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1. Introduction

Different crucial works have been published on random fixed points for multivalued
random operators, such as the results presented by Beg and Shahzad [3], Engl [5], Itoh
[9] and [10], Papageorgiou [15], Sehgal and Sing [16], Tan and Yuang [19] and [20],
Xu [22] and Yuan and Yu [23]. Furthermore, Shahzad [18] and Kuman and Plubtieng
[12], and Fierro et al. [8] recently obtained results on this subject. All the latter are
closely related and some of them represent extensions of other works here included.
This work contributes to this direction, as some of the previous results are here
extended. The results of this study are based on new concepts, which were obtained
from the weakening of some conditions and definitions usually used in the literature
on Random Fixed Point. Thus, some conditions for the multivalued functions, based
on their semicontinuity, are replaced by weaker conditions. As a matter of fact,
Condition (A), which was introduced by Shahzad in [17], can be weakened and the
same results will be obtained. For instance, Theorem 2.1, developed by this author,
is a particular and direct consequence of our main result.
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2. Preliminaries

In what follows, F will denote a σ-algebra of subsets of a set Ω. The symbol 2E

denotes the class of nonempty subsets of a set E.
For a mapping F : X → 2Y and B ⊆ Y let

F−1(B) = {x ∈ X : F (x) ∩B 6= ∅}.

Let us suppose X and Y are topological spaces. The function F is said to be lower
(upper) semicontinuous, if for each open (closed) subset B of Y , F−1(B) is an open
(closed) subset of X. When F is lower and upper semicontinuous, then it is affirmed

F is continuous. The function F from X to 2Y , is defined by F (x) = F (x), where
B denotes the closure of a subset B of Y , and if Y is a topological vector space,
co(F ) stands for the function from X to 2Y defined by co(F )(x) = co(F (x)), where
co(B) represents the convex hull of B. A multifunction H : Ω → 2X is said to be
measurable, if for each open set A of X, H−1(A) ∈ F .

In the sequel, (X, d) denotes a metric space and whenever E is a subset of X,
τE denotes the topology of E induced by d. In this work we use the definition of
condensing function given by Tarafdar et al. in [21]. Indeed, F : E → 2X is said to be
condensing, if for each subset C of E such that γ(C) > 0, one has γ(F (C)) < γ(C),
where F (C) =

⋃
x∈C F (x) and γ is the Kuratowski measure of noncompactness, i.e.,

for each bounded subset A of E,

γ(A) = inf{ε > 0 : A is covered by a finite number of sets of diameter ≤ ε}.

If A is not a bounded subset of E, we assign the measure of noncompactness of A to
be infinity, i.e. γ(A) =∞.

Let E be a subset of X, F : E → 2X and hF : E → R be the mapping hF (x) =
d(x, F (x)). As in [17], F is said to be hemicompact, if and only if, every sequence
(xn;n ∈ N) in E satisfying hF (xn) → 0, has a convergent subsequence. We say
F is weakly lower (upper) semicontinuous, if hF is upper (lower) semicontinuous,
and we say F is weakly continuous, if F is both weakly lower and weakly upper
semicontinuous.

Let E be a subset of X and C a subfamily of 2E . We say τE is σ-generated by
C, if for each x ∈ E, {x} ∈ C and for each nonempty open subset A of E, there
exists a sequence (Cn;n ∈ N) in C such that A =

⋃∞
n=0 Cn. Hence, a multifunction

H : Ω → 2E is measurable, whenever for each C ∈ C, H−1(C) ∈ F . Note that
whenever E is separable, τE is σ-generated by the family of all closed balls of E,
and whenever E is separable and locally compact, τE is σ-generated by the family of
nonempty compact subsets of E.

Let E be a subset of X, C a subfamily of 2E and F : E → 2X . We say F is C-almost
hemicompact, if τE is σ-generated by C and for each sequence (xn;n ∈ N) in E and
C ∈ C such that d(xn, C) + hF (xn) → 0, there exists x ∈ C such that hF (x) = 0.
Note that, for multivalued functions having nonempty and closed images, Condition
(A) introduced by Shahzad in [17] is equivalent to be C-almost hemicompact, where
C is the family of all nonempty closed subsets of E.
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It is easy to see that every F weakly upper semicontinuous and condensing is C-
almost hemicompact for each subfamily C of 2E that σ-generates τE and such that
for each C ∈ C, C is closed. This fact is used in Theorem 3.9.

3. Main results

Proposition 3.1. Let E ⊆ X and F : E → 2X .

(3.1.1) If F is lower semicontinuous, then F is weakly lower semicontinuous.
(3.1.2) If F is upper semicontinuous, then F is weakly upper semicontinuous.

