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Kogălniceanu 1, 400084, Cluj-Napoca, Romania

E-mail: anicolae@math.ubbcluj.ro

Abstract. This paper presents some fixed point theorems for multi-valued contraction mappings
that generalize recent results proved by Y. Feng and S. Liu [Fixed point theorems for multi-valued

contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317(2006),

103-112], D. Klim and D. Wardowski [Fixed point theorems for set-valued contractions in complete

metric spaces, J. Math. Anal. Appl., 334(2007), 132-139] or L. Ćirić [Fixed point theorems for
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1. Introduction and preliminaries

Let (X, d) be a metric space. We consider the following families of sets

P(X) = {A ⊆ X : A is nonempty} ,

Pcl(X) = {A ⊆ X : A is nonempty and closed} ,
Pcp(X) = {A ⊆ X : A is nonempty and compact} .

A multi-valued mapping T : X → P(X) is said to have a fixed point if there exists
x ∈ X such that x ∈ Tx.

In [7], Nadler proved a well-known fixed point result which states that every multi-
valued contraction defined on a complete metric space with bounded and closed values
has a fixed point. This result was extended in various directions. Such generalizations
include the ones given in [6, 8, 9, 10]. Another more recent extension of Nadler’s [7]
result was proved by Feng and Liu in [3]. Before stating the result we recall the
following notions.

A function f : X → R is lower semi-continuous if for all x ∈ X and for all (xn) ⊆ X
with xn → x we have that f(x) ≤ lim inf

n→∞
f(xn).

We define the distance of a point x ∈ X to A ⊆ X by

D(x,A) = inf{d(x, a) : a ∈ A}.

145



146 ADRIANA NICOLAE

Theorem 1.1. (Feng, Liu [3]) Let (X, d) be a complete metric space, T : X → Pcl(X)
and f : X → R, f(x) = D(x, Tx) lower semi-continuous. If there exist b, c ∈ (0, 1)
with c < b such that for any x ∈ X there is y ∈ Tx satisfying

bd(x, y) ≤ f(x) and f(y) ≤ cd(x, y),

then T has a fixed point.

Other results of this type were obtained by Klim and Wardowski in [5].

Theorem 1.2. (Klim, Wardowski [5]) Let (X, d) be a complete metric space, T : X →
Pcl(X) and f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there exist
b ∈ (0, 1) and a function ϕ : [0,∞)→ [0, b) satisfying

lim sup
r→t+

ϕ(r) < b for each t ∈ [0,∞)

and for any x ∈ X there is y ∈ Tx such that

bd(x, y) ≤ f(x) and f(y) ≤ ϕ(d(x, y))d(x, y).

Then T has a fixed point.

Theorem 1.3. (Klim, Wardowski [5]) Let (X, d) be a complete metric space, T : X →
Pcp(X) and f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there is a
function ϕ : [0,∞)→ [0, 1) satisfying

lim sup
r→t+

ϕ(r) < 1 for each t ∈ [0,∞)

and is such that for any x ∈ X there is y ∈ Tx such that

d(x, y) = f(x) and f(y) ≤ ϕ(d(x, y))d(x, y).

Then T has a fixed point.

Motivated by these results, Ćirić proved the following theorems in [1, 2].

Theorem 1.4. (Ćirić [2]) Let (X, d) be a complete metric space, T : X → Pcl(X)
and f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there is a function
ϕ : [0,∞)→ [a, 1), a ∈ (0, 1), satisfying

lim sup
r→t+

ϕ(r) < 1 for each t ∈ [0,∞)

and is such that for any x ∈ X there is y ∈ Tx such that√
ϕ(f(x))d(x, y) ≤ f(x) and f(y) ≤ ϕ(f(x))d(x, y).

Then T has a fixed point.

