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1. Introduction

Let (X,P) be gauge space, Y ⊂ X a nonempty subset of X and f : Y → X an
operator. In what follow we shall use the following notations:

Ff = {x ∈ Y : f(x) = x} − the fixed points set of f ;
I(f) = {Z ⊂ Y : f(Z) ⊂ Z,Z 6= ∅} − the set of invariant subsets of f ;
(MI)f =

⋃
Z∈I(f)

Z − the maximal invariant subset of f ;

(BA)f (x∗) = {x ∈ Y : fn(x) is defined for all n ∈ N and fn(x)P−→x
∗ ∈ Ff}.

− the attraction basin of x∗ ∈ Ff with respect to f ;
(BA)f = ∪(BA)f (x∗)− the attraction basin of f ;
(PH)P = ((PH)dα)α∈A , where

(PH)dα(A,B) := max

(
sup
a∈A

inf
b∈B

dα(a, b), sup
b∈B

inf
a∈A

dα(a, b)

)
In [3], the authors, using the weakly Picard operator technique, give some data

dependence results for the fixed points of nonself operators in a metric space. In this
paper, the data dependence of fixed points for several classes of non-self generalized
contractions in gauge spaces is studied.

2. Picard and weakly Picard non-self operators

We begin our considerations by some definitions. Let X be a nonempty set and
let P = (dα)α∈A be a separated gauge structure on X. Then the pair (X,P) is said
to be a gauge space (see [4], [10], [11]). Let Y be a nonempty subset of X.
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Definition 2.1. Let (X,P) be a gauge space, Y ⊂ X and let f : Y → X be an
operator. We say that the operator f is a contraction with respect to P if for every
α ∈ A there exists 0 < aα < 1 such that

dα(f(x), f(y)) ≤ aαdα(x, y), for every x, y ∈ Y (2.1)

In this case we will say that f is an A-contraction, where A = (aα)α∈A.

Definition 2.2. An operator f : Y → X is said to be a Picard operator (PO) if:
(i) Ff = {x∗f};
(ii) (MI)f = (BA)f .

Definition 2.3. An operator f : Y → X is said to be a weakly Picard operator
(WPO) if:

(i) Ff 6= ∅;
(ii) (MI)f = (BA)f .

Definition 2.4. For each WPO f : Y → X we define the operator f∞ : (BA)f →
(BA)f by f∞(x) = lim

n→∞
fn(x).

Remark 2.1. Notice that f∞((BA)f ) = Ff , thus f∞ is a set retraction of (BA)f
on Ff .

Remark 2.2. In terms of weakly Picard self operators theory, the above definitions
take the following form:

f : Y → X is a WPO (PO) iff f |(MI)f : (MI)f → (MI)f is a WPO (PO).

Let Ψ = (ψα)α∈A, where ψα : R+ → R+ is increasing, continuous in 0 and ψα(0) =
0, for every α ∈ A.

Definition 2.5. An operator f : Y → X is said to be a Ψ-WPO (Ψ-PO) if f is a
WPO (PO) and

dα(x, f∞(x)) ≤ ψα(dα(x, f(x)) for every x ∈ (MI)f and every α ∈ A.

If ψα(t) := cαt, t ∈ R+, for some cα > 0 for every α ∈ A, we say that f is a
C-WPO (C-PO), where C = (cα)α∈A.

Example 2.1. Let Y be a nonempty subset of the gauge space (X,P) and let f : Y →
X be an A-contraction such that Ff = {x∗f}. Then f is a C-PO with C =

(
1

1−aα

)
α∈A

.

Indeed, for x ∈ (MI)f and α ∈ A we have that dα(fn(x), x∗f )→ 0 as n→∞, i.e.,

f is a PO. On the other hand, for x ∈ (MI)f and α ∈ A we have

dα(x, fn(x)) ≤ dα(x, f(x)) + dα(f(x), f2(x)) + ...+ dα(fn−1(x), fn(x))

≤ (1 + aα + a2
α + ...+ an−1

α )dα(x, f(x))

≤ 1

1− aα
dα(x, f(x)).