Proof. Let suppose F is lower semicontinuous. Let α > 0 and A = {x ∈ E :
d(x, F (x)) < α}. In order to prove that A is an open set, let suppose A 6= ∅ and choose
a ∈ A. Let ε = α − d(a, F (a)) and y ∈ F (a) such that d(a, y) < ε/3 + d(a, F (a)).
Since F is lower semicontinuous, there exists a neighborhood U ′(a) of a such that
F (u) ∩ B(y, ε/3) 6= ∅ for all u ∈ U ′(a). Let U(a) = U ′(a) ∩ B(a, ε/3), u ∈ U(a)
and bu ∈ F (u) ∩ B(y, ε/3). One has d(u, bu) ≤ d(u, a) + d(a, y) + d(y, bu) < α and
consequently, d(u, F (u)) < α. This proves that A is an open set and therefore, (3.1.1)
holds.

Next suppose F is upper semicontinuous. Let α ∈ R andA = {x ∈ E : d(x, F (x)) >
α}. Let us prove A is an open set. Let a ∈ A and choose β, γ ∈ R such that γ > β > α
and d(a, F (a)) > γ. Let G = {y ∈ E : d(y, F (a)) < (γ − β)/2}. Since F (a) ⊆ G,
G is open and F is upper semicontinuous, there exists U ′(a) neighborhood of a such
that for each x ∈ U ′(a), F (x) ⊆ G. This implies that for each x ∈ U ′(a) and each
y ∈ F (x), d(y, F (a)) < (γ − β)/2. Hence,

γ < d(a, F (a)) ≤ d(a, y) + d(y, F (a)) < d(a, y) + (γ − β)/2.

Thus, d(a, y) > (γ + β)/2 and consequently, d(a, F (x)) ≥ (γ + β)/2. Let U(a) =
U ′(a) ∩B(a, β − α) and note that for each x ∈ U(a),

β < d(a, F (x)) ≤ d(a, x) + d(x, F (x)) < β − α+ d(x, F (x)).

This proves that U(a) ⊆ A and therefore, hF is lower semicontinuous, which concludes
the proof. �

Remarks.

(R1) Let F : R→ 2R and G : R→ 2R the multivalued functions defined by

F (x) =

{
{0} si x 6= 0

[−1, 1] si x = 0,
and G(x) =

{
[−1, 1] si x 6= 0
{0} si x = 0.

From page 39 in [1], F is not lower semicontinuous and G is not upper
semicontinuous. However, hF and hG are continuous, indeed, for each x ∈ R,
hF (x) = |x| and

hG(x) =

{
|x| − 1 if |x| > 1

0 if |x| ≤ 1.

Hence, F and G are weakly continuous.
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(R2) Let E ⊆ X and F : E → 2X . Since hF = hF , F is weakly lower or upper

semicontinuous, if and only if, F is so.
(R3) If F : E ⊆ X → 2X is hemicompact and weakly upper semicontinuous, then

F is C-almost hemicompact, for each C ⊆ CD(E) such that τE is σ-generated
by C, where CD(E) is the family of all closed subsets of E.

Proposition 3.2. Let E ⊆ X, F : E → 2X weakly upper semicontinuous, K the
family of nonempty compact subsets of E and suppose τE is σ-generated by K. Then,
F is K-almost hemicompact.

Proof. Let (xn;n ∈ N) be a sequence in E and let K ∈ K such that d(xn,K) +
hF (xn) → 0. Since d(xn,K) → 0, there exist an increasing sequence (nk; k ∈ N) in
N and x ∈ K such that xnk

→ x. Hence, hF (x) ≤ lim inf hF (xnk
) = 0 and therefore,

hF (x) = 0. �

Theorem 3.3. Let E be a complete and separable subset of X, F : Ω × E → 2X be
a multifunction and C ⊆ 2E. Suppose the following two conditions hold:

(3.3.1) For each ω ∈ Ω, F (ω, ·) is weakly lower semicontinuous, C-almost hemicom-
pact and there exists xω ∈ E such that xω ∈ F (ω, xω).

(3.3.2) For each x ∈ E, F (·, x) is measurable.

Then, there exists ξ : Ω → X measurable such that for each ω ∈ Ω, ξ(ω) ∈
F (ω, ξ(ω)).

Proof. Let H : Ω → 2E such that H(ω) = {x ∈ E : x ∈ F (ω, x)}. Thus, H(ω) 6= ∅.
Since for each x ∈ E, {x} ∈ C and F (ω, ·) is C-almost hemicompact, H(ω) is closed.
For each x ∈ E, F (·, x) is measurable and hence the function hF : Ω×E → R defined
by hF (ω, x) = d(x, F (ω, x)) is measurable at the first variable. For each C ∈ C define
Dn = {x ∈ E : d(x,C) < 1/n}∩D, (n ≥ 1), where D is a dense and countable subset
of E.