Theorem 1.5. (Ćirić [2]) Let (X, d) be a complete metric space, T : X → Pcl(X)
and f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there is a function
ϕ : [0,∞)→ [a, 1), a ∈ (0, 1), satisfying

lim sup
r→t+

ϕ(r) < 1 for each t ∈ [0,∞)

and is such that for any x ∈ X there is y ∈ Tx such that√
ϕ(d(x, y))d(x, y) ≤ f(x) and f(y) ≤ ϕ(d(x, y))d(x, y).
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Then T has a fixed point.

Theorem 1.6. (Ćirić [1]) Let (X, d) be a complete metric space, T : X → Pcl(X)
and f : X → R, f(x) = D(x, Tx) lower semi-continuous. If there exist the functions
ϕ : [0,∞)→ (0, 1) and η : [0,∞)→ [b, 1), b > 0 such that η is non-decreasing,

ϕ(t) < η(t), lim sup
r→t+

ϕ(r) < lim sup
r→t+

η(r) for each t ∈ [0,∞)

and for any x ∈ X there is y ∈ Tx satisfying

η(d(x, y))d(x, y) ≤ f(x) and f(y) ≤ ϕ(d(x, y))d(x, y),

then T has a fixed point.

The purpose of this paper is to present some results that aim to extend or rewrite
conditions in the very recent theorems due to Ćirić [1, 2].

2. Fixed point theorems for multi-valued mappings

Analyzing Theorem 1.1, a first natural question which arises is whether we can
substitute the existence of b, c ∈ (0, 1) with the existence of a single constant b ∈ (0, 1)
such that for any x ∈ X there is y ∈ Tx with the property

D(y, Ty) ≤ bd(x, y) ≤ D(x, Tx), (2.1)

and the conclusion of the theorem still stands. The answer to this problem is negative
as the following example shows.

Example 2.1. Let X = [1,∞) with the usual metric and let T : X → Pcl(X) be
defined by

Tx =

{
x+ 2 +

1

x
, x+ 4 +

2

x
− 1

x2

}
.

Then there exists b ∈ (0, 1) such that for every x ∈ X there is y ∈ Tx satisfying (2.1),
but T is fixed point free.

Proof. Obviously, X is complete. The mapping f : X → R,

f(x) = D(x, Tx) = 2 +
1

x
,

is lower semi-continuous and T has no fixed points.
Let b = 1

2 . For x ∈ [1,∞) take y = x+ 4 + 2
x −

1
x2 . Then

f(y) = 2 +
x2

x3 + 4x2 + 2x− 1
and d(x, y) = 4 +

2

x
− 1

x2
.

It can be easily seen that f(y) < bd(x, y) < f(x) proving that the inequalities in (2.1)
hold even strictly. �

Now we move our attention to Theorem 1.4 due to Ćirić [2] which requires a
condition involving the square root of ϕ. As in Theorem 1.6 we can formulate this
condition in a more general way.
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Theorem 2.2. Let (X, d) be a complete metric space, T : X → Pcl(X) and
f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there exist the func-
tions ϕ : [0,∞)→ [0, 1), η : [0,∞)→ [b, 1], b ∈ (0, 1) such that

ϕ(t) < η(t), lim sup
r→t+

ϕ(r)

η(r)
< 1 for all t ∈ [0,∞),

and for any x ∈ X there is y ∈ Tx satisfying

η(f(x))d(x, y) ≤ f(x) (2.2)

and

f(y) ≤ ϕ(f(x))d(x, y). (2.3)

Then T has a fixed point.

Proof. The proof follows similar patterns as in Theorem 1.4. Let x0 ∈ X. We can
choose x1 ∈ Tx0 such that

η(f(x0))d(x0, x1) ≤ f(x0) and f(x1) ≤ ϕ(f(x0))d(x0, x1).

Then,

f(x1) ≤ ϕ(f(x0))

η(f(x0))
η(f(x0))d(x0, x1) ≤ ϕ(f(x0))

η(f(x0))
f(x0).