Hence dα(x, x∗f ) ≤ 1
1−aα dα(x, f(x)), for every α ∈ A.
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Example 2.2. Let Y be a nonempty subset of the gauge space (X,P) and let f :

Y → X be a generalized contraction of Ćirić-Reich-Rus type, that is for every α ∈ A

dα(f(x), f(y)) ≤ aαdα(x, f(x)) + bαdα(y, f(y)) + cαdα(x, y) for all x, y ∈ Y, (2.2)

where aα, bα, cα are non-negative numbers with aα + bα + cα < 1. We suppose that

Ff = {x∗f}. Then f is a C-PO, where C =
(

1−bα
1−aα−bα−cα

)
α∈A

.

Indeed, if we let in (2.2) y = f(x), x ∈ (BA)f , we obtain

dα(f(x), f2(x)) ≤ aαdα(x, f(x)) + bαdα(f(x), f2(x)) + cαdα(x, f(x))

and thus

dα(f(x), f2(x)) ≤ aα + cα
1− bα

dα(x, f(x)), for all x ∈ (BA)f and all α ∈ A. (2.3)

Then, for every n ∈ N∗ and every α ∈ A we have

dα(x, fn(x)) ≤ dα(x, f(x)) + dα(f(x), f2(x)) + ...+ dα(fn−1(x), fn(x))

≤ 1− bα
1− aα − bα − cα

dα(x, f(x)).

Consequently, f is a C-PO.

Example 2.3. Let Y be a nonempty subset of the gauge space (X,P) and let f :
Y → X be a generalized contraction of Ciric type, that is for every α ∈ A

dα(f(x), f(y)) ≤ qα max{dα(x, y), dα(x, f(x)), dα(y, f(y)), dα(x, f(y)), dα(y, f(x))}

for all x, y ∈ Y and some qα ∈ [0, 1
2 ). We suppose that Ff = {x∗f}. Then f is a C-PO,

where C =
(

1−qα
1−2qα

)
α∈A

.

Example 2.4. Let Y be a nonempty subset of the gauge space (X,P) and let f :
Y → X be a graphic contraction with closed graph, i.e., for every α ∈ A there exists
aα ∈ (0, 1) such that, for all x for which f2(x) is defined we have:

dα(f2(x), f(x)) ≤ aαdα(x, f(x)).

We suppose that Ff 6= ∅. Then f is a C-WPO, where C =
(

1
1−aα

)
α∈A

.

Indeed, the graphic contraction condition implies that for every x ∈ (MI)f , the
sequence (fn(x)) is convergent. Since f has closed graph the limit of the sequence
(fn(x)) is a fixed point of f. Thus f is a WPO. In addition, if x ∈ (BA)f , then for
every α ∈ A, we have

dα(x, fn(x)) ≤ dα(x, f(x)) + dα(f(x), f2(x)) + ...+ dα(fn−1(x), fn(x))

≤ (1 + aα + a2
α + ...+ an−1

α )dα(x, f(x))

≤ 1

1− aα
dα(x, f(x)).

Letting n→∞, we obtain dα(x, f∞(x)) ≤ 1
1−aα dα(x, f(x)) for all α ∈ A.



52 A. CHIŞ-NOVAC

Example 2.5. Let (X,P) be a gauge space, let Φ = (ϕα)α∈A be a family of functions
such that for every α ∈ A, ϕα : R+ → R+ is a strict comparison function (see [8]),
i.e., for every α ∈ A :

(a) ϕα is increasing;
(b) ϕnα(t)→ 0 as n→∞, for all t ∈ R+;
(c) t− ϕα(t)→ +∞ as t→∞.
Let Y ⊂ X and f : Y → X be a strict Φ- contraction with respect to P, i.e.,

dα(f(x), f(y)) ≤ ϕα(dα(x, y)) for all x, y ∈ Y and all α ∈ A.

