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Abstract. In this paper, we study the following minimization problem
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T 5 (B, z) + S llzll”,

where B is a bounded linear operator, u > 0 is some constant, F'(T') is the set of fixed points of
nonexpansive mapping S and 2 is the solution set of an equilibrium problem. This paper introduces
two new algorithms (one implicit and one explicit) that can be used to find the solution of the above
minimization problem.
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1. INTRODUCTION

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively.
Let C be a nonempty closed convex subset of H. Recall that a mapping A : C' — H is
called a-inverse-strongly monotone if there exists a positive real number a such that

(Ax — Ay, x — y) > oAz — Ay, Vz,y € C.
A mapping S : C — (' is said to be nonexpansive if
[Sz = Syl < || —yl,Vz,y € C.

Denote the set of fixed points of S by F(S). Let B be a strongly positive bounded
linear operator on H, that is, there exists a constant v > 0 such that

(Bz,z) > 7||z||? Vo € H.

LCorresponding author.
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Let A: C — H be a nonlinear mapping and F': C' x C' — R be a bifunction. Now
we concern the following equilibrium problem is to find z € C' such that

F(z,y)+ (Az,y —2) > 0,Vy € C. (1.1)

The solution set of (1.1) is denoted by Q. If A = 0, then (1.1) reduces to the following
equilibrium problem of finding z € C' such that

F(z,y) >0,Vy € C.

If F =0, then (1.1) reduces to the variational inequality problem of finding z € C
such that

(Az,y —z) > 0,Vy € C.

Equilibrium problems which were introduced by Blum and Oettli [1] in 1994 have
had a great impact and influence in pure and applied sciences. It has been shown
that the equilibrium problems theory provides a novel and unified treatment of a wide
class of problems which arise in economics, finance, image reconstruction, ecology,
transportation, network, elasticity and optimization. Equilibrium problems include
variational inequalities, fixed point, Nash equilibrium and game theory as special
cases. The equilibrium problems and the variational inequality problems have been
investigated by many authors. Please see [6]-[35] and the references therein. The
problem (1.1) is very general in the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems, Nash equilibrium problem in
noncooperative games and others. See, e.g., [1], [3], [4], [5].

For solving equilibrium problem (1.1), Moudafi [5] introduced an iterative algo-
rithm and proved a weak convergence theorem. Further, Takahashi and Takahashi
[3] introduced another iterative algorithm for finding an element of F(S) N Q and
they obtained a strong convergence result. Ceng and Yao [27] introduced an iterative
scheme for finding a common element of the set of solutions of an equilibrium problem
and the set of common fixed points of a finite family of nonexpansive mappings in a
Hilbert space and obtained a strong convergence theorem. Ceng, Schaible and Yao
[29] introduced an implicit iteration scheme with perturbed mapping for equilibrium
problems and fixed point problems of finitely many nonexpansive mappings. Peng and
Yao [32] introduced a new hybrid-extragradient method for generalized equilibrium
problems and fixed point problems and variational inequality problems. In order to
find a common element of the set of solutions of an equilibrium problem and the set
of fixed points of a nonexpansive mapping, very recently Yao et al [35] introduced the
following two algorithms

xy = SPco[(1 — )T (zy — rAzy)], ¥Vt € (0,1), (1.2)

and
Tnt1 = Bnn + (1 = Bn)SPc[(1 — an) T (zy, — rAzy)],n > 0, (1.3)
Furthermore, they proved that the proposed algorithms (1.2) and (1.3) converge

strongly to a solution of the following minimization problem of finding z* € F(S) N
such that

| = i 14
== _min (1.49)
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Motivated and inspired by the works in this direction in the literature, in this
paper, we will study the following minimization problem
: H 1 2
min —(Bz,x —|lz||%, 1.5
zeF(S)NQ 2< )+ 2” | (15)
where B is a bounded linear operator and p > 0 is some constant.
If we take p = 0 in (1.5), then the minimization problem (1.5) reduces to the
minimization problem (1.4).
This paper introduces two new algorithms (one implicit and one explicit) that can
be used to find the solution of the above minimization problem.

2. PRELIMINARIES

Let C' be a nonempty closed convex subset of a real Hilbert space H. Throughout
this paper, we assume that a bifunction F' : C x C — R satisfies the following
conditions:

(H1) F(x,2) =0 for all x € C;

(H2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;

(H3) for each z,y,z € C, limyo F(tz + (1 — t)z,y) < F(z,y);

(H4) for each x € C, y — F(x,y) is convex and lower semicontinuous.

