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1. INTRODUCTION

Let (X,P) be gauge space, Y C X a nonempty subset of X and f:Y — X an
operator. In what follow we shall use the following notations:

Fr={z €Y : f(z) =z} — the fixed points set of f;
I(fy={ZCY: f(Z)C Z,Z # 0} — the set of invariant subsets of f;
(MI); = U Z — the maximal invariant subset of f;
zZel(f)
(BA)f(z*) ={x € Y : f*(x) is defined for all n € N and f”(a:)gx* € Fr}.

— the attraction basin of x* € Fy with respect to f;

(BA)s = U(BA)s(z*) — the attraction basin of f;
(PH)p = ((PH)a,)aca, Where
(PH)q4, (A, B) := max (21618 blgg do(a,b), Slelg ;relg da(a,b))

In [3], the authors, using the weakly Picard operator technique, give some data
dependence results for the fixed points of nonself operators in a metric space. In this
paper, the data dependence of fixed points for several classes of non-self generalized
contractions in gauge spaces is studied.

2. PICARD AND WEAKLY PICARD NON-SELF OPERATORS

We begin our considerations by some definitions. Let X be a nonempty set and
let P = (da),c4 be a separated gauge structure on X. Then the pair (X, P) is said
to be a gauge space (see [4], [10], [11]). Let Y be a nonempty subset of X.
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Definition 2.1. Let (X,P) be a gauge space, Y C X and let f :' Y — X be an
operator. We say that the operator f is a contraction with respect to P if for every
a € A there exists 0 < a, < 1 such that

do(f(2), f(1) < anda(z,y), for every x,y €Y (2.1)

In this case we will say that f is an A-contraction, where A = (ay)acA-

Definition 2.2. An operator f:Y — X is said to be a Picard operator (PO) if:

(i) Fr = {23}

(ii) (MI)y = (BA)s.
Definition 2.3. An operator f : Y — X is said to be a weakly Picard operator
(WPO) if:

(1) Fy # 0;

(if) (M) = (BA);.
Definition 2.4. For each WPO f :Y — X we define the operator f> : (BA)y —
(BA)g by f>(z) = lim f"(x).

n—oo

Remark 2.1. Notice that f*((BA)y) = Fy, thus f is a set retraction of (BA);
on Fy.

Remark 2.2. In terms of weakly Picard self operators theory, the above definitions
take the following form:

f:Y = X isa WPO (PO) iff [ |, (MI); — (MI); is a WPO (PO).

Let U = (Yo )aca, where ¢, : Ry — R, is increasing, continuous in 0 and ¢, (0) =
0, for every a € A.

Definition 2.5. An operator f : Y — X is said to be a UV-WPO (V-PO) if f is a
WPO (PO) and

do(z, [ (2)) < Yalda(z, f(x)) for every z € (MI); and every o € A.

If o (t) := cat, t € Ry, for some ¢, > 0 for every o € A, we say that f is a
C-WPO (C-PO), where C = (co)acAa-
Example 2.1. Let Y be a nonempty subset of the gauge space (X, P) and let f : Y —

X be an A-contraction such that Fy = {x}}. Then f is a C-PO with C = (1_1% e’

Indeed, for z € (M) and o € A we have that do(f"(z),2}) — 0 as n — oo, ie.,
fis a PO. On the other hand, for x € (MI); and a € A we have

do(, ["(2)) < do(, f(2)) + do(f (@), [2(2)) + o + do ([ (2), [M(2))
<(I+an+ ai + o+ aZﬁl)da(x, f(x)

L f(2)).

1—a,
Hence do(z,2%) < ﬁda(a@ f(x)), for every a € A.

