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1. Introduction

Let H be a real Hilbert space and let C be a nonempty subset of H. Then a
mapping T : C → H is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ C. The set of fixed points of T is denoted by F (T ). From Baillon [2] we
know the following first nonlinear ergodic theorem in a Hilbert space.

Theorem 1.1. Let C be a nonempty closed convex subset of H and let T : C → C
be a nonexpansive mapping with F (T ) 6= ∅. Then, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx
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converges weakly to an element z ∈ F (T ).

The following strong convergence theorem of Halpern’s type [7] was proved by
Wittmann [26]; see also [19].

Theorem 1.2. Let C be a nonempty closed convex subset of H and let T : C → C
be a nonexpansive mapping with F (T ) 6= ∅. For any x1 = x ∈ C, define a sequence
{xn} in C by

xn+1 = αnx+ (1− αn)Txn, ∀n = 1, 2, ...,

where {αn} ⊂ [0, 1] satisfies αn → 0,
∑∞
n=1 αn = ∞ and

∑∞
n=1 |αn − αn+1| < ∞.

Then {xn} converges strongy to a fixed point of T .

An important example of nonexpansive mappings in a Hilbert space is a firmly
nonexpansive mapping. Let C be a nonempty subset of H. A mapping F : C → H
is said to be firmly nonexpansive if

‖Fx− Fy‖2 ≤ 〈x− y, Fx− Fy〉
for all x, y ∈ C; see, for instance, Browder [4] and Goebel and Kirk [6]. It is known
that a firmly nonexpansive mapping F can be deduced from an equilibrium problem
in a Hilbert space; see, for instance, [3] and [5]. Recently, Kohsaka and Takahashi [14],
and Takahashi [21] introduced the following nonlinear mappings which are deduced
from a firmly nonexpansive mapping in a Hilbert space. A mapping T : C → H is
called nonspreading [14] if

2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖Ty − x‖2

for all x, y ∈ C. A mapping T : C → H is called hybrid [21] if

3‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖Tx− y‖2 + ‖Ty − x‖2

for all x, y ∈ C. They proved fixed point theorems for such mappings; see also
Kohsaka and Takahashi [13] and Iemoto and Takahashi [10]. Very recently, Kocourek,
Takahashi and Yao [12] introduced a broad class of mappings T : C → H called
generalized hybrid such that for some α, β ∈ R,

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

for all x, y ∈ C. Such a class contains the classes of nonexpansive mappings, non-
spreading mappings, and hybrid mappings in a Hilbert space. Further, they defined a
more braod class of nonlinear mappings than the class of generalized hybrid mappings
in a Hilbert space. Such a class is called a class of super hybrid mappings. A gen-
eralized hybrid mapping with a fixed point is quasi-nonexpansive. However, a super
hybrid mapping is not quasi-nonexpansive generally even if it has a fixed point.

In this paper, we first introduce a class of nonlinear mappings called extended
hybrid in a Hilbert space containing the class of generalized hybrid mappings. The
class is different from the class of super hybrid mappings which was defined by Ko-
courek, Takahashi and Yao [12]. We prove a fixed point theorem for generalized hybrid
nonself-mapping in a Hilbert space. Next, we prove a nonlinear ergodic theorem of
Baillon’s type for super hybrid mappings in a Hilbert space. Finally, we deal with
two strong convergence theorems of Halpern’s type for these nonlinear mappings in a
Hilbert space.
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2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a (real) Hilbert space with inner product 〈·, · 〉 and
norm ‖ · ‖, respectively. We denote the strong convergence and the weak convergence
of {xn} to x ∈ H by xn → x and xn ⇀ x, respectively. From [20], we know the
following basic equality: For x, y, u, v ∈ H and λ ∈ R, we have

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2. (2.1)

Further, we know that for x, y, u, v ∈ H

2 〈x− y, u− v〉 = ‖x− v‖2 + ‖y − u‖2 − ‖x− u‖2 − ‖y − v‖2. (2.2)

From (2.2), we have also the following equality.

