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1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty subset of H. Then a
mapping T : C' — H is said to be nonezxpansive if

[Tz — Tyl < [l —yl

for all z,y € C. The set of fixed points of T is denoted by F'(T). From Baillon [2] we
know the following first nonlinear ergodic theorem in a Hilbert space.

Theorem 1.1. Let C' be a nonempty closed convex subset of H and let T : C' — C
be a nonexpansive mapping with F(T) # 0. Then, for any x € C,
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converges weakly to an element z € F(T).

The following strong convergence theorem of Halpern’s type [7] was proved by
Wittmann [26]; see also [19].

Theorem 1.2. Let C' be a nonempty closed convex subset of H and let T : C — C
be a nonexpansive mapping with F(T) # 0. For any x1 = x € C, define a sequence
{zp} in C by

Tnt1 = @t + (1 — )Tz, Vn=12 .,
where {a,} C [0,1] satisfies o, — 0, Y07y, = 00 and Yoo |y — pp]| < 00
Then {x,} converges strongy to a fized point of T.

An important example of nonexpansive mappings in a Hilbert space is a firmly
nonexpansive mapping. Let C' be a nonempty subset of H. A mapping F': C' — H
is said to be firmly nonexpansive if

|Fa — Fy|* < (x -y, Fa — Fy)

for all z,y € C; see, for instance, Browder [4] and Goebel and Kirk [6]. It is known
that a firmly nonexpansive mapping F' can be deduced from an equilibrium problem
in a Hilbert space; see, for instance, [3] and [5]. Recently, Kohsaka and Takahashi [14],
and Takahashi [21] introduced the following nonlinear mappings which are deduced
from a firmly nonexpansive mapping in a Hilbert space. A mapping T : C' — H is
called nonspreading [14] if

2|Tx - Ty|* < | Tx — yl* + 1Ty — «||?
for all z,y € C. A mapping T : C — H is called hybrid [21] if
3Tz — Tyl* < ||z — ylf* + | Tz — y||* + | Ty — ||
for all z,y € C. They proved fixed point theorems for such mappings; see also
Kohsaka and Takahashi [13] and Iemoto and Takahashi [10]. Very recently, Kocourek,

Takahashi and Yao [12] introduced a broad class of mappings T : C — H called
generalized hybrid such that for some «, 8 € R,

alTe = Tyl* + (1 = a)|la = Tyl]* < Bl|Tz — y[* + (1 = B)||= — y|?

for all z,y € C'. Such a class contains the classes of nonexpansive mappings, non-
spreading mappings, and hybrid mappings in a Hilbert space. Further, they defined a
more braod class of nonlinear mappings than the class of generalized hybrid mappings
in a Hilbert space. Such a class is called a class of super hybrid mappings. A gen-
eralized hybrid mapping with a fixed point is quasi-nonexpansive. However, a super
hybrid mapping is not quasi-nonexpansive generally even if it has a fixed point.

In this paper, we first introduce a class of nonlinear mappings called extended
hybrid in a Hilbert space containing the class of generalized hybrid mappings. The
class is different from the class of super hybrid mappings which was defined by Ko-
courek, Takahashi and Yao [12]. We prove a fixed point theorem for generalized hybrid
nonself-mapping in a Hilbert space. Next, we prove a nonlinear ergodic theorem of
Baillon’s type for super hybrid mappings in a Hilbert space. Finally, we deal with
two strong convergence theorems of Halpern’s type for these nonlinear mappings in a
Hilbert space.
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2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product (-,- ) and
norm || - ||, respectively. We denote the strong convergence and the weak convergence
of {z,} to z € H by z, — z and z, — =z, respectively. From [20], we know the
following basic equality: For x,y,u,v € H and A € R, we have

Az + (1= Nyl = Az + (1= Nyl = A1 = N)|z —y]|*. (2.1)
Further, we know that for x,y,u,v € H
2(z —y,u—v) = [l — o> + |y — ul® = [l —ul® = [ly — o> (2.2)

From (2.2), we have also the following equality.

lz =y +u—vl* = llo = yl* + u—v|* + 2 (2 — y,u—v)
= llo = yll* + llu = vl* + llo = ol* + lly — ull* = o = ul* = lly = v]%. (2.3)

