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Abstract. It has recently been shown that if for any initial point there exists a trajectory of a

nonexpansive set-valued mapping attracted by a given set, then this property is stable under small

perturbations of the mapping. In the present paper we show that the same conclusion continues to
hold under the weaker condition that for any initial point there exists a trajectory of the nonexpansive

set-valued mapping with a subsequence which is attracted by the attractor.
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1. Introduction and Preliminaries

The study of iterations of contractive mappings has been an important topic in
Nonlinear Functional Analysis since Banach’s seminal paper [1] on the existence of a
unique fixed point for a strict contraction acting on a complete metric space. It is
well known that Banach’s fixed point theorem also yields convergence of iterates to
the unique fixed point. Many developments have taken place in this area in recent
decades. Interesting results have also been obtained regarding set-valued mappings,
where the situation is more difficult and less understood. See, for example, [2, 6, 9-14]
and the references mentioned therein.

As we have already mentioned, one of the methods used for proving the classical
Banach theorem is to show the convergence of Picard iterations, which holds for any
initial point. In the case of set-valued mappings, not all trajectories of the dynamical
system induced by the given mapping converge. Therefore convergent trajectories
have to be constructed in a special way. For instance, in [6], if at the moment
t = 0, 1, . . . one has reached a point xt, then one chooses an element of T (xt) (here
T is the given mapping) such that xt+1 approximates the best approximation of xt

from T (xt). Since the given mapping acts on an arbitrary complete metric space, one
cannot, in general, choose xt+1 to be the best approximation of xt by elements of
T (xt). Instead, one chooses xt+1 so that it approximates the best approximation up

165



166 EVGENIY PUSTYLNIK, SIMEON REICH AND ALEXANDER J. ZASLAVSKI

to a positive number εt, such that the sequence {εt}∞t=0 is summable. This method
allowed Nadler [6] to obtain the existence of a fixed point of a strictly contractive
set-valued mapping and the authors of [2] to establish more general results. Thus
it is important to study convergence of the iterates of both single- and set-valued
mappings in the presence of inexact data.

In particular, it is natural to ask if convergence of the iterates of nonexpansive
mappings will be preserved in the presence of computational errors. Affirmative
answers to this question are given in [3]. Related results can be found, for example,
in [4, 5, 7, 8].

In a recent paper [13] it has been shown (Theorem 1.1 below) that if for any initial
point there exists a trajectory of a nonexpansive set-valued mapping attracted by a
given set, then this property is stable under small perturbations of the mapping.

In the present paper we show (see Theorems 1.5 and 1.6 below) that the same
conclusions continue to hold under the weaker condition that for any initial point
there exists a trajectory of the nonexpansive set-valued mapping with a subsequence
which is attracted by the attractor.

Let (X, ρ) be a metric space. For each x ∈ X and each nonempty set A ⊂ X, put

ρ(x,A) = inf{ρ(x, y) : y ∈ A}.

For each pair of nonempty sets A,B ⊂ X, set

H(A,B) = max{sup
x∈A

ρ(x,B), sup
y∈B

ρ(y, A)}.

Let T : X → 2X \ {∅} satisfy

H(T (x), T (y)) ≤ ρ(x, y) for all x, y ∈ X. (1.1)

The following result has recently been established in [13].
Theorem 1.1 Assume that F is a nonempty subset of X and that for each x ∈ X,

there is a sequence {xi}∞i=0 ⊂ X such that x0 = x, xi+1 ∈ T (xi) for all integers i ≥ 0,
and

lim
i→∞

ρ(xi, F ) = 0.

Assume that

{εi}∞i=0 ⊂ (0,∞),
∞∑

i=0

εi < ∞.

For each integer i ≥ 0, let Ti : X → 2X \ {∅} satisfy

H(Ti(x), T (x)) ≤ εi, x ∈ X.

Then the following two assertions hold.
1. Let δ > 0. For each x ∈ X, there exists a sequence {xi}∞i=0 such that x0 = x,

for each integer i ≥ 0,
xi+1 ∈ Ti(xi),

and
ρ(xi, F ) ≤ δ for all sufficiently large integers i ≥ 0.
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2. For each x ∈ X, there exists a sequence {xi}∞i=0 such that x0 = x, for each
integer i ≥ 0,

xi+1 ∈ Ti(xi),
and

lim inf
i→∞

ρ(xi, F ) = 0.