In this manner we can build the sequence (xn) ⊆ X such that for n ∈ N, xn+1 ∈ Txn,

η(f(xn))d(xn, xn+1) ≤ f(xn) (2.4)

and

f(xn+1) ≤ ϕ(f(xn))

η(f(xn))
f(xn). (2.5)

From (2.5) it follows that (f(xn)) is a decreasing sequence of positive real numbers,
so there exists δ ≥ 0 such that lim

n→∞
f(xn) = δ.

Let β = lim sup
n→∞

ϕ (f(xn))

η (f(xn))
< 1. Then, for q = β+1

2 < 1, there exists n0 ∈ N such that

ϕ (f(xn))

η (f(xn))
< q for all n ≥ n0.

Thus,

f(xn+1) ≤ qn−n0+1f(xn0) for all n ≥ n0 (2.6)

and so

d(xn, xn+1) ≤ 1

η (f(xn))
f(xn) ≤ 1

b
qn−n0f(xn0

) for all n ≥ n0.

Hence, (xn) is Cauchy so there exists z ∈ X such that lim
n→∞

xn = z. Letting n → ∞
in (2.6) we obtain that δ = 0. The lower semi-continuity of f yields that 0 ≤ f(z) ≤
lim inf
n→∞

f(xn) = 0. Thus, D(z, Tz) = 0. Since Tz is closed, z ∈ Tz which completes

the proof. �

Next we give an example of a mapping which satisfies the hypotheses of Theorem
2.2 but does not fulfill the conditions of Theorem 1.4.
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Example 2.3. Let X = [0, 10] with the usual metric and consider the mapping
T : X → Pcl(X),

Tx =

{
{3, 4} if x = 6,{
x
2

}
if x ∈ [0, 10] \ {6}.

Then Theorem 2.2 can be applied for T , but the hypotheses in Theorem 1.4 are not
fulfilled.

Proof. The function

f(x) = D(x, Tx) =

{
2 if x = 6,
x
2 if x ∈ [0, 10] \ {6}

is lower semi-continuous. We now prove that T does not satisfy the conditions of
Theorem 1.4. Suppose there is a ∈ (0, 1) and there exists a function ϕ : [0,∞)→ [a, 1)
such that for any x ∈ [0, 10] there is y ∈ Tx satisfying√

ϕ(f(x))d(x, y) ≤ f(x) (2.7)

and

f(y) ≤ ϕ(f(x))d(x, y). (2.8)

For x = 6, T6 = {3, 4}, f(6) = 2.
If y = 3, f(3) = 3

2 . Relation (2.8) yields ϕ(2) ≥ 1
2 while (2.7) requests ϕ(2) ≤ 4

9 which
is a contradiction.
If y = 4, f(4) = 2 and (2.8) implies ϕ(2) ≥ 1 which is false. Therefore, we cannot
apply Theorem 1.4 for T .
However, it is a simple exercise to show that for ϕ(x) = 1

2 and η(x) = 2
3 for every

x ≥ 0, the mapping T satisfies the hypotheses of Theorem 2.2. �

Theorem 1.5 also makes use of the square root of ϕ while Theorem 1.6 imposes
a monotonicity condition on η. We rewrite the original assumptions to obtain the
following result.

Theorem 2.4. Let (X, d) be a complete metric space, T : X → Pcl(X) and
f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there exist the func-
tions ϕ : [0,∞)→ [0, 1), η : [0,∞)→ [b, 1], b ∈ (0, 1) such that

ϕ(t) < η(t) for all t ∈ [0,∞), (2.9)

lim sup
r→t

ϕ(r)

η(r)
< 1 for all t ∈ [0,∞), (2.10)

and for any x ∈ X there is y ∈ Tx satisfying

η(d(x, y))d(x, y) ≤ f(x) (2.11)

and

f(y) ≤ ϕ(d(x, y))d(x, y). (2.12)

Then T has a fixed point.
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Proof. As in the proof of Theorem 2.2 we can build a sequence (xn) ⊆ X such that
for every n ∈ N, xn+1 ∈ Txn,