Let C be a nonempty closed convex subset of H and let T' be a mapping from
C into itself. Then, we denote by F(T) the set of fixed points of T. A mapping
T : C — H is said to be nonezpansive if ||[Tx — Ty|| < ||z — y|| for all z,y € C. A
mapping T : C — H with F(T) # () is called quasi-nonezpansive if ||z —Ty|| < ||z —yl|
for all x € F(T) and y € C. It is well-known that the set F'(T) of fixed points of a
quasi-nonexpansive mapping 7' is closed and convex; see Ito and Takahashi [11]. Let
C be a nonempty closed convex subset of H and x € H. Then, we know that there
exists a unique nearest point z € C such that ||z — z| = infycc ||z — y||. We denote
such a correspondence by z = Pox. Pc is called the metric projection of H onto C.
It is known that Po is nonexpansive and

(x — Pcx,Pcx —u) >0
for all x € H and u € C. Further, we know that
|Pox — Pey||* < (x —y, Pex — Poy) (2.4)

for all z,y € H; see [20] for more details. The following lemma was proved by
Takahashi and Toyoda [23].

Lemma 2.1. Let D be a nonempty closed convex subset of a real Hilbert space H.
Let P be the metric projection of H onto D and let {x,} be a sequence in H. If
|ent1 — ul] < ||xn —ul| for allw € D and n € N, then {Pz,} converges strongly.

Let C be a nonempty subset of H. Then, a nonself-mapping T : C — H is called
generalized hybrid [12] if there are «, 5 € R such that

a|Tz —Ty|* + (1 - )|z — Ty||* < BTz — ylI* + (1 - B)llz -yl (2.5)

for all z,y € C. We call such a mapping an («, §)-generalized hybrid mapping. We
observe that the mapping above covers several well-known mappings. For example, an
(a, B)-generalized hybrid mapping is nonexpansive for « = 1 and 8 = 0, nonspreading
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for « = 2 and f = 1, and hybrid for a = % and 8 = % We can also show that if
x = Tx, then for any y € C,
allz = Ty|* + (1 = a)llz = Ty|* < Bllz — y[I* + (1 = B)ll= — y|”

and hence ||z —Ty|| < |Jx—yl||. This means that an (¢, 8)-generalized hybrid mapping
with a fixed point is quasi-nonexpansive.

Let C be a nonempty subset of a Hilbert space H. A mapping S : C — H is called
super hybrid [12, 25] if there are «, 8, € R such that

af| Sz — Syl + (1 —a+7)|z — Sy||* <
(B+(B—a))Sz—yl* + (1 -5~ (B—a—1)y)|z -yl
+ (= B)ylle — Szl + ]y — Syl* (2:6)
for all z,y € C. We call such a mapping an («, 8, 7)-super hybrid mapping. An (a,
B, 0)-super hybrid mapping is («, §)-generalized hybrid. So, the class of super hybrid
mappings contains the class of generalized hybrid mappings. Let us consider a super
hybrid mapping S with a =1, 8 =0 and v = 1. Then, we have
1Sz — Syl? + l|lz — Sy||* < —[[Sz — y[|* + 3||lz — y|* + [l — Sz||* + ||y — Sy|?
for all z,y € C. This is equivalent to
|5z — Syl + 2(x — y, Sz — Sy) < 3|z —y|?

for all z,y € C. In the case of H =R, consider Sz =2cos x —z for all x € [-F, T].
Then, we have

|Sz — Sy|? + 2(x —y, Sz — Sy)

=|2cos x —x — (2cos y —y)[* +2(x —y,2cos x —x — (2cos y —y))

=4(cos = —cos y)? —2(x —y,2cos x —2cos y) + (z —y)?

—(x —y)* +2(x —y,2cos = —2cos y)
<4z —y)? = (z —y)?
=3(z—y)*

and hence S is super hybrid. However, S is not quasi-nonexpansive. Further, we have
that

1 1
Tr = 5(2003 xfx)+§x:cos x

and hence T is a nonexpansive mapping with a fixed point. The following theorem
was proved in [25] and [12].