‖x− y + u− v‖2 = ‖x− y‖2 + ‖u− v‖2 + 2 〈x− y, u− v〉
= ‖x− y‖2 + ‖u− v‖2 + ‖x− v‖2 + ‖y − u‖2 − ‖x− u‖2 − ‖y − v‖2. (2.3)

Let C be a nonempty closed convex subset of H and let T be a mapping from
C into itself. Then, we denote by F (T ) the set of fixed points of T . A mapping
T : C → H is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. A
mapping T : C → H with F (T ) 6= ∅ is called quasi-nonexpansive if ‖x−Ty‖ ≤ ‖x−y‖
for all x ∈ F (T ) and y ∈ C. It is well-known that the set F (T ) of fixed points of a
quasi-nonexpansive mapping T is closed and convex; see Ito and Takahashi [11]. Let
C be a nonempty closed convex subset of H and x ∈ H. Then, we know that there
exists a unique nearest point z ∈ C such that ‖x − z‖ = infy∈C ‖x − y‖. We denote
such a correspondence by z = PCx. PC is called the metric projection of H onto C.
It is known that PC is nonexpansive and

〈x− PCx, PCx− u〉 ≥ 0

for all x ∈ H and u ∈ C. Further, we know that

‖PCx− PCy‖2 ≤ 〈x− y, PCx− PCy〉 (2.4)

for all x, y ∈ H; see [20] for more details. The following lemma was proved by
Takahashi and Toyoda [23].

Lemma 2.1. Let D be a nonempty closed convex subset of a real Hilbert space H.
Let P be the metric projection of H onto D and let {xn} be a sequence in H. If
‖xn+1 − u‖ ≤ ‖xn − u‖ for all u ∈ D and n ∈ N, then {Pxn} converges strongly.

Let C be a nonempty subset of H. Then, a nonself-mapping T : C → H is called
generalized hybrid [12] if there are α, β ∈ R such that

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2 (2.5)

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping. We
observe that the mapping above covers several well-known mappings. For example, an
(α, β)-generalized hybrid mapping is nonexpansive for α = 1 and β = 0, nonspreading
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for α = 2 and β = 1, and hybrid for α = 3
2 and β = 1

2 . We can also show that if
x = Tx, then for any y ∈ C,

α‖x− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖x− y‖2 + (1− β)‖x− y‖2

and hence ‖x−Ty‖ ≤ ‖x−y‖. This means that an (α, β)-generalized hybrid mapping
with a fixed point is quasi-nonexpansive.

Let C be a nonempty subset of a Hilbert space H. A mapping S : C → H is called
super hybrid [12, 25] if there are α, β, γ ∈ R such that

α‖Sx− Sy‖2 + (1− α+ γ)‖x− Sy‖2 ≤(
β + (β − α)γ

)
‖Sx− y‖2 +

(
1− β − (β − α− 1)γ

)
‖x− y‖2

+ (α− β)γ‖x− Sx‖2 + γ‖y − Sy‖2 (2.6)

for all x, y ∈ C. We call such a mapping an (α, β, γ)-super hybrid mapping. An (α,
β, 0)-super hybrid mapping is (α, β)-generalized hybrid. So, the class of super hybrid
mappings contains the class of generalized hybrid mappings. Let us consider a super
hybrid mapping S with α = 1, β = 0 and γ = 1. Then, we have

‖Sx− Sy‖2 + ‖x− Sy‖2 ≤ −‖Sx− y‖2 + 3‖x− y‖2 + ‖x− Sx‖2 + ‖y − Sy‖2

for all x, y ∈ C. This is equivalent to

‖Sx− Sy‖2 + 2〈x− y, Sx− Sy〉 ≤ 3‖x− y‖2

for all x, y ∈ C. In the case of H = R, consider Sx = 2 cos x− x for all x ∈ [−π2 ,
π
2 ].

Then, we have

|Sx− Sy|2 + 2〈x− y, Sx− Sy〉
= |2 cos x− x− (2 cos y − y)|2 + 2〈x− y, 2 cos x− x− (2 cos y − y)〉
= 4(cos x− cos y)2 − 2〈x− y, 2 cos x− 2 cos y〉+ (x− y)2

− (x− y)2 + 2〈x− y, 2 cos x− 2 cos y〉
≤ 4(x− y)2 − (x− y)2

= 3(x− y)2

and hence S is super hybrid. However, S is not quasi-nonexpansive. Further, we have
that

Tx =
1

2
(2 cos x− x) +

1

2
x = cos x

and hence T is a nonexpansive mapping with a fixed point. The following theorem
was proved in [25] and [12].