Suppose that Ff 6= ∅. Then f is a ΨΦ -PO, with ΨΦ = (ψϕα)α∈A where ψϕα : R+ →
R+,

ψϕα(η) = sup{t ∈ R+ : t− ϕα(t) ≤ η},
for every α ∈ A.

Notice that Ff = {x∗}. Then, for x ∈ (BA)f and α ∈ A we have

dα(x, x∗) ≤ dα(x, f(x)) + dα(f(x), x∗)

≤ dα(x, f(x)) + ϕα(dα(x, x∗)).

Hence d(αx, x
∗) − ϕα(dα(x, x∗)) ≤ dα(x, f(x)). Thus we get that dα(x, x∗) ≤

ψϕα(dα(x, f(x))) for every α ∈ A. Therefore f is a ΨΦ- PO.

Remark 2.3. It is obvious that if f : X → X is a WPO (PO), then f |Y : Y → X is
also a WPO (PO).

3. Data dependence for Ψ-WPOs and Ψ-POs

Let (X,P) be a gauge space, Y ⊂ X be a nonempty subset of X and f, g : Y → X
two operators.

Theorem 3.1. Assume that the following conditions are satisfied:
(i) f and g are Ψ-WPOs;
(ii) Fg ⊂ (BA)f and Ff ⊂ (BA)g;
(iii) for every α ∈ A there exists ηα > 0 such that

dα(f(x), g(x)) ≤ ηα for all x ∈ Y.

Then

(PH)dα(Ff , Fg) ≤ ψα(ηα), for every α ∈ A.

Proof. If x ∈ Fg, and α ∈ A then

dα(x, f∞(x)) ≤ ψα(dα(x, f(x))) = ψα(dα(g(x), f(x))) ≤ ψα(ηα).

If y ∈ Ff , and α ∈ A then

dα(y, g∞(y)) ≤ ψα(dα(y, g(y))) = ψα(dα(f(y), g(y))) ≤ ψα(ηα).

Now the conclusion follows from the next lemma from [8]. �
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Lemma 3.1. Let (X, d) be a metric space and A, B ⊂ X be two nonempty sets. If
τ > 0 is such that:

(1) for each a ∈ A there exists b ∈ B such that d(a, b) ≤ τ ;
(2) for each b ∈ B there exists a ∈ A such that d(a, b) ≤ τ,
then (PH)d(A,B) ≤ τ.

In the case of Picard operators, Theorem 3.1 takes the following form:

Theorem 3.2. Assume that the following conditions are satisfied:
(i) f is a Ψ-PO (Ff = {x∗f});

(ii) ∅ 6= Fg ⊂ (BA)f ;
(iii) for every α ∈ A there exists ηα > 0 such that

dα(f(x), g(x)) ≤ ηα for all x ∈ Y.
Then

dα(x∗f , x
∗
g) ≤ ψα(ηα), for all x∗g ∈ Fg and all α ∈ A.

For the case of strict Φ-contractions we have the following result:

Theorem 3.3. Assume that the following conditions are satisfied:
(i) f is a strict Φ- contraction with respect to P with Ff = {x∗f};
(ii) Fg 6= ∅;
(iii) for every α ∈ A there exists ηα > 0 such that

dα(f(x), g(x)) ≤ ηα, for all x ∈ Y.
Then

dα(x∗g, x
∗
f ) ≤ ψϕα(ηα), for all x∗g ∈ Fg and all α ∈ A.

Proof. Let x∗g ∈ Fg and α ∈ A. We have

dα(x∗g, x
∗
f ) ≤ dα(x∗g, f(x∗g)) + dα(f(x∗g), x

∗
f )

≤ ηα + ϕα(dα(x∗g, x
∗
f )).