Theorem 2.2. Let C be a nonempty subset of a Hilbert space H and let a, 5 and
v be real numbers with v #= —1. Let S and T be mappings of C into H such that
T = ﬁS + ﬁ]. Then, S is («, B, v)-super hybrid if and only if T is («, B)-
generalized hybrid. In this case, F(S) = F(T). In particular, let C' be a nonempty
closed and convex subset of H and let o, B and v be real numbers with v > 0. If a
mapping S : C — C is («, B8, v)-super hybrid, then the mapping T = ﬁS—F ﬁ[ 18
an («, B)-generalized hybrid mapping of C into itself.



WEAK AND STRONG MEAN CONVERGENCE THEOREMS 117

Kocourek, Takahashi and Yao [12] also proved the following fixed point theorem
for super hybrid mappings in a Hilbert space.

Theorem 2.3. Let C be a nonempty bounded closed convex subset of a Hilbert space
H and let «, B and v be real numbers with v > 0. Let S : C — C be an («, B,
v )-super hybrid mapping. Then, S has a fixed point in C. In particular, if S : C — C
be an (o, B)-generalized hybrid mapping, then S has a fized point in C.

To prove one of our main results, we need the following lemma [1]:

Lemma 2.4. Let {s,} be a sequence of nonnegative real numbers, let {a,} be a
sequence of [0,1] with > ", a, = 00, let {B,} be a sequence of nonnegative real
numbers with Y > B, < oo, and let {v,} be a sequence of real numbers with
limsup,,_, . n < 0. Suppose that

8n+1 S (]- - an)sn + an’Yn + Bn

foralln=1,2,.... Then lim, s s, =0.

3. FIXED POINT THEOREM FOR NON-SELF MAPPINGS

In this section, we prove a fixed point theorem for generalized hybrid nonself-
mappings in a Hilbert space. Before proving it, we need the following lemma.

Lemma 3.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let o
and 8 be in R. Then, a nonself-mapping T : C — H is («, )-generalized hybrid if
and only if it satisfies that

1Tz — Tyll? < (a - Bz -y
+2(a—1){z — Ta,y - Ty) — (@ — B - 1lly - Ta?
forall x,y € C.
Proof. We have that for all z,y € C,
1Tz = Ty|* < (a = B)|la — yl?
+2(a—1)(e —Tz,y = Ty) — (@ =~ 1)y — Tz’
= [|ITe = Ty||> < (1= B)llz =yl + (o = 1)[Ja — y|?
+ (= 1(z =Tyl +ly = Tz|* - [lz — y|* — || Tz — Ty|*)
+Blly — Tl — (a = 1y — Tz||?
= a|Tz - Tyl + (1 - a) |z - Ty|?
< BTz —yl* + 1 = B)llz - y*.

Using Lemma 3.1, we have the following result.

Lemma 3.2. Let H be a Hilbert space and let C be a nonempty bounded subset of
H. If a nonself-mapping T : C — H is generalized hybrid, then T'C is bounded.
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Proof. Since T : C — H is a generalized hybrid mapping, there are «, 8 € R such
that

allTz = Tyl? + (1= o)l — Tyl < BT —y|2 + (1 = Bz —yl2  (3.1)
for all z,y € C. We have from Lemma 3.1 that
IT2 — Tyl < (o — Bz — g
+2(a — 1)z — Ta,y — Ty) — (@ — B — Dy — Tz
for all z,y € C. Fix z € C'. Then, we have that for any y € C,
1Tz =Tyl < (a = B)llz -yl
+2(a—1){z=Tzy - Ty) — (a = 5= 1)|ly - T2
< la—allz -yl
+2la = 1|z = T2|llly = Tyl + o = 8 = 1| ||y — T=|?
= |a—Blllz -yl
+la =1z = Tz||(lly = T2l + 1Tz = Tyl) + la — 8 = 1 [ly — T=||*.
So, {||Tz — Ty|| : y € C} is bounded and hence T'C' is bounded. O

Let C be a nonempty closed convex subset of a Hilbert space H and let «, 8 and
v be real numbers. Then, U : C — H is called an («, 3, 7)-extended hybrid mapping
if
a(l+y)[Uz = Uyl* + (1 = a(l + )|z - Uy|?
< (B+a|Uz —yl? + (1= (B+ ay))llz — y|?
= (a=B)ylle = Uz|* = ylly - Uyll?
for all x € C.
Theorem 3.3. Let C' be a nonempty closed convex subset of a Hilbert space H and

let «, B and v be real numbers with v # —1. Let T and U be mappings of C into

H such that U = ﬁT—I— ﬁ], where Iz = x for all x € H. Then, for 1+~ > 0,
T:C — H is an (a, B)-generalized hybrid mapping if and only if U : C — H is an

(e, B, v)- extended hybrid mapping.