Theorem 2.2. Let C be a nonempty subset of a Hilbert space H and let α, β and
γ be real numbers with γ 6= −1. Let S and T be mappings of C into H such that
T = 1

1+γS + γ
1+γ I. Then, S is (α, β, γ)-super hybrid if and only if T is (α, β)-

generalized hybrid. In this case, F (S) = F (T ). In particular, let C be a nonempty
closed and convex subset of H and let α, β and γ be real numbers with γ ≥ 0. If a
mapping S : C → C is (α, β, γ)-super hybrid, then the mapping T = 1

1+γS+ γ
1+γ I is

an (α, β)-generalized hybrid mapping of C into itself.
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Kocourek, Takahashi and Yao [12] also proved the following fixed point theorem
for super hybrid mappings in a Hilbert space.

Theorem 2.3. Let C be a nonempty bounded closed convex subset of a Hilbert space
H and let α, β and γ be real numbers with γ ≥ 0. Let S : C → C be an (α, β,
γ)-super hybrid mapping. Then, S has a fixed point in C. In particular, if S : C → C
be an (α, β)-generalized hybrid mapping, then S has a fixed point in C.

To prove one of our main results, we need the following lemma [1]:

Lemma 2.4. Let {sn} be a sequence of nonnegative real numbers, let {αn} be a
sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative real

numbers with
∑∞
n=1 βn < ∞, and let {γn} be a sequence of real numbers with

lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

3. Fixed Point Theorem for Non-Self Mappings

In this section, we prove a fixed point theorem for generalized hybrid nonself-
mappings in a Hilbert space. Before proving it, we need the following lemma.

Lemma 3.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let α
and β be in R. Then, a nonself-mapping T : C → H is (α, β)-generalized hybrid if
and only if it satisfies that

‖Tx− Ty‖2 ≤ (α− β)‖x− y‖2

+ 2(α− 1)〈x− Tx, y − Ty〉 − (α− β − 1)‖y − Tx‖2

for all x, y ∈ C.

Proof. We have that for all x, y ∈ C,

‖Tx− Ty‖2 ≤ (α− β)‖x− y‖2

+ 2(α− 1)〈x− Tx, y − Ty〉 − (α− β − 1)‖y − Tx‖2

⇐⇒ ‖Tx− Ty‖2 ≤ (1− β)‖x− y‖2 + (α− 1)‖x− y‖2

+ (α− 1)(‖x− Ty‖2 + ‖y − Tx‖2 − ‖x− y‖2 − ‖Tx− Ty‖2)

+ β‖y − Tx‖2 − (α− 1)‖y − Tx‖2

⇐⇒ α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2

≤ β‖Tx− y‖2 + (1− β)‖x− y‖2.

�

Using Lemma 3.1, we have the following result.

Lemma 3.2. Let H be a Hilbert space and let C be a nonempty bounded subset of
H. If a nonself-mapping T : C → H is generalized hybrid, then TC is bounded.
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Proof. Since T : C → H is a generalized hybrid mapping, there are α, β ∈ R such
that

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2 (3.1)

for all x, y ∈ C. We have from Lemma 3.1 that

‖Tx− Ty‖2 ≤ (α− β)‖x− y‖2

+ 2(α− 1)〈x− Tx, y − Ty〉 − (α− β − 1)‖y − Tx‖2

for all x, y ∈ C. Fix z ∈ C. Then, we have that for any y ∈ C,

‖Tz − Ty‖2 ≤ (α− β)‖z − y‖2

+ 2(α− 1)〈z − Tz, y − Ty〉 − (α− β − 1)‖y − Tz‖2

≤ |α− β|‖z − y‖2

+ 2|α− 1|‖z − Tz‖‖y − Ty‖+ |α− β − 1|‖y − Tz‖2

= |α− β|‖z − y‖2

+ |α− 1|‖z − Tz‖(‖y − Tz‖+ ‖Tz − Ty‖) + |α− β − 1|‖y − Tz‖2.