The main assumption of Theorem 1.1 is that for any initial state x0, there is a
trajectory {xi}∞i=0 of the dynamical system induced by the mapping T such that
limi→∞ ρ(xi, F ) = 0. In the present paper we show that Assertions 1 and 2 of The-
orem 1.1 continue to hold when instead of limi→∞ ρ(xi, F ) = 0 we only assume that
lim infi→∞ ρ(xi, F ) = 0. Therefore Theorems 1.5 and 1.6 improve upon Assertions 1
and 2 of Theorem 1.1, respectively. Note, however, that in Theorem 1.5 we introduce
an additional hypothesis. Namely, we assume that for any initial point from F there
is a trajectory of the dynamical system induced by the given mapping T which stays
in F (see (1.5)).

Since in this paper we deal with subsequences of trajectories which converge to the
attractor, the following three propositions turn out to be useful.

The proof of the first one is obvious.

Proposition 1.2 Let T : X → 2X \ {∅} satisfy (1.1) and let F be a nonempty
subset of X. Then the following properties are equivalent.

1. For each ε > 0 and each x ∈ X, there is a natural number k and a sequence
{xi}k

i=0 ⊂ X such that x0 = x,

xi+1 ∈ T (xi), i = 0, . . . , k − 1, and ρ(xk, F ) < ε.

2. For each ε > 0 and each x ∈ X, there is a sequence {xi}∞i=0 ⊂ X such that
x0 = x,

xi+1 ∈ T (xi) for all integers i ≥ 0, (1.2)
and

lim inf
i→∞

ρ(xi, F ) < ε.

3. For each x ∈ X, there is a sequence {xi}∞i=0 ⊂ X such that x0 = x, (1.2) holds
and lim infi→∞ ρ(xi, F ) = 0.

The next proposition is proved in Section 2.
Proposition 1.3 Let T : X → 2X \{∅} satisfy (1.1). Assume that F is a nonempty

subset of X such that
T (y) ∩ F 6= ∅ for each y ∈ F.

Assume further that for each x ∈ X and each ε > 0, there is a sequence {xi}∞i=0 ⊂ X
such that x0 = x, (1.2) holds and

lim inf
i→∞

ρ(xi, F ) < ε.

Then for each ε > 0 and each x ∈ X, there is a sequence {xi}∞i=0 ⊂ X such that
x0 = x, (1.2) holds and

ρ(xi, F ) < ε for all sufficiently large natural numbers i.
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These two propositions, when taken together, imply the third one.
Proposition 1.4 Let T : X → 2X \{∅} satisfy (1.1). Assume that F is a nonempty

subset of X such that
T (y) ∩ F 6= ∅ for each y ∈ F.

Then the following properties are equivalent.
1. For each ε > 0 and each x ∈ X, there is a natural number k and a sequence

{xi}k
i=0 ⊂ X such that x0 = x,

xi+1 ∈ T (xi), i = 0, . . . , k − 1, and ρ(xk, F ) < ε.

2. For each ε > 0 and each x ∈ X, there is a sequence {xi}∞i=0 ⊂ X such that
x0 = x,

xi+1 ∈ T (xi) for all integers i ≥ 0,

and
lim inf
i→∞

ρ(xi, F ) < ε.

3. For each x ∈ X, there is a sequence {xi}∞i=0 ⊂ X such that x0 = x,

xi+1 ∈ T (xi) for all integers i ≥ 0,

and
lim inf
i→∞

ρ(xi, F ) = 0.

4. For each ε > 0 and each x ∈ X, there is a sequence {xi}∞i=0 ⊂ X such that
x0 = x,

xi+1 ∈ T (xi) for all integers i ≥ 0,

and
ρ(xi, F ) < ε for all sufficiently large natural numbers i.

The following example shows that the assumption

T (y) ∩ F 6= ∅ for each y ∈ F

is essential in both Propositions 1.3 and 1.4.
Example. Let X = {0, 1}, F = {0}, T (0) = {1}, T (1) = {0}. Clearly, properties

(1)-(3) of Proposition 1.4 hold while property (4) does not.