Proof. Since U = ﬁT + ﬁ], we have T = (1 + v)U — vI. So, we have from

Theorem 3.1 that for any z,y € C,
a||Te = Ty|? + (1 - o)z — Ty|?
< BTz —y|* + (1= B)llz -yl
= Tz —Ty|* < (a = B)|z —yl?
+2(a = 1){z — T,y = Ty) — (a = B = )|y — T|”
= |1+ Uz =z = (1 +7)Uy +y)* < (@ = )|z —y?
+2(a = 1)((1+7)(x = Uz),(1+7)(y — Uy))
—(a=B=Dlly = (1L +7)Uz + yz|®
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= 1+ (Uz = Uy) — vz —y)|* < (a = Bl — yl?
+2(a — 1)1 +7)*(xz — Uz,y — Uy)
—(a=B=1|ly—Uz+~y(x—Uz)|
= a(1+9)*|Uz = Uy|> + (1 +7)(1 — (1 +7))||z - Uy|]?
<A +7)B+aN|Uz —y|* + (1 +7)(1 = 8 - ay)llz - y|?
—(1+ (e = B)[lx = Sz[* =v(1 +)lly - Uy|?
= a(l+7y)||Uz = Uyl|? + (1 = a(l + 7)) ||z = Uy|?
< (B+ay|lUz —yl* + (1 =8 —ay)llz -yl
—(a = B)yllz = Uz|* —~lly — Uy|*.
This completes the proof. O

Theorem 3.4. Let C' be a nonempty bounded closed convez subset of a Hilbert space
H and let o and 8 be real numbers. Let T be an («, B)-generalized hybrid mapping
with a— 3 >0 of C into H. Suppose that there exists m > 1 such that for any x € C,
Tr=xz+1t(ly—x) for somey € C and t with 1 <t < m. Then, T has a fixed point
in C.

Proof. By the assumption, we have that for any x € C, there are y € C and t with
1 <t < m such that Tz = x + t(y — ). We have Tz = ty + (1 — t)z and hence
y = 1Tz + 1a. Define Uz € C as follows:

t t 1 t—1
Ur=(1-—)z+—(-T
x = m)a:er(t T+

So, we have Uz = %TLIJ + m=ly Taking v > 0 with m = 1 + ~, we have

m

1 gl
Uz = Tz + . 3.2
x Ty x 1+’yx (3.2)

Thus, we can define a mapping U of C into itself satisfying (3.2). Since T : C — H
is an (o, 8)-generalized hybrid mapping with a« — 8 > 0, from Theorem 3.3 U is an
(o, B, v)-extended hybrid mapping of C into itself, i.e.,

a(l+)|[Uz = Uy|]* + (1 — a(l + )|z — Uy|®
< (B+an Uz —yl* + (1 = (8 + av))llz — y|?
—(a=B)|lz = Uz|* =]y - Uyl
for all x € C. From o — 8 > 0 and « > 0, we have
a(l+)|Uz = Uy|* + (1 = a(l + )|z - Uyl
< (B+aN|Uz —y* + (1= (B +ay))llz -yl

for all z € C. This implies that U is an (a(1+7), 8+ a)-generalized hybrid mapping
of C into itself. So, we have a fixed point from Theorem 2.3. This completes the
proof. O
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Let us give an example of mappings T : C' — H such that for any z € C, there
are y € C and t with 1 <t < m such that Ta = z + t(y — z). In the case of H = R,
consider a mapping 7" : [0, F] — R:

Tz = (1+2z)cosx —22%, Va €0, g]

Then, we have

Tz = (14 2z)(cosz — ) + z, Vxe[(),g].
For any x € [0,F], take t = 1+ 2z, y = cosxz and m = 1+ . Then, we have
Te=ty—x)+z,y=coszec[0,f]and 1 <t =142z <1+m.

4. NONLINEAR ERGODIC THEOREM

In this section, using the technique developed by Takahashi [17], we prove a non-
linear ergodic theorem of Baillon’s type [2] for super hybrid mappings in a Hilbert
space. Before proving it, we need the following lemma.