So, {‖Tz − Ty‖ : y ∈ C} is bounded and hence TC is bounded. �

Let C be a nonempty closed convex subset of a Hilbert space H and let α, β and
γ be real numbers. Then, U : C → H is called an (α, β, γ)-extended hybrid mapping
if

α(1 + γ)‖Ux− Uy‖2 + (1− α(1 + γ))‖x− Uy‖2

≤ (β + αγ)‖Ux− y‖2 + (1− (β + αγ))‖x− y‖2

− (α− β)γ‖x− Ux‖2 − γ‖y − Uy‖2

for all x ∈ C.

Theorem 3.3. Let C be a nonempty closed convex subset of a Hilbert space H and
let α, β and γ be real numbers with γ 6= −1. Let T and U be mappings of C into
H such that U = 1

1+γT + γ
1+γ I, where Ix = x for all x ∈ H. Then, for 1 + γ > 0,

T : C → H is an (α, β)-generalized hybrid mapping if and only if U : C → H is an
(α, β, γ)- extended hybrid mapping.

Proof. Since U = 1
1+γT + γ

1+γ I, we have T = (1 + γ)U − γI. So, we have from

Theorem 3.1 that for any x, y ∈ C,

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2

≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

⇐⇒ ‖Tx− Ty‖2 ≤ (α− β)‖x− y‖2

+2(α− 1)〈x− Tx, y − Ty〉 − (α− β − 1)‖y − Tx‖2

⇐⇒ ‖(1 + γ)Ux− γx− (1 + γ)Uy + γy‖2 ≤ (α− β)‖x− y‖2

+2(α− 1)〈(1 + γ)(x− Ux), (1 + γ)(y − Uy)〉
−(α− β − 1)‖y − (1 + γ)Ux+ γx‖2
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⇐⇒ ‖(1 + γ)(Ux− Uy)− γ(x− y)‖2 ≤ (α− β)‖x− y‖2

+2(α− 1)(1 + γ)2〈x− Ux, y − Uy〉

−(α− β − 1)‖y − Ux+ γ(x− Ux)‖2

⇐⇒ α(1 + γ)2‖Ux− Uy‖2 + (1 + γ)(1− α(1 + γ))‖x− Uy‖2

≤ (1 + γ)(β + αγ)‖Ux− y‖2 + (1 + γ)(1− β − αγ)‖x− y‖2

−(1 + γ)γ(α− β)‖x− Sx‖2 − γ(1 + γ)‖y − Uy‖2

⇐⇒ α(1 + γ)‖Ux− Uy‖2 + (1− α(1 + γ))‖x− Uy‖2

≤ (β + αγ)‖Ux− y‖2 + (1− β − αγ)‖x− y‖2

−(α− β)γ‖x− Ux‖2 − γ‖y − Uy‖2.
This completes the proof. �

Theorem 3.4. Let C be a nonempty bounded closed convex subset of a Hilbert space
H and let α and β be real numbers. Let T be an (α, β)-generalized hybrid mapping
with α−β ≥ 0 of C into H. Suppose that there exists m > 1 such that for any x ∈ C,
Tx = x + t(y − x) for some y ∈ C and t with 1 ≤ t ≤ m. Then, T has a fixed point
in C.

Proof. By the assumption, we have that for any x ∈ C, there are y ∈ C and t with
1 ≤ t ≤ m such that Tx = x + t(y − x). We have Tx = ty + (1 − t)x and hence
y = 1

tTx+ t−1
t x. Define Ux ∈ C as follows:

Ux = (1− t

m
)x+

t

m
(
1

t
Tx+

t− 1

t
x).