The metric (or nearest point) projection from H onto C'is the mapping Po : H — C
which assigns to each point z € C' the unique point Pox € C satisfying the property

_P =1 f — = d C .
|z — Pox|| ylgcl\x yll (z,C)

It is well known that Pc is a nonexpansive mapping and satisfies

(x —y, Pox — Poy) > ||Pcx — Poyl|*,Va,y € H. (2.1)
Moreover, Pg is characterized by the following properties:
(x — Pox,y — Pox) <0, (2.2)
and
e =yl > llz — Peall® + lly — Pox|, (2.3)

forall x € H and y € C.
We need the following lemmas for proving our main results.

Lemma 2.1. ([2]) Let C be a nonempty closed convex subset of a real Hilbert space
H. Let F : C x C — R be a bifunction which satisfies conditions (H1)-(H4). Let
r >0 and x € C. Then, there exists z € C' such that

1
Fzy)+ —(y—zz-2)20,vyeC
Further, if T, (z) = {z € C: F(z,y) + (y — 2,z —x) > 0,Vy € C}, then the following
hold:

(i) T, is single-valued and T, is firmly nonexpansive, i.e., for any x,y € H,
| T2 — TTyHQ <(Trx - Try,x —y);
(ii) Q is closed and convex and Q = F(T,.).
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Lemma 2.2. ([8]) Let C be a nonempty closed convex subset of a real Hilbert space
H. Let the mapping A : C — H be a-inverse strongly monotone and r > 0 be a
constant. Then, we have

(I =rA)z — (I —rA)y|? < |lz -yl + r(r — 20) | Az — Ay|*,Va,y € H.
In particular, if 0 < r < 2a, then I —rA is nonexpansive.

Lemma 2.3. ([19]) Let {z,} and {y,} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0,1] with 0 < liminf, . 8, < limsup,_,. Bn < 1.
Suppose Tpi1 = (1 — Bn)yn + Bnzn for alln >0 and

i sup(||yns1 = ynll = [2n1 = znl]) < 0.
n—o0

Then, lim,, o0 ||y — || = 0.

Lemma 2.4. ([10]) Let C be a closed convex subset of a real Hilbert space H and let
S :C — C be a nonexpansive mapping. Then, the mapping I — S is demiclosed. That
is, if {xn} is a sequence in C such that x, — x* weakly and (I — S)x,, — y strongly,
then (I — S)z* =y.

Lemma 2.5. Let C' be a nonempty closed conver subset of a real Hilbert space H, and
g:C — RU{oo} be a proper lower-semicontinuous differentiable convex function. If
z* is a solution to the minimization problem

g(2") weﬁ?smg(m)’

then (¢'(x),z* —x) < 0,Vz € F(S) N Q.
In particular, if z* solves problem (1.5), then

(I 4+ pB))z", 2" —x) <0,Vz € F(S)NQ.

Proof. Since F(S)NQ is convex , z* +t(z —2*) € F(S)NQ for all z € F(S) N and
0 <t <1 Hence
g(z" +t(x - 27)) — g(z7)

. — Vi * _ * > .
Jm ; (9'(z%),x—2") 20

In particular, if

1
(Ba,z) + 3]

I Ol

(I +pB)x, x),
then
g (z) = (I + uB)x.
Therefore, we obtain
(I +uB))z", 2" —x) <0,Vx € F(S)NQ.
This completes the proof. O
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Lemma 2.6. ([20]) Assume {ay} is a sequence of nonnegative real numbers such that

Gpt1 < (1 - ’Yn)an + 0nYn,

where {v,} is a sequence in (0,1) and {§,} is a sequence such that

(1) Z Yn = OQ;

(2) limsup,,_,o, 0n <0 or Z |6 | < 0.

n=1

Then lim,_, o a, = 0.

3. MAIN RESULTS

Let C' be a nonempty closed convex subset of a real Hilbert space H. Let S : C — C
be a nonexpansive mapping, A : C'— H be an a-inverse strongly monotone mapping
and B : H — H be a strongly positive bounded linear operator. Let F': C' x C — R
be a bifunction which satisfies conditions (H1)-(H4). In this section we will devote to
find the solution of the minimization problem (1.5).