Lemma 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T be a generalized hybrid mapping from C into itself. Suppose that {T™x} is bounded
for some x € C. Define S,z = L3 Tz, Then, limy—o0 [|Spz — TSpz|| = 0. In
particular, if C is bounded, then

lim sup || Spx — T'Spz| = 0.

n—oo zeC

Proof. Since T : C' — C is a generalized hybrid mapping, there are a, 5 € R such
that
a| Tz = Ty|* + (1 - a)llz = Ty||* < BTz -yl + (1 = B)|lz - y|?
for all z,y € C. For any y € C' and k € N, we have that
0<BIT*" 2 —y|? + (1 = B)| Tz — yl|?
—a|T* e — Ty|? — (1 - a)| Tz — Tyl
= B{IIT* e — Ty|* + 2(T**'e — Ty, Ty — y) + |ITy — y|*}
+ (1= B){IT s = Ty|l* + 2(T"z — Ty, Ty —y) + | Ty — y|*}
—a| "' —Ty|? — (1 - )| T*z - Ty|?
=Ty —yl* +2(BT* 'x + (1 = f)T*z — Ty, Ty — y)
+ (B = a){IT" e - Ty|? — | T"z — Ty|*}
=Ty — y||2 + 2 <Tkx —Ty+ ﬂ(TlHl:c - Tka:),Ty — y>
+ (B = a){|IT" e = Ty||* — | T"z — Ty|*}.
Summing up these inequalities with respect to k = 1,2,...,n, we have
0<n||Ty—yl*+ 2<i TFe —nTy, Ty —y) +28(T" o — Ta, Ty — y)

k=1
+ (B = a)(IT" e = Ty|? | Tz — Ty|*).
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Deviding this inequality by n, we have
0<||Ty —y||* +2(Spzx — Ty, Ty — y) + %26(7’”"'11‘ — Tz, Ty —y)
(8= )T = Tyl ~ T2~ Ty|1?)
where S,z = % > orey T*z. Replacing y by S,x, we obtain
0 < ||TSnz — Spz|?

1
+2(Spx — TSpx, TSpx — Spx) + —28(T" e — Tx, TS,z — S,)
n

1
+ ~(B=a)(IT"" e = TSyl - [T = TS,z||?)

and hence
1
|TSnz — Spz||? < =28(T""'x — Tx, TS,z — S,x)
n
1
+ ;('8 —a)(|IT" e — TS, z||* — ||Tx — TS,x|?).

By the assumption, {T™z} is bounded. So, {S,z} is also bounded. By Lemma
3.2, {T'S,x} is bounded. So, we have limsup,,_, [|Snz — T'Spz| < 0 and hence
lim,, o0 ||Snz — T'Sp|| = 0. In particular, if C' is bounded, then we have

lim sup sup ||Spx — T'Spz|| <0

n—oo zeC

and hence lim,, o sup, ¢ ||Snz — T'Spz|| = 0. This completes the proof. O

Theorem 4.2. Let H be a Hilbert space and let C' be a nonempty closed convex subset
of H. Let a, 8 and «y be real numbers with v > 0 and let S : C — C be an (a, B,
7y )-super hybrid mapping with F(S) # 0 and let P be the mertic projection of H onto
F(T). Then, for any x € C,

n

1 1 ¥

_ k
Sz = n;(—lﬂbw—lﬂl) x

converges weakly to z € F(S), where z = lim, oo PT"x and T = ﬁS + ﬁ].

Proof. Put T = 13=5 + 715 1. From Theorem 2.2, we have that 7': ¢'— C' is an (a,

B)-generalized hybrid mapping, i.e.,
ol T — Tyl + (1 — )l — Tyl < 81Tz — g2 + (1 - Bz — gl (41)