So, we have Ux = 1
mTx+ m−1

m x. Taking γ > 0 with m = 1 + γ, we have

Ux =
1

1 + γ
Tx+

γ

1 + γ
x. (3.2)

Thus, we can define a mapping U of C into itself satisfying (3.2). Since T : C → H
is an (α, β)-generalized hybrid mapping with α − β ≥ 0, from Theorem 3.3 U is an
(α, β, γ)-extended hybrid mapping of C into itself, i.e.,

α(1 + γ)‖Ux− Uy‖2 + (1− α(1 + γ))‖x− Uy‖2

≤ (β + αγ)‖Ux− y‖2 + (1− (β + αγ))‖x− y‖2

− (α− β)γ‖x− Ux‖2 − γ‖y − Uy‖2

for all x ∈ C. From α− β ≥ 0 and γ > 0, we have

α(1 + γ)‖Ux− Uy‖2 + (1− α(1 + γ))‖x− Uy‖2

≤ (β + αγ)‖Ux− y‖2 + (1− (β + αγ))‖x− y‖2

for all x ∈ C. This implies that U is an (α(1+γ), β+αγ)-generalized hybrid mapping
of C into itself. So, we have a fixed point from Theorem 2.3. This completes the
proof. �
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Let us give an example of mappings T : C → H such that for any x ∈ C, there
are y ∈ C and t with 1 ≤ t ≤ m such that Tx = x+ t(y − x). In the case of H = R,
consider a mapping T : [0, π2 ]→ R:

Tx = (1 + 2x) cosx− 2x2, ∀x ∈ [0,
π

2
].

Then, we have

Tx = (1 + 2x)(cosx− x) + x, ∀x ∈ [0,
π

2
].

For any x ∈ [0, π2 ], take t = 1 + 2x, y = cosx and m = 1 + π. Then, we have
Tx = t(y − x) + x, y = cosx ∈ [0, π2 ] and 1 ≤ t = 1 + 2x ≤ 1 + π.

4. Nonlinear Ergodic Theorem

In this section, using the technique developed by Takahashi [17], we prove a non-
linear ergodic theorem of Baillon’s type [2] for super hybrid mappings in a Hilbert
space. Before proving it, we need the following lemma.

Lemma 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T be a generalized hybrid mapping from C into itself. Suppose that {Tnx} is bounded
for some x ∈ C. Define Snx = 1

n

∑n
k=1 T

kx. Then, limn→∞ ‖Snx − TSnx‖ = 0. In
particular, if C is bounded, then

lim
n→∞

sup
x∈C
‖Snx− TSnx‖ = 0.

Proof. Since T : C → C is a generalized hybrid mapping, there are α, β ∈ R such
that

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

for all x, y ∈ C. For any y ∈ C and k ∈ N, we have that

0 ≤ β‖T k+1x− y‖2 + (1− β)‖T kx− y‖2

− α‖T k+1x− Ty‖2 − (1− α)‖T kx− Ty‖2

= β
{
‖T k+1x− Ty‖2 + 2

〈
T k+1x− Ty, Ty − y

〉
+ ‖Ty − y‖2

}
+ (1− β)

{
‖T kx− Ty‖2 + 2

〈
T kx− Ty, Ty − y

〉
+ ‖Ty − y‖2

}
− α‖T k+1x− Ty‖2 − (1− α)‖T kx− Ty‖2

= ‖Ty − y‖2 + 2
〈
βT k+1x+ (1− β)T kx− Ty, Ty − y

〉
+ (β − α)

{
‖T k+1x− Ty‖2 − ‖T kx− Ty‖2

}
= ‖Ty − y‖2 + 2

〈
T kx− Ty + β(T k+1x− T kx), T y − y

〉
+ (β − α)

{
‖T k+1x− Ty‖2 − ‖T kx− Ty‖2

}
.

Summing up these inequalities with respect to k = 1, 2, . . . , n, we have

0 ≤ n‖Ty − y‖2 + 2〈
n∑
k=1

T kx− nTy, Ty − y〉+ 2β〈Tn+1x− Tx, Ty − y〉

+ (β − α)(‖Tn+1x− Ty‖2 − ‖Tx− Ty‖2).
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Deviding this inequality by n, we have

0 ≤ ‖Ty − y‖2 + 2〈Snx− Ty, Ty − y〉+
1

n
2β〈Tn+1x− Tx, Ty − y〉

+
1

n
(β − α)(‖Tn+1x− Ty‖2 − ‖Tx− Ty‖2).

where Snx = 1
n

∑n
k=1 T

kx. Replacing y by Snx, we obtain

0 ≤ ‖TSnx− Snx‖2

+ 2〈Snx− TSnx, TSnx− Snx〉+
1

n
2β〈Tn+1x− Tx, TSnx− Snx〉

+
1

n
(β − α)(‖Tn+1x− TSnx‖2 − ‖Tx− TSnx‖2)

and hence

‖TSnx− Snx‖2 ≤
1

n
2β〈Tn+1x− Tx, TSnx− Snx〉

+
1

n
(β − α)(‖Tn+1x− TSnx‖2 − ‖Tx− TSnx‖2).