Let L(C) =
⋂

n≥1

⋃
x∈Dn

{ω ∈ Ω : hF (ω, x) < 1/n}. Hence, L(C) is measurable

and by defining B =
⋂

n≥1

⋃
x∈C{ω ∈ Ω : hF (ω, x) < 1/n} one has H−1(C) ⊆ B.

Let us prove that B ⊆ L(C) to obtain H−1(C) ⊆ L(C). Let ω ∈ B. For each n ≥ 1
there exists xn ∈ C such that hF (ω, xn) < 1/n. Let Gn(ω) = {x ∈ X : hF (ω, x) <
1/n} ∩ B(xn, 1/n). The upper semicontinuity of hF (ω, ·) implies that Gn(ω) is a
neighborhood of xn and hence, there exists x ∈ Gn(ω)∩D(C). That is hF (ω, x) < 1/n
and x ∈ Dn, which proves that ω ∈ L(C) and consequently H−1(C) ⊆ L(C).

Let us prove that L(C) ⊆ H−1(C). Let ω ∈ L(C). Thus, for each n ≥ 1 there
exists xn ∈ Dn such that hF (ω, xn) < 1/n and d(xn, C) < 1/n. Since F (ω, ·) is C-
almost hemicompact, there exists x ∈ C such that hF (x) = 0. That is, x ∈ H(ω)∩C
and therefore, ω ∈ H−1(C).

It has been proved that for each C ∈ C, H−1(C) = L(C) and thus, H is measurable.
It follows from the Kuratowsky and Ryll-Nardzewski theorem (cf. [13]) that H has a
measurable selector ξ, which complete the proof. �

The above result is indeed a strict generalization of Theorem 2.1 by Shahzad in [17]
since there are set valued functions which are not continuous and however they are



WEAK CONDITIONS FOR EXISTENCE OF RANDOM FIXED POINTS 87

weakly continuous. Furthermore, according to (R1), there exist non-semicontinuous
(lower and upper) multifunctions which are weakly continuous. Even, the corollary
below is also an extension of this theorem since its author considers the function F
being continuous and the family C as the family of all closed subsets of E.

Corollary 3.4. Let E be a complete and separable subset of X, F : Ω× E → 2X be
a multifunction and C ⊆ 2E. Suppose the following two conditions hold:

(3.4.1) For each ω ∈ Ω, F (ω, ·) is lower semicontinuous, C-almost hemicompact and
there exists xω ∈ E such that xω ∈ F (ω, xω).

(3.4.2) For each x ∈ E, F (·, x) is measurable.

Then, there exists ξ : Ω → X measurable such that for each ω ∈ Ω, ξ(ω) ∈
F (ω, ξ(ω)).

Proof. It directly follows from the preceding theorem and Proposition 3.1. �

Corollary 3.5. Let E be a locally compact, separable and complete subset of X and
F : Ω× E → 2X be a multifunction. Suppose the following two conditions hold:

(3.5.1) For each ω ∈ Ω, F (ω, ·) is weakly continuous and there exists xω ∈ E such
that xω ∈ F (ω, xω).

(3.5.2) For each x ∈ E, F (·, x) is measurable.

Then, there exists ξ : Ω→ X measurable such that for each ω ∈ Ω, ξ(ω) ∈ F (ω, ξ(ω)).

Proof. Let K be the family of all nonempty compact subsets of E. It is clear that
for each x ∈ E, {x} ∈ K and since E is locally compact and separable, it follows
from Theorem 7.2 (page 241) in [6] that τE is σ-generated by K. Moreover, for each
ω ∈ Ω, F (ω, ·) is weakly upper semicontinuous and thus, by Proposition 3.2, F (ω, ·) is
K-almost hemicompact. Therefore, the conclusion of this corollary is obtained from
Theorem 3.3. �

Recently, by following a Caristi’s idea, Khamsi proved a theorem (Theorem 4 in
[11]) which we use to obtain another result on random fixed point below.

Corollary 3.6. Let E be a complete and separable metric space, F : Ω×E → 2E be a
multifunction, φ : E → [0,∞[ a lower semicontinuous function and C ⊆ 2E. Suppose
the following two conditions hold:

(3.6.1) For each ω ∈ Ω, F (ω, ·) is weakly lower semicontinuous, C-almost hemicom-
pact and for all x ∈ E there exists y ∈ F (ω, x) such that d(x, y) ≤ φ(x)−φ(y).

(3.6.2) For each x ∈ E, F (·, x) is measurable.