η(d(xn, xn+1))d(xn, xn+1) ≤ f(xn) (2.13)

and

f(xn+1) ≤ ϕ(d(xn, xn+1))

η(d(xn, xn+1))
f(xn). (2.14)

Relations (2.9) and (2.14) yield that the sequence (f(xn)) is decreasing. Because it
is also bounded below by 0 it follows that it converges to some δ ≥ 0. Suppose δ > 0.
Then,

f(xn+1)

f(xn)
≤ ϕ(d(xn, xn+1))

η(d(xn, xn+1))
< 1 for any n ∈ N.

Letting here n→∞ we obtain

lim
n→∞

ϕ

η
(d(xn, xn+1)) = 1. (2.15)

Using (2.13) we have that

δ ≤ f(xn) ≤ d(xn, xn+1) ≤ f(xn)

b
≤ f(x0)

b
for any n ∈ N. (2.16)

Hence, the sequence (d(xn, xn+1)) is bounded. Therefore, it contains a convergent
subsequence. But then condition (2.10) contradicts (2.15). Thus, δ = 0. Because
of (2.16) we have that lim

n→∞
d(xn, xn+1) = 0. Now we can go on as in the proof of

Theorem 2.2 to finally show that T has a fixed point. �

Another approach worth investigating would be to try to generalize conditions
(2.2), (2.3) and (2.11), (2.12) respectively even further. In this direction we state the
next results.

Theorem 2.5. Let (X, d) be a complete metric space, T : X → Pcl(X) and
f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there exist ϕ : [0,∞)→
[0,∞), η : [0,∞)→ (0,∞) such that ϕ(t) < η(t) for all t > 0, ϕ is non-decreasing,

lim sup
r→t+

ϕ(r)

η(r)
< 1 for all t ∈ [0,∞), (2.17)

and for any x ∈ X there is y ∈ Tx satisfying

η(d(x, y)) ≤ f(x) (2.18)

and

f(y) ≤ ϕ(f(x)). (2.19)

Then T has a fixed point.

Proof. Let x0 ∈ X. We can choose x1 ∈ Tx0 such that

η(d(x0, x1)) ≤ f(x0) and f(x1) ≤ ϕ(f(x0)).

In this way we build the sequence (xn) ⊆ X such that for n ∈ N, xn+1 ∈ Txn,

η(d(xn, xn+1)) ≤ f(xn) (2.20)
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and
f(xn+1) ≤ ϕ(f(xn)). (2.21)

Since

ϕ (d(xn+1, xn+2)) <η (d(xn+1, xn+2)) ≤ f(xn+1) ≤ ϕ (f(xn))

≤ϕ (d(xn, xn+1)) ,

it follows that ϕ (d(xn+1, xn+2)) < ϕ (d(xn, xn+1)). Because ϕ is non-decreasing, the
sequence (d(xn, xn+1)) is decreasing. Because it is also bounded below, it converges
to some positive value. Using (2.20) and (2.21) we have that

f(xn+1) ≤ ϕ (d(xn, xn+1))

η (d(xn, xn+1))
f(xn).

Because of (2.17) there exist q ∈ (0, 1) and n0 ∈ N such that

ϕ (d(xn, xn+1))

η (d(xn, xn+1))
< q for all n ≥ n0.

Thus,
f(xn+1) ≤ qn−n0+1f(xn0

) for all n ≥ n0.
For n ≥ n0 + 1,

ϕ (d(xn, xn+1)) <η (d(xn, xn+1)) ≤ f(xn) ≤ ϕ (f(xn−1))

≤ϕ
(
qn−n0−1f(xn0)

)
.