In order to find a solution of the minimization problem (1.5), we construct the
following implicit algorithm

2 = Po [(I I+ ,uB))STT(a:t - rAxt)} vt e (0,1), (3.1)

where T, is defined as Lemma 2.1. Now we show that {z;} is well-defined. As a
matter of fact, we consider the mapping

Wz = Pe [(1 — (I + uB))STT(x - rAx)} vt e (0,1),z € C.
Since B is linear bounded self-adjoint operator on H, then
| Bl = sup{|(Bu,u)| : v € H, [lu]| =1}.

For a small enough ¢, we have

<(I - (I + /LB)t)’U,7U> = 1-1- tu(Bu, ’LL>
> 1-t—tu|B|
> 0,

that is to say I — t(I 4+ uB) is positive for a small enough ¢.
Hence, we have

1T = t(I + pB)|| = sup{((I —t(I + pB))u,u) : uw € H, ||u| =1}
=sup{l —t — tu(Bu,u) : v € H,||ul| = 1}
<1—t—twy.
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Since S, T, and (I — rA) are nonexpansive, we get
[Wix =Wyl = [[Pcl(I — (I + pB)t)ST,(z — rAz)]
—Po[(I = (I +pB)t)ST,(y — rAy)l|

< | = (I 4 uB)t)ST (x — rAz)]

—[(I = (I + uB)t)ST:(y — rAy)]||
< | = (I + pB)t|||ST,(x — rAz) — ST.(y — rAy)||
< (A—=t=tuy)lz -yl

This implies that W; is a contraction. Using the Banach contraction principle, there
exists a unique fixed point x; of Wy in C, i.e.,

2, = Pe [(1 I+ ,uB)) ST, (2, — rAzt)] Ve (0,1).
If we take ;=0 in (3.1), then we have
vy = Po [(1 — #)ST, (s — rAxt)],Vt € (0,1), (3.2)

Below is the first result of this paper which displays the behavior of the net {z;}
ast — 0.

Theorem 3.1. Suppose F(S)NQ # 0. Then the net {x:} defined by the implicit
method (3.1) converges in norm, as t — 0, to z* which solves the minimization

problem (1.5).

Proof. First, we prove that {x:} is bounded. Set u; = T;-(x¢ — rAx,) for all t € (0, 1).
Take z € F(S)NQ. It is clear that z = T,.(z — rAz). Since T, is nonexpansive and A
is a-inverse-strongly monotone, we have from Lemma 2.2 that

T (xp — rAxy) — T (2 — 7“14,2)||2

e — 2]

< lwg — rAzy — (2 — rAz)|?
< o — 2|+ r(r — 20) || Az — Az (3.3)
<l — 2%

So, we have that
lur = 2l < |z = 2.
It follows from (3.1) that
lee =2l = [1Pel(l = (I + pB)t)Su] — Pol(I — (I + uB)t)Sz]
+FPol(I = (I + pB)t)Sz] — Po[Sz]|
1Pc[( = (I + pB)t)Su] — Po[(I — (I + uB)t)Sz]|
+HPol(I = (I +uB)t)Sz] — Po[SA|
1 = (I + pB)t||[|Sus = Sz|| + I[(1 = (I + pB)t)Sz] — S|
(1= @+ p)t)llue — 2| + tII(L + nB)z|| (34)
(1= @+ py)t)llwe — 2l + (T + uB)2|

IN

IA N IA
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that is,
I+ 1B
L+ py
So, {z:} is bounded. Hence {u;} is bounded. We shall use M to denote the possible

different constants appearing in the following reasoning.
From (3.3) and (3.4), we have

< [ = U+ p)t) w2l + ¢[(T + pB)=|)?

= (1= (14 p)t)?|lus — 2[|* + (|( + pB)z||?

+2(1 = (L4 py)Ot|(I + pB)z| lue — 2|

e — 2||* +tM (3.5)
llzy — 2|2 + r(r — 2a)|| Az — Az||* +tM.

et — 2 <

lze — 2]

IA A

This means that
r(2a —r)||Azy — Az||? < tM — 0.
Since r(2a — r) > 0, we deduce
}gr(l) |Az; — Az|| = 0. (3.6)
From Lemma 2.1 and Lemma 2.2, we obtain
o= 2l = ITo(os — rAze) — To(s — rA2) 2
< ((xp —rAzy) — (2 —rAz),up — 2)
1
5 (@ = rAz) = (= rA2) |2 + [lus — 2|1
— e = 2) = r(Az; = A2) = (e - 2)|?)
1
2

IA

(e = 2112 + e = 2117 = (22 — o) = r( Az, — A2)[?)