<
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Example 2.2. Let Y be a nonempty subset of the gauge space (X,P) and let f :
Y — X be a generalized contraction of Cirié-Reich-Rus type, that is for every a € A

do(f(2), f(y)) < aada(z, f(2)) + bada(y, f(y)) + cada(z,y) for all z,y €Y, (2.2)
where G, by, Co are non-negative numbers with ay, + by + co < 1. We suppose that
_ * : _ — 1—by
Fr= {;vf} Then f is a C-PO, where C (71_%_”‘*_%)(1@4'
Indeed, if we let in (2.2) y = f(z), z € (BA), we obtain
da(f(l'), fz(z)) S aada(xa f(l’)) + bad&(f(z)7 fQ(‘r)) + Cad(x(xa f(SC))
and thus

do(z, f(z)), for all z € (BA)y and alla € A, (2.3)

Then, for every n € N* and every « € A we have

Qoo [Y(@)) < dale, f(2)) + da(F (@), 2@) + ot da (" (), (@)
< Lobe g (e f(a)).

1—ay — by — Co
Consequently, f is a C-PO.

Example 2.3. Let Y be a nonempty subset of the gauge space (X,P) and let f :
Y — X be a generalized contraction of Ciric type, that is for every a € A

do(f (), f() < gamax{da(x,y), da(@, f(%)),da(y, f(y)), da(z, f()), daly, f(2))}
forallz,y €Y and some q, € [0, %) We suppose that Fy = {x}} Then f is a C-PO,
where C' = ( 1= da ) e

1-2qq

Example 2.4. Let Y be a nonempty subset of the gauge space (X,P) and let f :
Y — X be a graphic contraction with closed graph, i.e., for every a € A there exists
ao € (0,1) such that, for all x for which f?(x) is defined we have:

do(f*(2), f(2)) < aada(z, f(2)).
We suppose that Fy # (0. Then f is a C-WPO, where C = ( L ) W
ae

1—ag,

Indeed, the graphic contraction condition implies that for every « € (MI)s, the
sequence (f™(x)) is convergent. Since f has closed graph the limit of the sequence
(f™(z)) is a fixed point of f. Thus f is a WPO. In addition, if € (BA)¢, then for
every a € A, we have

do(@, f*(2)) < da(2, f(2)) + da(f(2), f2(2)) + oo + da(f*7H (2), [ (2))
<(1+ag+a+...+a? Hd(z, f(z))

1

o da(e S (@)

Letting n — oo, we obtain d, (x, f°(z)) < ﬁda(x, f(x)) for all o € A.

<
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Example 2.5. Let (X, P) be a gauge space, let & = (va)aca be a family of functions
such that for every a € A, ¢, : Ry — Ry is a strict comparison function (see [8]),
i.e., for every a € A:

(a) @q is increasing;

(b) @l (t) = 0 asn — oo, for allt € Ry;

() t — @a(t) = 400 ast — oc.
LetY C X and f:Y — X be a strict ®- contraction with respect to P, i.e.,

do(f(z), f(y)) < va(dal(z,y)) foralz,y €Y and all a € A.

Suppose that Fy # 0. Then f is a o -PO, with Vo = (1, )aca where Py, : Ry —
]R-‘rv

Ypo () =sup{t € Ry : = a(t) <n},
for every a € A.
Notice that Fy = {z*}. Then, for z € (BA); and o € A we have
do(2,2%) < da(z, f(2)) + da(f(z),27)
< da(z, f(2)) + palda(z, 7).
Hence d(nx,2*) — pa(da(z,2*)) < do(z, f(x)). Thus we get that do(z,z*) <

Yoo (da(z, f(z))) for every a € A. Therefore f is a - PO.

Remark 2.3. It is obvious that if f : X — X is a WPO (PO), then fl|y : Y = X is
also a WPO (PO).

3. DATA DEPENDENCE FOR ¥-WPOs AND ¥-POs

Let (X, P) be a gauge space, Y C X be a nonempty subset of X and f,g:Y — X
two operators.

Theorem 3.1. Assume that the following conditions are satisfied:

(i) f and g are V-WPOs;

(ii) Fg - (BA)f and Ff - (BA)Q;

(iil) for every o € A there exists ng > 0 such that

do(f(x),9(x)) <ne  foralzeY.
Then
(PH)q, (Ff, Fg) < a(na), for every o € A.
Proof. If x € Fy, and o € A then
do(z, () < Yalda(z, f(2))) = Yaldalg(z), f(2))) < Pa(na).