for all x,y € C. Since T is a generalized hybrid mapping and F(T) = F(S) # 0, T is
quasi-nonexpansive. So, F(T) is closed and convex. Let z € C and u € F(T). Then,
we have || T" 1z — u| < [|T"x — u||. Putting D = F(T) in Lemma 2.1, we have that
lim,, oo PT"x converges strongly. Put z = lim,,_ o, PT™x. Let us show S,z — z.
Since {T"x} is bounded, so is {Spx}. Let {S,,z} be a subsequence of {S,z} such
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that S,z — v. By Lemma 4.1, we know lim,,_, ||Spz — T'Spz| = 0. If v # Tv, we
have from Opial’s theorem and Lemma 3.1 that
lim inf||S,,, z — v]|?
71— 00
< liminf || S,,z — Tvl|?
1— 00
= liminf(|| Sy, — T'Sn,z||> + || TSp,x — Tv||?
1— 00
+2(S,,x — TSp,x, TSy, x — Tv))
= liminf || TS,z — Tv||?
1— 00
<liminf((a — B)||Sn,z — v|* + 2(a — 1){Sy, 2 — T'Sp,x,v — T)
1— 00
—(a=B=1|v—=-T8,,x
< liminf((a — B)|| S,z — vf* — (a = B = 1)|jv = TS,z
1— 00

| 2

%)

< liirg(i)rolf((a —B)|Sn,z —v||? = (=B —=1D)||v = Sp,x + Sp,x — TSy,
<liminf((a = B)||Sp,2 = v[|* = (a = B = Dl|v = Sn.2]*)
= liminf || S,z — v||?,
1— 00
which is a contradiction. Therefore, we have v € F(T). To show S,z — z, it is
sufficient to prove z = v. From v € F(T'), we have
(v —2z,TFz — PT*z) = (v — PT*2, Tz — PT*z) + (PT*z — 2, T"x — PT*z)
< (PT*z — 2,T*x — PT"x)
< ||PT*z — 2|||T*x — PT"z|
< ||PT*z — z||L

for all k € N, where L = sup{||T*x — PT*z|| : k € N}. Summing these inequalities
from k =1 to n; and dividing by n;, we have

1 & 1 &
— 2,8 —— Y PTFz) < — PT*z — z||L.
<v 2, Sp, Tbi ; x> < Z I x — 7|

" k=1
Since S,,x — v as i = oo and PT"z — z as n — oo, we have (v — z,v — z) < 0.

This implies z = v. Therefore, {S,x} converges weakly to z € F(T), where z =
limy,_,o PT"z. So, we get the desired result. O

5. STRONG CONVERGENCE THEOREMS

In this section, we first prove a strong convergence theorem of Halpern’s type [7]
for super hybrid nonself-mappings in a Hilbert space.

Theorem 5.1. Let H be a Hilbert space and let C' be a nonempty closed conver subset
of H. Let ~y be a real number with v # —1 and let S : C' — H be a mapping such that

1Sz — Sy||* + 2v(x — y, Sz — Sy) < (1 +29)||lz — y||?
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for all xz,y € C. Let {an} C [0,1] be a sequence of real numbers such that o, — 0,
S o =00 and Y 07 | — 1| < co. Suppose {x,} is a sequence generated by
r1=x€C,ueC and

Tptl :anu—k(l—an)PC{lifnyn—k lj—’yx"}’ n=12....
If F(S) # 0, then the sequence {x,} converges strongly to an element v of F(S),
where v = Pp(gyu and Pp(gy is the metric projection of H onto F(S).
Proof. We have that for any x,y € C,
1Sz — Syl + 2v(x — y, Sz — Sy) < (1 + 27)||lz — y|?
= |8z — Syl +y(lla — SylI* + 1Sz — y|I* — ISz — z||* — |y — Sy|I*)
< (1+2y)llz -yl
= ||Sz — Sy||* +~llx - Sy|*
< =Sz =yl + (1 + 29)llz = ylI* + Sz — z[|* +lly — Sy||*.

So, S is a (1, 0, v)-super hybrid mapping of C into H. Put T = ﬁs + ﬁ[.
Then, we have from Theorem 2.2 that T is a (1, 0)-generalized hybrid mapping of
C into H, i.e., T is a nonexpansive mapping of C' into H. Furthermore, we have
F(S) = F(T). From Wittmann’s theorem [26], we obtain x, — Pp(p,7)u; see also
Takahashi [19]. Let us show F(PcT) = F(T) = F(S). We know F(T) = F(S5). It
is obvious that F(T') C F(PcT). We show F(PcT) C F(T). If PcTv = v, we have
from the property of Po (2.4) that for v € F(T),

2||lv — ul|? = 2| PcTv — ul)?
< 2(Tv — u, PcTv — u)
T — ulP + [ PoTo— ul]® — |Tv - PeTol?

and hence
2|lv — ul]® < [lv =l + o —ul|® = |Tv -]

So, we have 0 < —|Tv — v||? and hence Tv = v. This completes the proof. O

Remark 5.2. We do not know whether a strong convergence theorem of Halpern’s
type for generalized hybrid mappings holds or not.