1

= 5 (llwe = 21 + lfue = 2I1° = e — el

+2r(x; — ug, Axy — Az) — r?||Azy — Az||2)7

which implies that
lus — 2|12 < o — 2% = |Jor — wg|® 4 20 (@ — ug, Azy — A2) — r?|| Az — Az|?
<l = 207 = e — el + M| Az — Az]|. (3.7)
By (3.5) and (3.7), we have
e = 211> < llwe = 2I|* = |z — wel|® + (| Az — Az + ) M.
It follows that
e — wl|® < (|| Az — Az + ) M.

This together with (3.6) imply that

lim [l —u|| = 0.
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Hence,
2y = Szf| = |[Pol(I = (I +pB)t)Su] — PoSz
S — Saef| 4 t]| (1 + pB)Sue|
lue — 2¢]| + ¢|(I + pB)Sus|| — 0. (3.8)

IAIA

Next we show that {x;} is relatively norm compact as t — 0. Let {¢,} C (0,1) be a
sequence such that ¢, — 0 as n — co. Put z,, := 2, and u, := u,. From (3.8), we
get

|2y — Sy || — 0. (3.9)
By (3.1), we deduce

lze = 2> = |Pel(I — (I + pB)t)Su] — Pez|?
< U =+ pB)t)Su, — z|?
= |l = (I +uB)t)(Suy — 2) — t(I + uB)z|*
— I = (I + B (Sus — 2)|2 = 2¢((1 + puB)z, Su; — 2)
+20((I + pB)z, (I + pB)(Su, — 2)) + 2||(I + pB)z||*
< (L=t =tpy)?|lus = 2)1* = 26((I + puB)z, Suy — 2)
+26%||( + pB)z||[| (1 + uB)(Suy — 2)|| + 2(|(I + uB)z|?
< (U=t —tuy)||ae — 2||* + 2t((I + pB)z, z — Su;) + t>M.
It follows that
llz: — 2|2 < T /ﬂ(([—i— uB)z, z — Suy) + T i_]\fw
In particular,
lzn —2||* < ((I—&-uB)z,z—Sun}—i—ﬂ z€ F(S)NQ. (3.10)

L+ py L+ py’

Since {x,} is bounded, without loss of generality, we may assume that {z,} con-
verges weakly to a point z* € C. Noticing (3.9) we can use Lemma 2.4 to get
z* e F(S).

Now we show z* € Q. Since w,, = T).(x, — rAz,,), for any y € C' we have

1
F(un,y) + —(y — tun,up — (x, — rAz,)) > 0.
r

From the monotonicity of F, we have

1
7<y — Up, Un — (.’L‘n - TA:E”» 2 F(y7un)7vy S C.
,,,

Hence,
Up,; — Tn,

(Y = U, ——"0 4 Az,)) > F(y,up,),Vy € C. (3.11)

r
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Put z; =ty + (1 —t)z* for all t € (0,1] and y € C. Then, we have z; € C. So, from
(3.11) we have

(2t —un,, Azt) > (2t — up,, Azt) — (2t — Up,, Uni = Tni + Ax,,)
r
+F (2, un,)
= (2t — Un,;, Az — Aup,) + (2t — Up,, Aupn, — Azyp,)
—<zt—um,M>+F(zt,um). (3.12)

Note that [|Aun, — Azy, || < Ll|lun, — zp,|| — 0. Further, from monotonicity of A, we
have (z; — up,, Azt — Auy,) > 0. Letting ¢ — oo in (3.12), we have

(ze — 2%, Azy) > F(z,27%). (3.13)
From (H1), (H4) and (3.13), we also have
0 = Fl(zt,2t) <tF(ze,y) + (1 —t)F(z,2%)
< tF(zny) + (1= 8)(2 — 27, Azy)
= tF(z,y)+ (1 —t)t{y — 2", Az)
and hence
0< F(z,y) + (1 —t)(Az,y — 2%). (3.14)