By the assumption, {Tnx} is bounded. So, {Snx} is also bounded. By Lemma
3.2, {TSnx} is bounded. So, we have lim supn→∞ ‖Snx − TSnx‖ ≤ 0 and hence
limn→∞ ‖Snx− TSnx‖ = 0. In particular, if C is bounded, then we have

lim sup
n→∞

sup
x∈C
‖Snx− TSnx‖ ≤ 0

and hence limn→∞ supx∈C ‖Snx− TSnx‖ = 0. This completes the proof. �

Theorem 4.2. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let α, β and γ be real numbers with γ ≥ 0 and let S : C → C be an (α, β,
γ)-super hybrid mapping with F (S) 6= ∅ and let P be the mertic projection of H onto
F (T ). Then, for any x ∈ C,

Snx =
1

n

n∑
k=1

(
1

1 + γ
S +

γ

1 + γ
I)kx

converges weakly to z ∈ F (S), where z = limn→∞ PTnx and T = 1
1+γS + γ

1+γ I.

Proof. Put T = 1
1+γS + γ

1+γ I. From Theorem 2.2, we have that T : C → C is an (α,

β)-generalized hybrid mapping, i.e.,

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2 (4.1)

for all x, y ∈ C. Since T is a generalized hybrid mapping and F (T ) = F (S) 6= ∅, T is
quasi-nonexpansive. So, F (T ) is closed and convex. Let x ∈ C and u ∈ F (T ). Then,
we have ‖Tn+1x− u‖ ≤ ‖Tnx− u‖. Putting D = F (T ) in Lemma 2.1, we have that
limn→∞ PTnx converges strongly. Put z = limn→∞ PTnx. Let us show Snx ⇀ z.
Since {Tnx} is bounded, so is {Snx}. Let {Snix} be a subsequence of {Snx} such
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that Snix ⇀ v. By Lemma 4.1, we know limn→∞ ‖Snx− TSnx‖ = 0. If v 6= Tv, we
have from Opial’s theorem and Lemma 3.1 that

lim inf
i→∞

‖Snix− v‖2

< lim inf
i→∞

‖Snix− Tv‖2

= lim inf
i→∞

(‖Sni
x− TSni

x‖2 + ‖TSni
x− Tv‖2

+ 2〈Sni
x− TSni

x, TSni
x− Tv〉)

= lim inf
i→∞

‖TSni
x− Tv‖2

≤ lim inf
i→∞

((α− β)‖Sni
x− v‖2 + 2(α− 1)〈Sni

x− TSni
x, v − Tv〉

− (α− β − 1)‖v − TSni
x‖2

≤ lim inf
i→∞

((α− β)‖Snix− v‖2 − (α− β − 1)‖v − TSnix‖2)

≤ lim inf
i→∞

((α− β)‖Snix− v‖2 − (α− β − 1)‖v − Snix+ Snix− TSnix‖2)

≤ lim inf
i→∞

((α− β)‖Sni
x− v‖2 − (α− β − 1)‖v − Sni

x‖2)

= lim inf
i→∞

‖Sni
x− v‖2,

which is a contradiction. Therefore, we have v ∈ F (T ). To show Snx ⇀ z, it is
sufficient to prove z = v. From v ∈ F (T ), we have

〈v − z, T kx− PT kx〉 = 〈v − PT kx, T kx− PT kx〉+ 〈PT kx− z, T kx− PT kx〉

≤ 〈PT kx− z, T kx− PT kx〉

≤ ‖PT kx− z‖‖T kx− PT kx‖

≤ ‖PT kx− z‖L

for all k ∈ N, where L = sup{‖T kx − PT kx‖ : k ∈ N}. Summing these inequalities
from k = 1 to ni and dividing by ni, we have〈

v − z, Snix−
1

ni

ni∑
k=1

PT kx

〉
≤ 1

ni

ni∑
k=1

‖PT kx− z‖L.