Now assume that F is a nonempty subset of X and that the following property
holds:

(P) For each x ∈ X, there is a sequence {xi}∞i=0 ⊂ X such that x0 = x,

xi+1 ∈ T (xi) for all integers i ≥ 0, and lim inf
i→∞

ρ(xi, F ) = 0.

Let

{εi}∞i=0 ⊂ (0,∞),
∞∑

i=0

εi < ∞. (1.3)

For each integer i ≥ 0, let Ti : X → 2X \ {∅} satisfy

H(Ti(x), T (x)) ≤ εi, x ∈ X. (1.4)
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The following two theorems are the main results of our paper.
Theorem 1.5 Let T : X → 2X \ {∅} satisfy (1.1). Assume that property (P)

holds and that for each integer i ≥ 0, the mapping Ti : X → 2X \ {∅} satisfies (1.4).
Assume further that

T (y) ∩ F 6= ∅ for each y ∈ F. (1.5)
Let x ∈ X and ε > 0. Then there exists a sequence {xi}∞i=0 in X such that x0 = x,
xi+1 ∈ Ti(xi) for all natural numbers i and ρ(xi, F ) < ε for all sufficiently large
natural numbers i.

Theorem 1.6 Let T : X → 2X \{∅} satisfy (1.1). Assume that property (P) holds
and that for each integer i ≥ 0, the mapping Ti : X → 2X \ {∅} satisfies (1.4). Let
x ∈ X. Then there exists a sequence {xi}∞i=0 such that x0 = x, xi+1 ∈ Ti(xi) for all
natural numbers i and lim infi→∞ ρ(xi, F ) = 0.

Our paper is organized as follows. The next section is devoted to the proof of
Proposition 1.3. In the third section we recall an auxiliary result from [13]. Theorems
1.5 and 1.6 are proved in Sections 4 and 5, respectively.

2. Proof of Proposition 1.3

Let ε > 0 and x ∈ X. By the assumptions of the proposition, there is a natural
number k and a sequence {xi}k

i=0 ⊂ X such that

x0 = x, xi+1 ∈ T (xi) for all integers i = 0, . . . , k − 1, (2.1)

and
ρ(xk, F ) < ε/2. (2.2)

Using induction, we now show that there is a sequence {xi}∞i=0 ⊂ X such that

ρ(xi, F ) < ε/2 for all integers i ≥ k (2.3)

and
xi+1 ∈ T (xi) for all integers i ≥ 0. (2.4)

Assume that q ≥ k is an integer and that we have already constructed a sequence
{xi}q

i=0 ⊂ X such that

x0 = x, xi+1 ∈ T (xi) for all integers i = 0, . . . , q − 1,

and
ρ(xi, F ) < ε/2, i = k, . . . , q. (2.5)

(Clearly, for q = k this assumption holds.)
By (2.5), there is

yq ∈ F (2.6)
such that

ρ(xq, yq) < ε/2. (2.7)
By (1.1) and (2.7), we have

H(T (xq), T (yq)) ≤ ρ(xq, yq) < ε/2. (2.8)

By (1.5) and (2.6), there is
yq+1 ∈ T (yq) ∩ F. (2.9)
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In view of (2.8) and (2.9),
ρ(yq+1, T (xq)) < ε/2

and therefore there is
xq+1 ∈ T (xq) (2.10)

such that
ρ(yq+1, xq+1) < ε/2. (2.11)

By (2.9) and (2.11),
ε/2 > ρ(yq+1, xq+1) ≥ ρ(xq+1, F )

and the assumption we have made regarding q also holds for q + 1. Therefore we
have constructed by induction a sequence {xi}∞i=0 ⊂ X satisfying (2.3) and (2.4).
Proposition 1.3 is proved.

3. An auxiliary result

The following result has been obtained in [13, Lemma 2.1]. Its setting is that of
Theorem 1.1 (see (1.3) and (1.4)).