Letting ¢t — 0 in (3.14), we have, for each y € C,
0 < F(z"y) + (y — 2", Az").
This implies that z* € Q. Therefore, z* € F(S) N Q.
We substitute z* for z in (3.10) to get
tn M
L+ py L+ py
Note that Su, — z* weakly. This facts and the last inequality imply that z,, — z*

strongly. This has proved the relative norm compactness of the net {z;} as t — 0.
Now we return to (3.10) and take the limit as n — oo to get

lzn — 2% (I +pB)z", 2" = Sun) +

2
2" — 2| < m((IJruB)z,z—z*),ZEF(S)QQ. (3.15)

In particular, z* solves the following variational inequality
e F(S)YNQ, (I+pB)z,z—2"y>0, z€ F(S)NQ,
or the equivalent dual variational inequality
e F(S)NQ, (I+pB)z*,z—2")>0, ze€F(S)NQ, (3.16)

To show that the entire net {z;} converges to z*, assume z5, — Z € F(S) NQ,
where s, — 0. We substitute Z for z in (3.16) to get

(I4+pB)z*,Z2—2%) > 0. (3.17)
Interchange z* and Z to obtain
((I+pB)z,z" —2) > 0. (3.18)
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Adding up (3.17) and (3.18) yields
(L pp)lle” = 2l < (I +pB) (2" — 2),2" = 2) <0,

which implies that Z = 2*. By (3.16) and Lemma 2.5, we deduce immediately the
desired result. This completes the proof. O

Theorem 3.2. Suppose F(S)NQ # 0. Then the net {z;} defined by the implicit
method (3.2) converges in norm, as t — 0, to z* which solves the minimization
problem (1.4).

Next we introduce an explicit algorithm for finding a solution of minimization
problem (1.5). This scheme is obtained by discretizing the implicit scheme (3.1). We
will show the strong convergence of this algorithm.

Theorem 3.3. Let C' be a nonempty closed conver subset of a real Hilbert space H.
Let S : C — C be a nonexpansive mapping, A : C — H be an a-inverse strongly
monotone mapping and B : H — H be a strongly positive bounded linear operator.
Let F : C x C — R be a bifunction which satisfies conditions (H1)-(H}). Suppose
F(SYNQ # 0. For given vg € C arbitrarily, let the sequence {z,} be generated
iteratively by

Zni1 = Butn + (1 — Bn) P [(1 —an(I+ uB))STT(xn - rAxn)} n>0, (3.19)

where {an} and {B,} are two sequences in [0, 1] satisfying the following conditions:

(C1) limy,—yoo oy = 0 and Y07y vy = 00;
(C2) 0 < liminf, o B, <limsup,,_, . Bn < 1.

Then the sequence {x,} converges strongly to z* which solves the minimization prob-
lem (1.5).
Proof. We divide our proof into the following steps

(1) [Jzntr — znf = 0.

(2) I1ST-(zy, — rAxy) — Tr(zy, — 7 Axy,)|| — 0.

(3) limsup,,_,.(({ + uB)z*, z* = T.(z, — rAz,)) <0.
4) z, — z*.

Proof of (1). Let z € F(S)NQ. Set u, = T,-(x,, — rAx,,) for all n > 0.
From Lemma 2.1, we get

lun — 2| = |Tr(xn —rAz,) — T(z — rAz)||
< lzn — 2l (3.20)

We write (3.19) as 411 = Bnxn + (1 — B)2, where

zn = Po[(I — an(I 4+ uB))Suy],n > 0.
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It follows that
IPAl(T = @1 (I + pB))Stnin] — Pol(l — an(I + ) Su,]|
I = an1(I + pB))Sunts = (I — an(l + pB))Sun||
1Stns1 — Stnll + nsr | (I + 1B)Stn s || + anll(1 + puB) Sy
[unt1 = tnll + ang1|(1 + pB) St ||
+an||(I 4 pB)Suy||. (3.21)
Note that the control conditions (C1) and (C2), we may assume, without loss of
generality, that o, < min{(1 + u|BJ||)~ !, 1+1/w}' Thus, we have

I = an(I+pB)|| <1—ap — appy. (3.22)
From (3.19) and (3.22), we obtain

1Bn(xn — 2) + (1 = Bn)(2zn — 2)|

lzn+1 — znl

INIACIA

[€nt1 = 2]