Since Snix ⇀ v as i → ∞ and PTnx → z as n → ∞, we have 〈v − z, v − z〉 ≤ 0.
This implies z = v. Therefore, {Snx} converges weakly to z ∈ F (T ), where z =
limn→∞ PTnx. So, we get the desired result. �

5. Strong Convergence Theorems

In this section, we first prove a strong convergence theorem of Halpern’s type [7]
for super hybrid nonself-mappings in a Hilbert space.

Theorem 5.1. Let H be a Hilbert space and let C be a nonempty closed convex subset
of H. Let γ be a real number with γ 6= −1 and let S : C → H be a mapping such that

‖Sx− Sy‖2 + 2γ〈x− y, Sx− Sy〉 ≤ (1 + 2γ)‖x− y‖2
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for all x, y ∈ C. Let {αn} ⊂ [0, 1] be a sequence of real numbers such that αn → 0,∑∞
n=1 αn =∞ and

∑∞
n=1 |αn−αn+1| <∞. Suppose {xn} is a sequence generated by

x1 = x ∈ C, u ∈ C and

xn+1 = αnu+ (1− αn)PC
{ 1

1 + γ
Sxn +

γ

1 + γ
xn
}
, n = 1, 2, . . . .

If F (S) 6= ∅, then the sequence {xn} converges strongly to an element v of F (S),
where v = PF (S)u and PF (S) is the metric projection of H onto F (S).

Proof. We have that for any x, y ∈ C,

‖Sx− Sy‖2 + 2γ〈x− y, Sx− Sy〉 ≤ (1 + 2γ)‖x− y‖2

⇐⇒ ‖Sx− Sy‖2 + γ(‖x− Sy‖2 + ‖Sx− y‖2 − ‖Sx− x‖2 − ‖y − Sy‖2)

≤ (1 + 2γ)‖x− y‖2

⇐⇒ ‖Sx− Sy‖2 + γ‖x− Sy‖2

≤ −γ‖Sx− y‖2 + (1 + 2γ)‖x− y‖2 + γ‖Sx− x‖2 + γ‖y − Sy‖2.

So, S is a (1, 0, γ)-super hybrid mapping of C into H. Put T = 1
1+γS + γ

1+γ I.

Then, we have from Theorem 2.2 that T is a (1, 0)-generalized hybrid mapping of
C into H, i.e., T is a nonexpansive mapping of C into H. Furthermore, we have
F (S) = F (T ). From Wittmann’s theorem [26], we obtain xn → PF (PCT )u; see also
Takahashi [19]. Let us show F (PCT ) = F (T ) = F (S). We know F (T ) = F (S). It
is obvious that F (T ) ⊂ F (PCT ). We show F (PCT ) ⊂ F (T ). If PCTv = v, we have
from the property of PC (2.4) that for u ∈ F (T ),

2‖v − u‖2 = 2‖PCTv − u‖2

≤ 2〈Tv − u, PCTv − u〉
= ‖Tv − u‖2 + ‖PCTv − u‖2 − ‖Tv − PCTv‖2

and hence

2‖v − u‖2 ≤ ‖v − u‖2 + ‖v − u‖2 − ‖Tv − v‖2.
So, we have 0 ≤ −‖Tv − v‖2 and hence Tv = v. This completes the proof. �

Remark 5.2. We do not know whether a strong convergence theorem of Halpern’s
type for generalized hybrid mappings holds or not.

Next, using an idea of mean convergence, we prove a strong convergence theorem
of Halpern’s type for super hybrid mappings in a Hilbert space.