If y € Fy, and a € A then

do (Y, 97 (¥)) < Valda(y, 9(y))) = Yalda(f(Y), () < Ya(na)-

Now the conclusion follows from the next lemma from [8]. O
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Lemma 3.1. Let (X,d) be a metric space and A, B C X be two nonempty sets. If
7> 0 4s such that:

(1) for each a € A there exists b € B such that d(a,b) < T;

(2) for each b € B there exists a € A such that d(a,b) < T,

then (PH)q(A,B) <.

In the case of Picard operators, Theorem 3.1 takes the following form:

Theorem 3.2. Assume that the following conditions are satisfied:
() F is a W-PO (Fy = {x}});
(i) 0 # Fy C (BA)y;
(iil) for every oo € A there exists no, > 0 such that
do(f(2),9(x)) <ne forallzeY.
Then
do(7},75) < Ya(na), for all xy € Fy and all a € A.

For the case of strict ®-contractions we have the following result:

Theorem 3.3. Assume that the following conditions are satisfied:
(i) f is a strict ®- contraction with respect to P with Fy = {x}};

(i) Fy # 0;
(iii) for every o € A there exists no > 0 such that
do(f(2),9(2)) <N, foralzeY.
Then
do(Ty,2%) <y, (M), for all x; € Fy and all a € A.
Proof. Let xj € F, and a € A. We have

do(zy, 77) < do(x), f(2;)) + da(f(2}), 27)
< No + Palda(zy, v})).
Hence do(zy,2}7) — palda(zy,2})) < na, le, we get that do(zy,z}) <
Yy, (na) for every a € A.

We also have the following result:

Theorem 3.4. Assume that the following conditions are satisfied:

(i) there exist an,bs € Ry, ag + 2by < 1 such that

do(f(2), f(y)) < aad(z,y) + ba[da(z, f(2)) + da(y, f(y))]

for all z,y € X and each o € A. Suppose that Fy = {x}},

(i) F, # 0;

(ili) for every a € A there exists no > 0 such that

do(f(2),9(z)) < No, forall x €Y.
Then
1+0

do(7y, %) < ﬁna, forallz; € Fy and all o € A. (3.1)
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Proof. Let xj € F, and a € A. We have
da(zy,27) < da(zy, f(zg)) + da(f(zy), 2F)
< Na + aada(2y, 2F) + bada(zy, f(2y))
< Mo+ aada('T;vx?) + bala-
O

Remark 3.1. In applications one use continuation principles in order to satisfies

condition (i) in Theorem 3.1 and Theorem 3.2 (see [1], [2], [5], [7]).

4. DATA DEPENDENCE FOR OPERATORS SATISFYING THE W-CONDITION

4.1. The V- condition in the case F; = {m;‘c} Let U = (o)aca, where ¢, :
Ry — Ry is increasing, continuous in 0 and %,(0) = 0, for every o € A. Let (X, P)
be a gauge space, Y C X and f:Y — X be an operator with Fy = {2}}.

Definition 4.1. We say that the operator f satisfies the W-condition if for every
a € A one have

da(l‘,l‘}) < ¢a(da(1',f(5€))) fOT’ allz €Y.

Example 4.1. If f : Y — X is an A-contraction then f satisfies the V-condition

t
l1—aq

with respect to ¥ = ( .
acA

Example 4.2. If f : Y — X is a strict ®-contraction with respect to P, (with ® :=
(0a)aca a family of strict comparison functions), then f satisfies the WU-condition,
where ¥ = (Vo) aca, With ¥ (r) =sup{t € Ry : t — @ (t) <1}, for any o € A.

The above examples give rise to the following problems:

Problem 4.1. Which generalized contractions on gauge space satisfy the ¥-condition,
where U = (Vo) aca, for some functions vy : Ry — R4 7

Problem 4.2. Let Y = X. For which generalized contractions we have that:
(i) f satisfies the U- condition with respect to ¥ = (o)acA;
(i) f is not a ¥-PO.

Theorem 4.1. Let (X,P) be a gauge space, Y C X and f:Y — X be an operator
with Fr = {x}} If f satisfies the V-condition, then the fixed point problem is well

posed for f.