< Ballzn — 2+ (1 = Ba)llzn — 2|l
< Ballzn =zl + (1= Bl — an(l + pB))Sun, — 2|
< Ballzn =21+ (1 = Bu)l(I — an(I + uB))(Sun — 2)||
+(1 = Bn)on|(I + uB)z||
< Ballzn =2+ (1 = Bn)(L — an — py)|Jun — 2|
+(1 = Bn)an|[(I + pB)z||
< =0+ py)an@ = Bu)lllzn — 2] + (1 = Bn)an (I + nB)z|

= 1= (U m)on(t = Bl — 2]
1+ i)an(l = ) o (T + B

By induction, we have

I+ uB
Bl
I+ py

Hence, {z,} is bounded. Consequently, we deduce that {Az,} and {u,} are bounded.
We shall use M to denote the possible different constants appearing in the following
reasoning.

From Lemma 2.2, we have

e — 2| < max{flao — 2|

lunt1 —unll = NTr(znt1 — rAzn11) — To(zn — Az,
< N@nr — rAzng) — (w0 — rdz,)|
< Nonss — 2l (3.23)
By (3.21) and (3.23), we derive

ot = 2all = lnss = @all < (csa + ) M.
Therefore,
lim sup <||zn+1 I xn”) <0.

n—oo



228 YONGHONG YAO, YEONG-CHENG LIOU AND JEN-CHIH YAO

Hence by Lemma 2.3, we get
lim ||z, — z,] =0.
n—oo
Thus,
nlggo [Zn+1 — znll = HILH;O(l = Br)llzn — 20| = 0.
Proof of (2). We note that

lzn = Sunll = [|Pel(I = an(I + pB))Sun] — Po[Sun]|
an||(I + uB)Suy,| — 0.

N

Then we have
|z — Sunl| < [lon — 20l + |20 — Sua| = 0.

From (3.19), we have

|zt =2l = [Ba(zn — 2) + (1= Ba)(z0 — 2)|?
< ﬁonn_Z||2+(1_6n)||zn_z||2
< Bn”xn72”2+(1*BH)H(I*O@L(IJF.“B))SU”775”2
= Ballen =2l + (1 = B = an(l + uB))(Sun — 2)
—an (I + pB)z|?
< Ballen =22+ (1= Ba)[(1 = (1 + py)an) un — ||

+oml|(I + uB)||}?
Bullzn — 21 + (1 = Ba)lllun — 2]l + anl|(I + pB)|]?
Bullzn — 2l + (1 = Bu)lllun — 217 + o3 |(1 + uB)||?
+2an|un = 2[|[|(1 + pB)=]

< Ballzn — 21 + (1= Ba) lun — 2] + an M. (3.24)

From Lemma 2.2, we get

T, (2, — rAzy,) — Tr(z — rA2)|]?
(xn —rAzy) — (2 — 7"Az)||2
lzn — 2|2 + r(r — 20)|| Az, — Az|2. (3.25)
Substituting (3.25) into (3.24), we have
[2nt1 =217 < Ballen — 212 + (1= Bu)(lzn — 2)1* + r(r — 20)|| Az, — A2|?)
+a, M
= |lxn — z||2 + (1= Bp)r(r —2a)|| Az, — Az||2 + a, M.

ot — 21

INIA

It follows that

(1= Bo)r(r = 20)|| Az, — Az lzn = 212 = lzns1 — 2] + anM

IA A

(len = 2l + lznt1 — 2D l|@ns1 — zall
4o, M.
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Since liminf,, o0 (1 — Bn)7r(2a0 — 1) > 0, ||@y, — Tp41]] = 0 and «,, — 0, we derive
lim ||Az, — Az|| =0.
n—oo
From Lemma 2.1, we obtain
lun — 212 = | Tr(zn —rAz,) — T (2 — 1A2)|?
< (xn —rAzy) — (2 —1TA2),up — 2)
1
5 (I@n = rAzn) = (2 = PA2) |2 + un — 21
(@ = 2) = r(Awn — A2) = (un = 2)|?)

< 5 (w217 4+ ot = 2P N n — ) = (A — A2)]?)
= 5 (I — 2l + llum = 2l lln — wal?
+2r(xy — Up, Az, — A2) — r?|| Az, — Az||2>.
Thus, we deduce
i =212 <l — 2P~ ln — unl® + 2ren — [ Az — Az
< e — 2|2 = |20 — wall? + M| Az, — A2 (3.26)

From (3.24) and (3.26), we have
Zn1 — ZH2 < Ballzn - Z||2 + (1= Bn)(l|zn — Z||2 — lzn — UnH2
+M|| Az, — Az||) + an M
lzn = 201* = (1= Bo)llzn — unll® + M (|| Azn — A2l| + o).