Lemma 3.1 Let q ≥ 0 be an integer. Let the sequence {xi}∞i=q ⊂ X satisfy

xi+1 ∈ T (xi)

for each integer i ≥ q. Then there is a sequence {yi}∞i=q ⊂ X such that

yq = xq, yi+1 ∈ Ti(yi) for all integers i ≥ q,

and for all integers j ≥ q + 1,

ρ(yj , xj) ≤
j−1∑
i=q

2εi.

4. Proof of Theorem 1.5

By (1.3), there is a natural number k0 such that
∞∑

i=k0

εi < ε/8. (4.1)

There is also a sequence {xi}k0
i=0 ⊂ X such that

x0 = x, xi+1 ∈ Ti(xi), i = 0, . . . , k0 − 1. (4.2)

By (1.5), property (P) and Proposition 1.3, there is a sequence {zi}∞i=k0
⊂ X such

that
zk0 = xk0 , zi+1 ∈ T (zi), i = k0, k0 + 1, . . . , (4.3)

and
ρ(zi, F ) < ε/8 for all suficiently large natural numbers i. (4.4)

By Lemma 3.1, (4.3) and (4.1), there is a sequence {xi}∞i=k0
⊂ X such that

xi+1 ∈ Ti(xi) for all integers i ≥ k0, (4.5)
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and such that for all integers j ≥ k0 + 1,

ρ(zj , xj) ≤
j−1∑
i=k0

2εi < ε/4. (4.6)

By (4.4), there is a natural number k1 > k0 such that for all integers j ≥ k1,

ρ(zj , F ) ≤ ε/8. (4.7)

By (4.6) and (4.7), for all integers j ≥ k1 we have

ρ(xj , F ) ≤ ρ(xj , zj) + ρ(zj , F ) < ε/4 + ε/8 < ε.

Theorem 1.5 is proved.

5. Proof of Theorem 1.6

Let x ∈ X. Set
S0 = 0 and x0 = x. (5.1)

Assume that q ≥ 0 is an integer and that we have already defined a strictly increasing
sequence of nonnegative integers Si, i = 0, . . . , q, and a sequence {xi}

Sq

i=0 ⊂ X such
that (5.1) holds,

xi+1 ∈ Ti(xi) for all integers i satisfying 0 ≤ i < Sq, (5.2)

and that for all integers j satisfying 1 ≤ j ≤ q,

ρ(xSj , F ) ≤ 1/j. (5.3)

(Note that for q = 0 this assumption holds). By (1.3), there is a natural number
R1 > Sq + 4 such that

∞∑
i=R1

εi < (4(q + 1))−1. (5.4)

There is a sequence {xi}R1
i=Sq

⊂ X such that

xi+1 ∈ Ti(xi), i = Sq, . . . , R1 − 1. (5.5)

By property (P), there exist a natural number Sq+1 > R1 + 4 and a sequence
{zi}

Sq+1
i=R1

⊂ X such that

zR1 = xR1 , zi+1 ∈ T (zi) for all integers i = R1, . . . , Sq+1 − 1, (5.6)

and
ρ(zSq+1 , F ) < (2(q + 1))−1. (5.7)

By (5.6), (5.7), Lemma 3.1 and (5.4), there is a sequence {xi}
Sq+1
i=R1

⊂ X such that

xi+1 ∈ Ti(xi) for all integers i = R1, . . . , Sq+1 − 1, (5.8)

and for all integers j = R1 + 1, . . . , Sq+1,

ρ(xj , zj) ≤
j−1∑

i=R1

2εi < 2
∞∑

i=R1

εi < (2(q + 1))−1.
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When combined with (5.7), this inequality implies that

ρ(xSq+1 , F ) ≤ ρ(xSq+1 , zSq+1) + ρ(zSq+1 , F ) < (q + 1)−1.

Thus the assumption we made for q also holds for q+1. Therefore we have constructed
by induction a strictly increasing sequence of nonnegative integers {Sq}∞q=0 and a
sequence {xi}∞i=0 ⊂ X such that

xi+1 ∈ Ti(xi) for all integers i ≥ 0

and
ρ(xSq

, F ) ≤ q−1 for all integers q ≥ 1.

This completes the proof of Theorem 1.6.
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à valeurs convexes, Atti Accad. Naz. Lincei, 81(1987), 283-286.

Received: May 11, 2011; Accepted: May 31, 2011.