Next, using an idea of mean convergence, we prove a strong convergence theorem
of Halpern’s type for super hybrid mappings in a Hilbert space.

Theorem 5.3. Let C be a nonempty closed convex subset of a real Hilbert space H
and let a, B and v be real numbers with v > 0. Let S : C — C be a (a, 8, 7v)-super
hybrid mapping with F(S) # (0 and let P be the metric projection of H onto F(S).
Suppose {x,} is a sequence generated by x1 =x € C, u € C and

Tpg1 = apu+ (1 — o) 2y,

1, 1 Yoo
Zn = — — S+ —1I)"z,
#2S
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for allm = 1,2,..., where 0 < a,, < 1, ap, — 0 and Zzo:l oy = co. Then {z,}
converges strongly to Pu.

Proof. For a («, B, v)-super hybrid mapping S : C — C, define

1 Y

T=—-V.858+—1I
147 1+~

Then, from Theorem 2.2 T : C — C is an (a, [)-generalized hybrid mapping such
that F(T) = F(S). Since F(T) is nonempty, we take ¢ € F(T). Put r = ||lu —g||. We
define

D={yecH:|y—q|<rinC.

Then D is a nonempty bounded closed convex subset of C. D is T-invariant and
contains u. Thus we assume that C is boundeda without loss of generality. T is
quasi-nonexpansive. So, we have that for all ¢ € F(T) and n = 1,2,3, ...,

1 & 1 &
ZZTkxn—q < ﬁZ”Tkﬂ?n—QH
k=1 k=1

1 n
= llwn = all = llza — all-
k=1

Let us show limsup,,_, ., (v — Pu, z, — Pu) < 0. Since {z,} is bounded, there exists a
subsequence {z,, } of {z,} with z,, = v. We may assume without loss of generality

zn —qll =

(5.1)

IN

limsup(u — Pu, z,, — Pu) = lim (u — Pu, z,,, — Pu).
n— oo 1—00

By Lemma 4.1, we have lim,, o ||z, — Tz,|| = 0. Using this equality and Opial’s
theorem, we have v € F(T). In fact, if v # Tv, we have

liminf| z,, — v||?
11— 00
< liminf ||z,, — Tv||2
71— 00
= liminf(||zn, — T2, |> 4+ [T 20, — TO|? + 2(2n, — Tzn,, T2p, — T0))
11— 00
= liminf | Tz, — Tv||?
71— 00
< liminf((a — B)||zn, — v||* + 2(a — 1){zn, — T2, v — T)
71— 00
— (=B =Dfv—"Tz,[*
< liminf((a — B)|lzn, — vl* = (@ = B = D)]v = Tz, |*)
71— 00
%)

< hmlnf((a - ﬂ)Hznl - UH2 - (a - ﬂ - 1)”” — Zn; T Zn; — sz
71— 00

< liminf((a = B)l|zn, = v[* = (@ = B = Dfjv =z, |

= liminf||z,, — v|?,
11— 00
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which is a contradiction. Therefore, we have v € F(T). Since P is the metric
projection of H onto F(T'), we have

lim (u — Pu, zp, — Pu) = (u — Pu,v — Pu) <0.

71— 00
This implies
lim sup(u — Pu, z,, — Pu) < 0. (5.2)

n—oo
Since zp+1 — Pu = (1 — a,)(zn — Pu) + a(u — Pu), from (5.1) we have
(1 = ) (20 — Pu) + ap(u — Pu)l?
(1 — an)?||2n — Pul|® + 20 (u — Pu, 2,41 — Pu)
(

01 — Pull?

IN N

1—ap)|zn — Pqu + 200 (u — Pu, zp 11 — Pu).

Putting s,, = ||z, — Pul|?>, B, = 0 and 7, = 2(u — Pu,x,+1 — Pu) in Lemma 2.4,
from Y | o, = o0 and (5.2) we have

lim |z, — Pu| =0.
n—oo
O
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