Since ϕ is non-decreasing, d(xn, xn+1) ≤ qn−n0−1f(xn0
). It is easy to see that (xn) is

a Cauchy sequence and its limit is a fixed point for T . �

Theorem 2.6. Let (X, d) be a complete metric space, T : X → Pcl(X) and
f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there exist ϕ : [0,∞)→
[0,∞), η : [0,∞)→ (0,∞) such that ϕ(t) < η(t) for all t > 0, η is non-decreasing,

lim sup
r→t+

ϕ(r)

η(r)
< 1 for all t ∈ [0,∞),

and for any x ∈ X there is y ∈ Tx satisfying

η(d(x, y)) ≤ f(x) and f(y) ≤ ϕ(f(x)).

Then T has a fixed point.

Proof. We build the sequence (xn) ⊆ X as in the proof of Theorem 2.5. Since η is
non-decreasing we obtain that for n ∈ N,

f(xn+1) ≤ ϕ(f(xn))

η(f(xn))
f(xn).

Hence, (f(xn)) is decreasing. Because it is also bounded below, it converges to some
positive value. Again there exist q ∈ (0, 1) and n0 ∈ N such that

f(xn+1) ≤ qn−n0+1f(xn0
) for all n ≥ n0.

For n ≥ n0 + 1,

η (d(xn, xn+1)) ≤ f(xn) ≤ ϕ (f(xn−1)) < η (f(xn−1)) ≤ η
(
qn−n0−1f(xn0)

)
.
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But η is non-decreasing, so d(xn, xn+1) ≤ qn−n0−1f(xn0). As above we can show that
T has a fixed point. �

In the sequel we prove two related theorems.

Theorem 2.7. Let (X, d) be a complete metric space, T : X → Pcl(X) and
f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there exist ϕ : [0,∞)→
[0,∞), η : [0,∞)→ (0,∞) such that ϕ(t) < η(t) ≤ t for all t > 0, ϕ is continuous and
non-decreasing,

lim sup
r→0+

ϕ(r)

η(r)
< 1,

and for any x ∈ X there is y ∈ Tx satisfying

η(d(x, y)) ≤ f(x) and f(y) ≤ ϕ(f(x)).

Then T has a fixed point.

Proof. Again we build the sequence (xn) with xn+1 ∈ Txn such that (2.20) and
(2.21) hold. We can assume that for n ∈ N, d(xn, xn+1) > 0 and f(xn) > 0 because
otherwise we obtain a fixed point.
Let t > 0. Because 0 ≤ ϕ(t) < t, (ϕn(t)) is a decreasing sequence which is bounded
below by 0. Suppose its limit is ε > 0. Then,

ε = lim
n→∞

ϕn(t) = ϕ
(

lim
n→∞

ϕn−1(t)
)

= ϕ(ε) < ε

which is a contradiction. Therefore, lim
n→∞

ϕn(t) = 0 for all t > 0. From (2.21) it

follows that for n ∈ N,

f(xn+1) ≤ ϕ (f(xn)) ≤ . . . ≤ ϕn+1 (f(x0)) .

Now it is clear that lim
n→∞

f(xn) = 0.

Since ϕ is non-decreasing and

ϕ (d(xn+1, xn+2)) <η (d(xn+1, xn+2)) ≤ f(xn+1) ≤ ϕ (f(xn))

≤ϕ (d(xn, xn+1)) ,

the sequence (d(xn, xn+1)) is decreasing. Assume α > 0 is its limit. Letting n → ∞
in ϕ (d(xn, xn+1)) < f(xn) we obtain that ϕ(α) = 0. But since lim

n→∞
f(xn) = 0,

there exists n1 ∈ N such that f(xn1) < α. Then ϕ (f(xn1)) = 0 which means that
f(xn1+1) = 0. In this way we obtain a fixed point. Therefore, we may consider
lim
n→∞

d(xn, xn+1) = 0. Continuing as in the proof of Theorem 2.5 one can show that

T is not fixed point free. �

Using a similar argument as before we can prove the following result.

