-1,0,1} and u € Txz. Then, for each v € Ty we have
lu—v] <3 <8< r@, and so d(u,v) < Ad(x,Tz). Let x € [-2,-1), y € (1,2]
andu € Tx. Then, for eachv € Ty we have [u—v| <1 < la—y| < Ea—y| = rlz—yl,
and so d(u,v) < Ad(z,y). Therefore T satisfies the assumptions of Theorem 2.1. If

v = -3 andy = —1, then Tz = [22,2], Ty = {0} and for each u € [%2,3] and
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v =0, we have |u—v| £ r|lz —y| = d(u,v) £ Ad(z,y). Hence, T does not satisfy the
assumptions of [7; Theorem 3.3].

Theorem 2.2. Let (X,d) be a complete generalized metric space, § € (0,1) and
T:X — Py(X) a multivalued operator. Suppose that ¢ : R — R is an increasing

(o)
sublinear function such that (0) =0, p(t) <t and > @"(t) < oo forallt = (t;)", €
=1

R™, . Also, suppose that for each x,y € X and u € T(x) there exist v € T(y) and
M(x,y) € B, such that

d(u,v) < o(M(z,y)), ()
where

BLZI = {d($7 y)7 d(l‘, Tx)? Hd(f% Ty)>
Then T has a fized point.

d(z,Tz) +d(y, Ty) d(x,Ty)+ d(y,Tx)

2 ’ 2 g

Proof. Let xg € X be arbitrary and take z; € Txg. If zog = x1, then x¢ is a fixed
point of T. Let x1 # x¢. By (%), there exist xo € Ty and M (xo,21) € Byy,z, Such
that d(x1,x9) < (M (x0,21)). If z1 = xo, then x; is a fixed point of T. Let 1 # xa.
We show that d(z1,z2) < @(d(xo,z1)). If M(xo,21) = d(xo, 1), then

(1, w2) < @(d(zo, 71)). (2)
If M(xzo,21) = d(xo,Txp), then (2) holds because z; € Txzo. We claim that
M(zo,x1) # 0d(x1,Tx1). In fact, if M(zg,z1) = 0d(z1,Tx1), then
d(z1,22) < p(0d(x1,Tx1)) < @(0d(z1,22)) < 0d(21,22),

which is a contradiction. If M (zg,z1) = d(xO’TxO);d(xl’T“), then

d(xo, Tﬂio) + d(.%‘l, Txl)
2

) < seldz) + seldn, )

d(x1,22) < o 5

1 1
< 590(d($0»$1)) + §d($17$2)7

because 1 € Txg, x2 € Ta; and ¢ is sublinear. Hence, d(z1,22) < ¢(d(xg,x1)).
If M(zo,z1) = d(xo’Txl);d(“’TxU) = d@o.T%1) " then by a similar way we obtain
d(z1,22) < p(d(xo,x1)). Thus, d(x1,22) < @(d(xo,x1)) holds. Now by (x), there
exists 3 € Txo and M(z1,22) € By, 4, such that d(zo,z3) < (M (z1,22)). If

To = x3, then x5 is a fixed point of T. Suppose that x5 # x3. Now, we show that
d(z2,73) < ©*(d(x0,71)). If M(21,72) = d(x1,72), then by using (2) we obtain

(3, x3) < p(d(z1,72)) < ©*(d(z0,71)). (3)

If M(z1,22) = d(x1,Tx1), then (3) holds because xo € Txi. We claim that
M (21, x2) # 0d(x2, Txa). In fact, if M(x1,22) = 0d(x2, Txs), then

d(xa,23) < p(0d(x2,Txs)) < p(0d(xe,x3)) < 0d(x2,x3),

which is a contradiction. If M(z1,z2) = d(ajl’T“);d(w”T“), then

d(,’Bl, Tail) + d(a?g, TLL'Q)
2

L p(d(w, z3))

d(za,x3) < o 5

) < %ap(d(m,xg)) +
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1 1
< §¢(d(ﬂf1a T2)) + Qd@z,x:s)

because zo € Tz, 3 € Tx9 and ¢ is sublinear. Hence,
(w2, x3) < p(d(z1,2)) < *(d(wo,71)).

