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1. Introduction

In this paper, we shall concern with the existence and uniqueness of solutions for
the following impulsive partial hyperbolic fractional order differential equations at
variable times:

(cDr
0u)(x, y) = f(x, y, u(x, y)), if (x, y) ∈ J, x 6= xk(u(x, y)), k = 1, . . . ,m, (1.1)

u(x+, y) = Ik(u(x, y)), if (x, y) ∈ J, x = xk(u(x, y)), k = 1, . . . ,m, (1.2)

u(x, 0) = ϕ(x), u(0, y) = ψ(y), x ∈ [0, a], y ∈ [0, b] (1.3)

where J = [0, a] × [0, b], a, b > 0, cDr
0 is the fractional Caputo derivative of order

r = (r1, r2) ∈ (0, 1] × (0, 1], 0 = x0 < x1 < · · · < xm < xm+1 = a, f : J × Rn →
Rn, Ik : Rn → Rn, k = 1, . . . ,m are given functions and ϕ : [0, a]→ Rn, ψ : [0, b]→
Rn are absolutely continuous functions with ϕ(0) = ψ(0).

The problem of existence of solutions of Cauchy-type problems for ordinary dif-
ferential equations of fractional order in spaces of integrable functions was studied
in numerous works (see [34, 48]), a similar problem in spaces of continuous functions
was studied in [49]. We can find numerous applications of differential equations of
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fractional order in viscoelasticity, electrochemistry, control, porous media, electro-
magnetic, etc. (see [26, 28, 41, 42]). There has been a significant development in
ordinary and partial fractional differential equations in recent years; see the mono-
graphs of Kilbas et al. [36], Lakshmikantham et al. [38], Podlubny [45], Samko et al.
[46], the papers of Abbas and Benchohra [1, 2], Agarwal et al. [3], Belarbi et al. [9],
Benchohra et al. [12, 13, 14, 15], Diethelm [22], Kilbas and Marzan [35], Mainardi
[41], Vityuk and Golushkov [50], Zhang [51] and the references therein.

The theory of impulsive differential equations have become important in some
mathematical models of real processes and phenomena studied in physics, chemical
technology, population dynamics, biotechnology and economics. There has been a
significant development in impulse theory in recent years, especially in the area of im-
pulsive differential equations and inclusions with fixed moments; see the monographs
of Bainov and Simeonov [7], Benchohra et al. [14], Lakshmikantham et al. [37],
Samoilenko and Perestyuk [47], and the references therein. The theory of impulsive
differential equations and inclusions with variable time is relatively less developed due
to the difficulties created by the state-dependent impulses. Some interesting exten-
sions to impulsive differential equations with variable times have been done by Bajo
and Liz [6], Belarbi and Benchohra [8], Benchohra et al. [10, 14, 16], Frigon and
O’Regan [23, 24, 25], Kaul et al. [29], Kaul and Liu [32, 33], Lakshmikantham et al.
[39], and the references cited therein.

Very recently, some extensions to impulsive fractional order differential equations
have been obtained by Agarwal et al. [4], Ait Dads et al. [5], Benchohra and Slimani
[17], and Mophou [43].

In this paper, we present two results for the problem (1.1)-(1.3). The first one
is based on Schaefer’s fixed point (Theorem 3.5) and the second one on Banach’s
contraction principle (Theorem 3.6) As an extension to nonlocal problems, we present
two similar results for the problem (4.1)-(4.3). The present results initiate the study
of impulsive hyperbolic differential equations with fractional order and variable times.
In particular our results extend those with integer order derivative [10, 11, 18, 19, 20,
21, 30, 31, 40, 44] and those with fractional derivative and without impulses [1, 2, 35].

2. Preliminaries

In this section, we introduce notations and definitions which are used throughout
this paper. By L1(J,Rn) we denote the space of Lebesgue-integrable functions f :
J → Rn with the norm

‖f‖1 =

∫ a

0

∫ b

0

‖f(x, y)‖dydx,

where ‖.‖ denotes a suitable complete norm on Rn.
To define the solutions of problems (1.1)-(1.3), we shall consider the space

Ω =
{
u : J → Rn : there exist 0 = x0 < x1 < x2 < ... < xm < xm+1 = a

such that xk = xk(u(xk, .)), and u(x−k , .), u(x+
k , .) exist with u(x−k , .) = u(xk, .);

k = 1, . . . ,m, and u ∈ C(Jk,Rn); k = 0, . . . ,m
}
,
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where Jk := (xk, xk+1]× [0, b]. This set is a Banach space with the norm

‖u‖Ω = max{‖uk‖, k = 0, ...,m},
where uk is the restriction of u to Jk, k = 0, ...,m.

Let a1 ∈ [0, a], z+ = (a+
1 , 0) ∈ J, Jz = [a1, a] × [0, b], r1, r2 > 0 and r = (r1, r2).

For f ∈ L1(Jz,Rn), the expression

(Irz+f)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

a+1

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds,

where Γ(.) is the Euler gamma function, is called the left-sided mixed Riemann-
Liouville integral of order r.