Then, there exists ξ : Ω → X measurable such that for each ω ∈ Ω, ξ(ω) ∈
F (ω, ξ(ω)).

Proof. It directly follows from Theorem 3.3 and Theorem 4 in [11]. �

The following result generalizes or improves known results in the literature.
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Lemma 3.7. Let (X, d) be a metric space, and (xn;n ∈ N) and (yn;n ∈ N) be two
sequences in X such that d(xn, yn)→ 0. Then γ(A) = γ(B), where A = {xn : n ∈ N}
and B = {yn : n ∈ N}.

Proof. Let B(A, ε) = {y ∈ X : d(y,A) < ε}. Since d(xn, yn) → 0, given ε > 0, there
exists N ∈ N, such that d(xn, yn) < ε, for any n ≥ N . Thus d(yn, A) ≤ d(yn, xn) < ε
and consequently, for each n ≥ N , yn ∈ B(A, ε). We have, B ⊆ {y0, . . . , yN}∪B(A, ε)
and hence γ(B) ≤ γ(B(A, ε)) ≤ γ(A) + 2ε. This fact implies that γ(B) ≤ γ(A) and
analogously γ(A) ≤ γ(B). Therefore, the proof is complete. �

Lemma 3.8. Let (X, d) be a metric space, E a subset of X, C the family of all
closed subsets of E such that τE is σ-generated by C and F : E → 2X a weakly
upper semicontinuous and condensing multivalued function. Then, F is C-almost
hemicompact.

Proof. Let C ∈ C and (xn;n ∈ N) a be a sequence in E such that d(xn, C) +
d(xn, F (xn)) → 0 as n → ∞. Let A = {xn : n ∈ N} and suppose γ(A) > 0.
Since d(xn, F (xn)) → 0 as n → ∞, there exists a sequence (yn;n ∈ N) such
that for each n ∈ N, yn ∈ F (xn) and hence, d(xn, yn) → 0. It follows from
Lemma 3.7 that γ(A) = γ(B), where B = {yn : n ∈ N}. Since F is condensing,
γ(∪n∈NF (xn)) < γ(A) = γ(B), which is a contradiction due to B ⊆ ∪n∈NF (xn).
Consequently, γ(A) = 0 and thus, (xn;n ∈ N) has a subsequence (xnk

; k ∈ N)
converging to a point x0 ∈ X. But d(x0, C) ≤ d(x0, xnk

) + d(xnk
, C) and hence

d(x0, C) = 0. Since C is closed, x0 ∈ C. Moreover, F is weakly upper semicontinuous
and consequently

d(x0, F (x0)) ≤ lim inf
k→∞

d(xnk
, F (xnk

)) = 0.

Therefore, F is C-almost hemicompact, which concludes the proof. �

The following result generalizes or improves known results in the literature.

Theorem 3.9. Let E be a nonempty, bounded, closed, convex and separable subset
of a Banach space X and F : Ω × E → 2E be a multifunction with convex images
satisfying the following two conditions:

(3.9.1) For each ω ∈ Ω, F (ω, ·) is lower semicontinuous, weakly upper semicontinuous
and condensing.

(3.9.2) For each x ∈ E, F (·, x) is measurable.

Then, there exists ξ : Ω→ E measurable such that for each ω ∈ Ω, ξ(ω) ∈ F (ω, ξ(ω)).

Proof. Let C be the family of all closed subsets of E and fix ω ∈ Ω. Since F (ω, ·) is
condensing and weakly upper semicontinuous, from Lemma 3.8 it is C-almost hemi-
compact. From Corollary 3.4, it remains to prove that there exist xω ∈ E such that
xω ∈ F (ω, xω).

Lemma 3 by Tarafdar et al. in [21] implies that there exists a nonempty compact
convex subset K(ω) of E such that for each x ∈ K, F (ω, x) ⊂ K(ω). We continue
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denoting by F (ω, ·) the restriction of F (ω, ·) to K(ω). On the other hand, from
(3.9.1), (3.9.2), and Lemma 2 in [7], F (ω, ·) : K(ω)→ 2E is lower semicontinuous and
hence by the Michael Selection Theorem [14], there exists fω : K(ω)→ E continuous
such that for each x ∈ K(ω), fω(x) ∈ F (ω, x). We have fω(K(ω)) ⊂ K(ω) and
consequently the Schauder Theorem (see for instance, Theorem 9.5, Chapter V in
[4]) implies that there exists xω ∈ K(ω) such that xω = fω(xω) ∈ F (ω, xω), which
concludes the proof. �

Acknowledgements. This work was partially supported by Dirección de Investi-
gación e Innovación de la Pontificia Universidad Católica de Valparáıso under grant
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