If M(z1,20) = d(rl’T“);d(xz’Txl), then by a similar way we obtain

(3, x3) < p(d(z1,72)) < ©*(d(z0,71)).

Thus, d(z2,23) < ¢?(d(z0,21)) holds. Now, by induction we construct a sequence
{Zn}n>0 in X which has the following properties:

(a) zpy1 € Txy, for all m >0,

(b) d(xp, Tpt1) < ©™(d(zg,21)) for all n > 0.

Now, for each natural number p we have

d(zn, $n+p) <d(wp, Tpy1) + d(@ng1, Tng2) + -0+ d(xn+p—17 l'n+p)
n+p—1
< G A0, 21)) + P Ao, an)) + o+ P Ao = S (Ao, )).

k=n
Hence, {2, }n>0 is a Cauchy sequence in the complete metric space (X,d). Choose
x* € X such that z, — x*. Let n > 1 be given. Since z,, € Tx,,_1, by using (x) there
exist u, € Tx* and M(z,_1,2%) € B,, , 2+ such that

d(un, zn) < @(M(zn-1,27)).

If u,, = * for some n > 1, then z* is a fixed point of T'. Suppose that u,, # z* for
all n > 1. Now, we show that lim, e d(up,2*) = 0. If M(2p-1,2%) = d(zp_1,2*),
then d(un, ) < @(d(xn—1,2*)). Since

A(tn, ") < d(tn, ) + d(@n, 2°) < o(d(Tn-1,2")) + d(Tn, z¥),
d(up,x*) — 0. If M(zp—1,2%) =d(xp—1,TxH_1), then
d(tn, 7n) < P(d(Tn-1,T2n-1)) < p(d(Tn-1,7s)) < ‘Pnil(d(xovxl))-

Hence, d(u,,z*) < "~ 1(d(zo,71)) + d(zpn,z*) and so d(u,,z*) — 0.

If M(2p—1,2*) = 0d(z*, Tx*), then

d(tn, xn) < @0d(x”, Tx")) < e(Od(x*,uy)) < 0d(un, z*).

Hence, d(uyn, z*) < 0d(un, 2*) +d(z,, z*) and so d(u,, z*) < (1—0)"d(z,,z*). Thus,
d(tn,z*) — 0.

If M(zp_1,2%) = d(a:n,l,Tzn,;)er(g;*’Tz*)’ then

dxp_1,Txn_1)+d(z*, Tx* 1 1 .
no Bon ) 2 ACLTE),) < L s, ) + o, )

d(unaxn) < 90(

1 1
< §<p(d(xn,1,xn)) + id(umx*)'

Hence,
A(up,2") < d(un, zn) + d(zp, ) < igo(d(:cn,l,xn)) + id(un,x ) + d(zp, z").
Thus, d(un,z*) < p(d(zp—1,2Tn)) + 2d(zn, 2*) and so d(u,,z*) — 0.
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If M(zp_1,2%) = d($n717Tw*);d(w*7Twn—1)7 then

d(xp_1,Tx*) +d(z*, Txp_1)

i, ) < ) < eldlzn1,u) + 50w, )

2 2
< Seldlan 1, %)) + 3 p(d(e ) + 5e(d(n 7))
< %g@(d(mn_l,x*)) + %gp(d(ax*,xn)) + %d(un,x*).

Hence,
d(up, z*) < d(up, ) + d(zp, ")
1 1 1
< gpld(@n—1,2%)) + Se(d(@n, &%) + Sd(un, 2%) + d(@n, 27)

and so d(up,x*) — 0. Therefore, we proved that lim,, o d(uy,,z*) = 0.
Since u, € Tx* for all n > 1 and T'z* is a closed subset of X, x* € Tx*. O

Corollary 2.3. Let (X,d) be a complete generalized metric space, 0, € (0,1) and
T: X — Py(X) a multivalued operator. Suppose that each x,y € X and u € T(x)
there exist v € T(y) and M(z,y) € By, such that

d(u,v) < AM(z,y),
where

B..y = {d(x.y).d(z, Ta),0u(y, Ty), "0 T A TY) A Ty) + dly.To)y

and A € My, xm(Ry) is defined by A= «l. Then T has a fized point.
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