Definition 2.1. ([50]). For f ∈ L1(Jz,Rn), the Caputo fractional-order derivative

of order r is defined by the expression (cDr
z+f)(x, y) = (I1−r

z+
∂2

∂x∂yf)(x, y).

3. Existence of solutions

Let us define what we mean by a solution of problem (1.1)-(1.3). Set

J ′ := J\{(x1, y), . . . , (xm, y), y ∈ [0, b]}.

Definition 3.1. A function u ∈ Ω whose r-derivative exists on J ′ is said to be a
solution of (1.1)-(1.3) if u satisfies (cDr

0u)(x, y) = f(x, y, u(x, y)) on J ′ and conditions
(1.2) and (1.3) are satisfied.

Let h ∈ C([xk, xk+1]× [0, b],Rn), zk = (xk, 0),

µk(x, y) = u(x, 0) + u(x+
k , y)− u(x+

k , 0), k = 0, . . . ,m,

and D2
xy := ∂2

∂x∂y denotes the mixed second order partial derivative.

For the existence of solutions for the problem (1.1)− (1.3), we need the following
lemma:

Lemma 3.2. A function u ∈ AC([xk, xk+1] × [0, b],Rn); k = 0, . . . ,m is a solution
of the differential equation

(cDr
zk
u)(x, y) = h(x, y); (x, y) ∈ [xk, xk+1]× [0, b],

if and only if u(x, y) satisfies

u(x, y) = µk(x, y) + (Irzkh)(x, y); (x, y) ∈ [xk, xk+1]× [0, b]. (3.1)

Proof. Let u(x, y) be a solution of (cDr
zk
u)(x, y) = h(x, y); (x, y) ∈ [xk, xk+1]× [0, b].

Then, taking into account the definition of the derivative (cDr
z+k
u)(x, y), we have

I1−r
z+k

(D2
xyu)(x, y) = h(x, y).

Hence, we obtain
Ir
z+k

(I1−r
zk

D2
xyu)(x, y) = (Ir

z+k
h)(x, y),

then
I1
z+k
D2
xyu(x, y) = (Ir

z+k
h)(x, y).
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Since

I1
z+k

(D2
xyu)(x, y) = u(x, y)− u(x, 0)− u(x+

k , y) + u(x+
k , 0),

we have

u(x, y) = µk(x, y) + (Ir
z+k
h)(x, y).

Now let u(x, y) satisfies (3.1). It is clear that u(x, y) satisfy

(cDr
0u)(x, y) = h(x, y), on [xk, xk+1]× [0, b].

Lemma 3.3. Let 0 < r1, r2 ≤ 1 and let h : J → Rn be continuous, denote µ(x, y) :=
µ0(x, y); (x, y) ∈ J. A function u is a solution of the fractional integral equation

u(x, y) =



µ(x, y) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ [0, x1]× [0, b],

ϕ(x) + Ik(u(xk, y))− Ik(u(xk, 0))

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m,

(3.2)

if and only if u is a solution of the fractional IVP

cDru(x, y) = h(x, y), (x, y) ∈ J ′, (3.3)

u(x+
k , y) = Ik(u(xk, y)), k = 1, . . . ,m. (3.4)

Proof. Assume u satisfies (3.3)-(3.4). If (x, y) ∈ [0, x1]× [0, b] then

cDru(x, y) = h(x, y).

Lemma 3.2 implies

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds.

If (x, y) ∈ (x1, x2]× [0, b] then Lemma 3.2 implies

u(x, y) = µ1(x, y) +
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= ϕ(x) + u(x+
1 , y)− u(x+

1 , 0)

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= ϕ(x) + I1(u(x1, y))− I1(u(x1, 0))

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds.
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If (x, y) ∈ (x2, x3]× [0, b] then from Lemma 3.2 we get

u(x, y) = µ2(x, y) +
1

Γ(r1)Γ(r2)

∫ x

x2

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= ϕ(x) + u(x+
2 , y)− u(x+

2 , 0)

+
1

Γ(r1)Γ(r2)

∫ x

x2

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= ϕ(x) + I2(u(x2, y))− I2(u(x2, 0))

+
1

Γ(r1)Γ(r2)

∫ x

x2

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds.

If (x, y) ∈ (xk, xk+1]× [0, b] then again from Lemma 3.2 we get (3.2).
Conversely, assume that u satisfies the impulsive fractional integral equation (3.2).

If (x, y) ∈ [0, x1]× [0, b] and using the fact that cDr is the left inverse of Ir we get

cDru(x, y) = h(x, y), for each (x, y) ∈ [0, x1]× [0, b].

If (x, y) ∈ [xk, xk+1) × [0, b], k = 1, . . . ,m and using the fact that cDrC = 0, where
C is a constant, we get

cDru(x, y) = h(x, y), for each (x, y) ∈ [xk, xk+1)× [0, b].

Also, we can easily show that

u(x+
k , y) = Ik(u(xk, y)), y ∈ [0, b], k = 1, . . . ,m.

In the sequel we will make use of the following generalization of Gronwall’s lemma
for two independent variables and singular kernel.