Theorem 5.3. Let C be a nonempty closed convex subset of a real Hilbert space H
and let α, β and γ be real numbers with γ ≥ 0. Let S : C → C be a (α, β, γ)-super
hybrid mapping with F (S) 6= ∅ and let P be the metric projection of H onto F (S).
Suppose {xn} is a sequence generated by x1 = x ∈ C, u ∈ C and

xn+1 = αnu+ (1− αn)zn,

zn =
1

n

n∑
k=1

(
1

1 + γ
S +

γ

1 + γ
I)kxn
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for all n = 1, 2, ..., where 0 ≤ αn ≤ 1, αn → 0 and
∑∞
n=1 αn = ∞. Then {xn}

converges strongly to Pu.

Proof. For a (α, β, γ)-super hybrid mapping S : C → C, define

T =
1

1 + γ
S +

γ

1 + γ
I.

Then, from Theorem 2.2 T : C → C is an (α, β)-generalized hybrid mapping such
that F (T ) = F (S). Since F (T ) is nonempty, we take q ∈ F (T ). Put r = ‖u− q‖. We
define

D = {y ∈ H : ‖y − q‖ ≤ r} ∩ C.

Then D is a nonempty bounded closed convex subset of C. D is T -invariant and
contains u. Thus we assume that C is boundeda without loss of generality. T is
quasi-nonexpansive. So, we have that for all q ∈ F (T ) and n = 1, 2, 3, ...,

‖zn − q‖ =

∥∥∥∥∥ 1

n

n∑
k=1

T kxn − q

∥∥∥∥∥ ≤ 1

n

n∑
k=1

‖T kxn − q‖

≤ 1

n

n∑
k=1

‖xn − q‖ = ‖xn − q‖.
(5.1)

Let us show lim supn→∞〈u−Pu, zn−Pu〉 ≤ 0. Since {zn} is bounded, there exists a
subsequence {zni

} of {zn} with zni
⇀ v. We may assume without loss of generality

lim sup
n→∞

〈u− Pu, zn − Pu〉 = lim
i→∞
〈u− Pu, zni

− Pu〉.

By Lemma 4.1, we have limn→∞ ‖zn − Tzn‖ = 0. Using this equality and Opial’s
theorem, we have v ∈ F (T ). In fact, if v 6= Tv, we have

lim inf
i→∞

‖zni
− v‖2

< lim inf
i→∞

‖zni
− Tv‖2

= lim inf
i→∞

(‖zni
− Tzni

‖2 + ‖Tzni
− Tv‖2 + 2〈zni

− Tzni
, T zni

− Tv〉)

= lim inf
i→∞

‖Tzni
− Tv‖2

≤ lim inf
i→∞

((α− β)‖zni
− v‖2 + 2(α− 1)〈zni

− Tzni
, v − Tv〉

− (α− β − 1)‖v − Tzni
‖2)

≤ lim inf
i→∞

((α− β)‖zni
− v‖2 − (α− β − 1)‖v − Tzni

‖2)

≤ lim inf
i→∞

((α− β)‖zni
− v‖2 − (α− β − 1)‖v − zni

+ zni
− Tzni

‖2)

≤ lim inf
i→∞

((α− β)‖zni
− v‖2 − (α− β − 1)‖v − zni

‖2)

= lim inf
i→∞

‖zni
− v‖2,
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which is a contradiction. Therefore, we have v ∈ F (T ). Since P is the metric
projection of H onto F (T ), we have

lim
i→∞
〈u− Pu, zni

− Pu〉 = 〈u− Pu, v − Pu〉 ≤ 0.

This implies

lim sup
n→∞

〈u− Pu, zn − Pu〉 ≤ 0. (5.2)

Since xn+1 − Pu = (1− αn)(zn − Pu) + αn(u− Pu), from (5.1) we have

‖xn+1 − Pu‖2 = ‖(1− αn)(zn − Pu) + αn(u− Pu)‖2

≤ (1− αn)2‖zn − Pu‖2 + 2αn〈u− Pu, xn+1 − Pu〉
≤ (1− αn)‖xn − Pu‖2 + 2αn〈u− Pu, xn+1 − Pu〉.

Putting sn = ‖xn − Pu‖2, βn = 0 and γn = 2〈u − Pu, xn+1 − Pu〉 in Lemma 2.4,
from

∑∞
n=1 αn =∞ and (5.2) we have

lim
n→∞

‖xn − Pu‖ = 0.
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