IN

Then we have
(1= Bu)llzn — Un||2 lzn — 3”2 — lTnt1 — 2”2 + M(|| Az, — Az + an)
(lzn = 2|l + [Znt1 = 2[) X (|21 — 2nl|

+M(||Azy, — Az|| + ).

<
<

Since ||Az, — Az|| = 0, ||z, — Zny1]] = 0 and «,, — 0, we deduce

lim ||z, — u,|| = 0.
n—oo
Note that
[Sun — un | < [|Sun — @nll + 20 — unl|-
Therefore,

|Sun — un|| — 0. (3.27)

Proof of (3). Now we show that limsup,,_,.. (I + puB)z*, z* — u,) < 0, where z* is a
solution of (OP). To show this, we can choose a subsequence {uy,} of {u,} such that

lim (I 4+ pB)z*, 2" — up,) = limsup(({ + uB)z*, 2" — uy,).
1—> 00 n—oo
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Since {uy,} is bounded, there exists a subsequence {uy,;} of {u,,} which converges
weakly to u. Without loss of generality, we can assume that u,, — u. By the same
argument as that of Theorem 3.1, we can deduce that v € F(S) N Q. Hence, from
Lemma 2.5, we have
limsup(({ + puB)z*, 2" —u,) = lim (I + uB)z", 2" —uy,)
n— 00 1—00

= ((I+pB)z*, 2" —u) <0.
This together with ||Su, — u,|| — 0 implies that
limsup(({ + pB)z*, 2" — Su,) = limsup((I + pB)z*,z* — u,) < 0.
n—oo

n—oo

Proof of (4). From (3.19), we have

Zns1 =217 < Ballzn — 212 + (1 = Ba)ll2n — 2"

< Ballzn = 2* 12+ (1 = BT = an(I + pB))(Su, — 2¥)
—an (I + pB)z*|?

= Ballen — 2P+ (1= Bl — an(I + uB))(Sun — )2
+a2 ||(I + uB)z*||* = 20, (S, — 2%, (I + uB)z*)
+202 (I 4+ puB)(Su,, — 2*), (I + uB)z*)

< Ballza = 2* 12+ (1= B)[(1 = (1 + py)an) [z, — 2%
+op [(1 + uB)2" || + 200 (2" = Sun, (I + pB)z")
+203 (1 + uB)|[[[Sun — 2* || (I + pB) ="

< 1= (1= B+ py)an]llz, — 2*)?

+a2 M + 20, (2% — Stup, (I + uB)z*)
= (1—7)llzn — Z*”2 + 0nYn,
where v, = (1 — 8,)(1 + py)a, and
2 an, M

O = T By LB =S+ g

It is easy to see that >~ | v, = oo and limsup,,_, ., §,, < 0. Hence, by Lemma 2.6,
the sequence {z,} converges strongly to z*. This completes the proof. U

From Theorem 3.3, we deduce immediately the following result.

Theorem 3.4. Let C' be a nonempty closed convexr subset of a real Hilbert space H.
Let S : C — C be a nonexpansive mapping and A : C — H be an a-inverse strongly
monotone mapping. Let F : C x C — R be a bifunction which satisfies conditions
(H1)-(H4). Suppose F(S)NQ # 0. For given xg € C arbitrarily, let the sequence
{zn} be generated iteratively by

Tn+1 = ann + (1 - ﬂn)PC [(1 - an)STT'(mn - TAxn):|7n >0, (328)

where {a,} and {B,} are two sequences in [0, 1] satisfying the following conditions:
(C1) limyp o0 0y = 0 and Y7 5 o, = 00;
(C2) 0 < liminf, o Bn <limsup,,_, . Bn < 1.
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Then the sequence {x,} converges strongly to z* which solves the minimization prob-

lem (1.4).

Remark 3.5. We would like to point out that our algorithms (3.1) and (3.19) are
different from those in the literature. The algorithms (3.2) and (3.28) are also different
from those in the literature including algorithms (1.2) and (1.3).
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