Theorem 2.8. Let (X, d) be a complete metric space, T : X → Pcl(X) and
f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there exist ϕ : [0,∞)→
[0,∞), η : [0,∞)→ (0,∞) such that ϕ(t) < η(t) < t for all t > 0, η is continuous and
non-decreasing,

lim sup
r→0+

ϕ(r)

η(r)
< 1,
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and for any x ∈ X there is y ∈ Tx satisfying

η(d(x, y)) ≤ f(x) and f(y) ≤ ϕ(f(x)).

Then T has a fixed point.

Proof. Using the fact that lim
n→∞

ηn(t) = 0 for every t ≥ 0 and

f(xn+1) ≤ϕ (f(xn)) < η (f(xn)) ≤ η (ϕ (f(xn−1))) ≤ η2 (f(xn−1))

≤ . . . ≤ ηn+1 (f(x0)) ,

we have that lim
n→∞

f(xn) = 0. As in Theorem 2.6 we can prove that T has a fixed

point. �

In the above results it would be interesting to replace condition (2.19) by f(y) ≤
ϕ (d(x, y)) . Pursuing this idea we can give the following two theorems.

Theorem 2.9. Let (X, d) be a complete metric space, T : X → Pcl(X) and
f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there exist ϕ : [0,∞)→
[0,∞), η : [0,∞)→ (0,∞) such that ϕ(t) < η(t) for all t > 0, ϕ is non-decreasing and
subadditive,

lim sup
r→t+

ϕ(r)

η(r)
< 1 for every t ∈ [0,∞),

and for any x ∈ X there is y ∈ Tx satisfying

η(d(x, y)) ≤ f(x) and f(y) ≤ ϕ(d(x, y)).

Then T has a fixed point.

Proof. Similarly as before we can build the sequence (xn) ⊆ X such that for n ∈ N,
xn+1 ∈ Txn,

η(d(xn, xn+1)) ≤ f(xn) and f(xn+1) ≤ ϕ(d(xn, xn+1)).

The sequence (d(xn, xn+1)) is decreasing since ϕ is non-decreasing and

ϕ (d(xn+1, xn+2)) < η (d(xn+1, xn+2)) ≤ f(xn+1) ≤ ϕ (d(xn, xn+1)) .

Thus, it converges to some positive value. Then there exist q ∈ (0, 1) and n0 ∈ N
such that

f(xn+1) ≤ qn−n0+1f(xn0
) for all n ≥ n0.

For n ≥ n0,

ϕ (d(xn, xn+1)) < η (d(xn, xn+1)) ≤ f(xn) ≤ qn−n0f(xn0).

Then for n ≥ n0 and p ∈ N,

ϕ (d(xn, xn+p)) ≤ϕ

(
p−1∑
k=0

d(xn+k, xn+k+1)

)
≤

p−1∑
k=0

ϕ (d(xn+k, xn+k+1))

≤
p−1∑
k=0

qn−n0+kf(xn0) ≤ qn−n0

1− q
f(xn0).
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Since we may assume that ϕ(t) > 0 for t > 0 (otherwise ϕ(t) = 0 for every t ≥ 0 and
the existence of a fixed point is immediate) we can prove by contradiction that (xn)
is Cauchy and its limit is a fixed point for T . �

In the same manner we can prove the next result.

Theorem 2.10. Let (X, d) be a complete metric space, T : X → Pcl(X) and
f : X → R, f(x) = D(x, Tx) lower semi-continuous. Suppose there exist ϕ : [0,∞)→
[0,∞), η : [0,∞)→ (0,∞) such that ϕ(t) < η(t) for all t > 0, η is non-decreasing and
subadditive,

lim sup
r→t+

ϕ(r)

η(r)
< 1 for every t ∈ [0,∞),

and for any x ∈ X there is y ∈ Tx satisfying

η(d(x, y)) ≤ f(x) and f(y) ≤ ϕ(d(x, y)).

Then T has a fixed point.

Remark 2.11. For further developments, we can consider the framework given in
[4].
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