Hence dα(x∗g, x
∗
f ) − ϕα(dα(x∗g, x

∗
f )) ≤ ηα, i.e., we get that dα(x∗g, x

∗
f ) ≤

ψϕα(ηα) for every α ∈ A. �

We also have the following result:

Theorem 3.4. Assume that the following conditions are satisfied:
(i) there exist aα, bα ∈ R+, aα + 2bα < 1 such that

dα(f(x), f(y)) ≤ aαd(x, y) + bα[dα(x, f(x)) + dα(y, f(y))]

for all x, y ∈ X and each α ∈ A. Suppose that Ff = {x∗f};
(ii) Fg 6= ∅;
(iii) for every α ∈ A there exists ηα > 0 such that

dα(f(x), g(x)) ≤ ηα, for all x ∈ Y.
Then

dα(x∗g, x
∗
f ) ≤ 1 + bα

1− aα
ηα, for all x∗g ∈ Fg and all α ∈ A. (3.1)
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Proof. Let x∗g ∈ Fg and α ∈ A. We have

dα(x∗g, x
∗
f ) ≤ dα(x∗g, f(x∗g)) + dα(f(x∗g), x

∗
f )

≤ ηα + aαdα(x∗g, x
∗
f ) + bαdα(x∗g, f(x∗g))

≤ ηα + aαdα(x∗g, x
∗
f ) + bαηα.

�

Remark 3.1. In applications one use continuation principles in order to satisfies
condition (i) in Theorem 3.1 and Theorem 3.2 (see [1], [2], [5], [7]).

4. Data dependence for operators satisfying the Ψ-condition

4.1. The Ψ- condition in the case Ff = {x∗f}. Let Ψ = (ψα)α∈A, where ψα :

R+ → R+ is increasing, continuous in 0 and ψα(0) = 0, for every α ∈ A. Let (X,P)
be a gauge space, Y ⊂ X and f : Y → X be an operator with Ff = {x∗f}.

Definition 4.1. We say that the operator f satisfies the Ψ-condition if for every
α ∈ A one have

dα(x, x∗f ) ≤ ψα(dα(x, f(x))) for all x ∈ Y.

Example 4.1. If f : Y → X is an A-contraction then f satisfies the Ψ-condition

with respect to Ψ =
(

t
1−aα

)
α∈A

.

Example 4.2. If f : Y → X is a strict Φ-contraction with respect to P, (with Φ :=
(ϕα)α∈A a family of strict comparison functions), then f satisfies the Ψ-condition,
where Ψ = (ψα)α∈A, with ψα(r) = sup{t ∈ R+ : t− ϕα(t) ≤ r}, for any α ∈ A.

The above examples give rise to the following problems:

Problem 4.1. Which generalized contractions on gauge space satisfy the Ψ-condition,
where Ψ = (ψα)α∈A, for some functions ψα : R+ → R+?

Problem 4.2. Let Y = X. For which generalized contractions we have that:
(i) f satisfies the Ψ- condition with respect to Ψ = (ψα)α∈A;
(ii) f is not a Ψ-PO.

Theorem 4.1. Let (X,P) be a gauge space, Y ⊂ X and f : Y → X be an operator
with Ff = {x∗f}. If f satisfies the Ψ-condition, then the fixed point problem is well
posed for f.

Proof. Let (xn)n∈N ⊂ Y be such that dα(xn, f(xn)) → 0 as n → ∞, for every
α ∈ A. Then, from the Ψ-condition, for every α ∈ A, we have that dα(xn, x

∗
f ) ≤

ψα(dα(xn, f(xn)))→ 0 as n→∞. �

Theorem 4.2. Let (X,P) be a gauge space, f : Y → X be an operator with Ff =
{x∗f}. Assume that the following conditions are satisfied:

(i) Y = X;
(ii) f satisfies the Ψ- condition with respect to Ψ = (ψα)α∈A;
(iii) f is asymptotically regular, i.e., for every α ∈ A

dα(fn(x), fn+1(x))→ 0 as n→∞ for every x ∈ X.
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Then f is a Ψ-PO.

Proof. Let x ∈ X. For every α ∈ A, we have that

dα(fn(x), x∗f ) ≤ ψα(dα(fn(x), fn+1(x)))→ 0 as n→∞.
So, f is a PO. Now (ii) implies that f is a Ψ-PO. �

Now we state a data dependence result for operators satisfying the Ψ-condition.