Proof. Let (xn)neny C Y be such that do(xn, f(zn)) — 0 asn — oo, for every
a € A. Then, from the ¥-condition, for every a € A, we have that da(a:n,z}) <
Va(da(@n, f(25))) = 0 asn — oco. U

Theorem 4.2. Let (X, P) be a gauge space, f :Y — X be an operator with Fy =
{x}} Assume that the following conditions are satisfied:

(i)Y =X;

(ii) f satisfies the W- condition with respect to ¥ = (Vo)acA;

(iii) f is asymptotically regular, i.e., for every a € A

do(f™(2), " (z)) = 0 as n — oo for every x € X.
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Then f is a U-PO.
Proof. Let x € X. For every a € A, we have that
do(f" (@), 2}) < Yalda(f"(2), [T (2))) = 0 asn — .
So, f is a PO. Now (ii) implies that f is a U-PO. O
Now we state a data dependence result for operators satisfying the ¥-condition.

Theorem 4.3. Let (X,P) be a gauge space, Y C X and f,g : Y — X be two
operators. We suppose that:

(i) f satisfies the V- condition;

(i) for every a. € A there exists 1o > 0 such that

do(f (%), 9(x)) < 7a; for every z €Y.
Then
do (7}, 7y) < Ya(na) for every z; € Fy and every a € A.

Proof. Let xj € F, and a € A. Then (i) and (ii) guarantee that:

do (g, 27) < Yaldalzy, f(24))) = Yaldalg(ay), f(z4)) < Ya(na)-

In the case of ®-contractions (see Example 2.5) we have the following result:

Theorem 4.4. Let (X,P) be a gauge space, Y C X and f,g : Y — X be two
operators. We suppose that:

(i) f is a ®-contraction;

(i) for every o € A there exists 1o > 0 such that

do(f(2),9(2)) < Na for every x €Y.

Then
do (7}, 7)) < Ya(na) for every z, € Fy and every a € A.

4.2. The U-condition in the case Fy # . Let U = (¢ )aca where ¢, : Ry — R
is increasing, continuous in 0 and ¥,(0) = 0, for every o € A. Let (X,P) be a gauge
space, Y C X and f:Y — X be an operator with Fy # (.

Definition 4.2. The operator f satisfies the W- condition if there exists a set retrac-
tion x¢ : Y — Fy such that

do(z,x¢(2)) < Ya(da(z, f(x))) for every z €Y and o € A.

Example 4.3. LetY = X and let f : X — X be a V-WPO. If we take xy = f*°,
then f satisfies the V-condition.

Example 4.4. Let (X, P) be a gauge space, Y C X and f:Y — X. We suppose that
(1) Y = U Y, is a partition of Y such that FyNY; = {zf}, i € I;
i€l
(ii) fly;, : Yi = X is an A-contraction, i € I.

Then f satisfies the V- condition with respect to ¥ = (1_ta ) N
“/ ae
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Problem 4.3. Which generalized contractions on gauge space satisfy the ¥-condition
with respect to some family of functions ¥ = (V¥)aca?

Problem 4.4. In the case Y = X, for which generalized contractions on gauge space
we have that:

(i) f satisfies the U-condition;

(ii) f is not a T—WPO?

We have the following data dependence result.

Theorem 4.5. Let (X, P) be a gauge space, Y C X and f,g:Y — X two operators.
We suppose that:

(i) f, g satisfy the ¥-condition and Fy # 0;

(ii) for every a € A there exists no > 0 such that

do(f(2),9(2)) < Ne, foralzeY;
(i) F, #0.
Then for every a € A we have that (PH)a, (Ff, Fy) < ¥Ya(Na)-

Proof. Let x € Fy and let « € A. Then

do(z, x1(2)) < aldalz, f(2))) = Ya(da(g(x), f(2))) < talna)-
Similarly, if y € F, then

da (Y, Xg(Y)) < Yaldaly, 9(v))) = Yalda(f(y): 9())) < Palna)-
Now from Lemma 3.1 we have that (PH)q, (Ff, Fy) < (1) for every a € A.
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