Theorem 4.3. Let (X,P) be a gauge space, Y ⊂ X and f, g : Y → X be two
operators. We suppose that:

(i) f satisfies the Ψ- condition;
(ii) for every α ∈ A there exists ηα > 0 such that

dα(f(x), g(x)) ≤ ηα, for every x ∈ Y.
Then

dα(x∗f , x
∗
g) ≤ ψα(ηα) for every x∗g ∈ Fg and every α ∈ A.

Proof. Let x∗g ∈ Fg and α ∈ A. Then (i) and (ii) guarantee that:

dα(x∗g, x
∗
f ) ≤ ψα(dα(x∗g, f(x∗g))) = ψα(dα(g(x∗g), f(x∗g))) ≤ ψα(ηα).

�

In the case of Φ-contractions (see Example 2.5) we have the following result:

Theorem 4.4. Let (X,P) be a gauge space, Y ⊂ X and f, g : Y → X be two
operators. We suppose that:

(i) f is a Φ-contraction;
(ii) for every α ∈ A there exists ηα > 0 such that

dα(f(x), g(x)) ≤ ηα for every x ∈ Y.
Then

dα(x∗f , x
∗
g) ≤ ψα(ηα) for every x∗g ∈ Fg and every α ∈ A.

4.2. The Ψ-condition in the case Ff 6= ∅. Let Ψ = (ψα)α∈A where ψα : R+ → R+

is increasing, continuous in 0 and ψα(0) = 0, for every α ∈ A. Let (X,P) be a gauge
space, Y ⊂ X and f : Y → X be an operator with Ff 6= ∅.

Definition 4.2. The operator f satisfies the Ψ- condition if there exists a set retrac-
tion χf : Y → Ff such that

dα(x, χf (x)) ≤ ψα(dα(x, f(x))) for every x ∈ Y and α ∈ A.

Example 4.3. Let Y = X and let f : X → X be a Ψ-WPO. If we take χf = f∞,
then f satisfies the Ψ-condition.

Example 4.4. Let (X,P) be a gauge space, Y ⊂ X and f : Y → X. We suppose that
(i) Y =

⋃
i∈I

Yi is a partition of Y such that Ff ∩ Yi = {x∗i }, i ∈ I;

(ii) f |Yi : Yi → X is an A-contraction, i ∈ I.
Then f satisfies the Ψ- condition with respect to Ψ =

(
t

1−aα

)
α∈A

.
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Problem 4.3. Which generalized contractions on gauge space satisfy the Ψ-condition
with respect to some family of functions Ψ = (ψα)α∈A?

Problem 4.4. In the case Y = X, for which generalized contractions on gauge space
we have that:

(i) f satisfies the Ψ-condition;
(ii) f is not a Ψ−WPO?

We have the following data dependence result.

Theorem 4.5. Let (X,P) be a gauge space, Y ⊂ X and f, g : Y → X two operators.
We suppose that:

(i) f, g satisfy the Ψ-condition and Ff 6= ∅;
(ii) for every α ∈ A there exists ηα > 0 such that

dα(f(x), g(x)) ≤ ηα, for all x ∈ Y ;

(iii) Fg 6= ∅.
Then for every α ∈ A we have that (PH)dα(Ff , Fg) ≤ ψα(ηα).

Proof. Let x ∈ Fg and let α ∈ A. Then

dα(x, χf (x)) ≤ ψα(dα(x, f(x))) = ψα(dα(g(x), f(x))) ≤ ψα(ηα).

Similarly, if y ∈ Ff , then

dα(y, χg(y)) ≤ ψα(dα(y, g(y))) = ψα(dα(f(y), g(y))) ≤ ψα(ηα).

Now from Lemma 3.1 we have that (PH)dα(Ff , Fg) ≤ ψ(ηα) for every α ∈ A.
�
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