Lemma 3.4. ([27]) Let υ, ω : J → [0,∞) be nonnegative, locally integrable functions
on J. If there are constants c > 0 and 0 < r1, r2 < 1 such that

υ(x, y) ≤ ω(x, y) + c

∫ x

0

∫ y

0

υ(s, t)

(x− s)1−r1(y − t)1−r2
dtds,

then, for every (x, y) ∈ J,

υ(x, y) ≤ ω(x, y) +

∫ x

0

∫ y

0

∞∑
j=1

(cΓ(r1)Γ(r2))j

Γ(jr1)Γ(jr2)

ω(s, t)

(x− s)1−jr1(y − t)1−jr2
dtds. (3.5)

If ω(x, y) = ω constant on J, then the inequality (3.5) is reduced to

υ(x, y) ≤ ωE(r1,r2)(cΓ(r1)Γ(r2)xr1yr2),

where E(r1,r2) is the Mittag-Leffler function [36], defined by

E(r1,r2)(z) :=

∞∑
k=1

zk

Γ(kr1 + 1)Γ(kr2 + 1)
; rj , z ∈ C, <e(rj) > 0; j = 1, 2.

We are now in a position to state and prove our existence result for our problem
based on Schaefer’s fixed point theorem.
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Theorem 3.5. Assume that

(H1) The function f : J × Rn → Rn is continuous.
(H2) There exists a constant M > 0 such that

‖f(x, y, u)‖ ≤M(1 + ‖u‖), for each (x, y) ∈ J, and each u ∈ Rn.

(H3) The function xk ∈ C1(Rn,R) for k = 1, . . . ,m. Moreover,

0 = x0(u) < x1(u) < . . . < xm(u) < xm+1(u) = a, for all u ∈ Rn.

(H4) There exists a constant M∗ > 0 such that

‖Ik(u)‖ ≤M∗(1 + ‖u‖), for each u ∈ Rn, k = 1, . . . ,m.

(H5) For all u ∈ Rn, xk(Ik(u)) ≤ xk(u) < xk+1(Ik(u)) for k = 1, . . . ,m.
(H6) For all (s, t, u) ∈ J × Rn, we have

x′k(u)[ϕ′(s) +
r1 − 1

Γ(r1)Γ(r2)

∫ s

xk

∫ t

0

(s− θ)r1−2(t− η)r2−1f(θ, η, u(θ, η))dηdθ] 6= 1,

k = 1, . . . ,m. Then (1.1)-(1.3) has at least one solution on J.

Proof. The proof will be given in several steps.
Step 1. Consider the following problem

(cDr
0u)(x, y) = f(x, y, u(x, y)), if (x, y) ∈ J, (3.6)

u(x, 0) = ϕ(x), u(0, y) = ψ(y), x ∈ [0, a], y ∈ [0, b]. (3.7)

Transform problem (3.6)-(3.7) into a fixed point problem. Consider the operator
N : C(J,Rn)→ C(J,Rn) defined by

N(u)(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds.

Lemma 3.2 implies that the fixed points of operator N are solutions of problem
(3.6)-(3.7) . We shall show that the operator N is continuous and completely contin-
uous.
Claim 1. N is continuous.

Let {un} be a sequence such that un → u in C(J,Rn). Let η > 0 be such that
‖un‖ ≤ η. Then for each (x, y) ∈ J, we have

‖N(un)(x, y)−N(u)(x, y)‖

≤ 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, un(s, t))− f(s, t, u(s, t))‖dtds

≤ ‖f(., ., un(., .))− f(., ., u(., .))‖∞
Γ(r1)Γ(r2)

∫ a

0

∫ b

0

(x− s)r1−1(y − t)r2−1dtds

≤ ar1br2‖f(., ., un(., .))− f(., ., u(., .))‖∞
Γ(r1 + 1)Γ(r2 + 1)

.

Since f is a continuous function, we have

‖N(un)−N(u)‖∞ → 0 as n→∞.
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Claim 2. N maps bounded sets into bounded sets in C(J,Rn).

Indeed, it is enough to show that for any η∗ > 0, there exists a positive constant
` such that for each u ∈ Bη∗ = {u ∈ C(J,Rn) : ‖u‖∞ ≤ η∗}, we have ‖N(u)‖∞ ≤ `.
By (H2) we have for each (x, y) ∈ J, we have

‖N(u)(x, y)‖ ≤ ‖µ(x, u)‖

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, u(s, t))‖dtds

≤ ‖µ(x, u)‖+
M(1 + η∗)ar1br2

Γ(r1 + 1)Γ(r2 + 1)
.

Thus

‖N(u)‖∞ ≤ ‖µ‖∞ +
M(1 + η∗)ar1br2

Γ(r1 + 1)Γ(r2 + 1)
:= `.

Claim 3. N maps bounded sets into equicontinuous sets of C(J,Rn).

Let (τ1, y1), (τ2, y2) ∈ J , τ1 < τ2 and y1 < y2, Bη∗ be a bounded set of C(J,R) as
in Claim 2, and let u ∈ Bη∗ . Then for each (x, y) ∈ J, we have

‖N(u)(τ2, y2)−N(u)(τ1, y1)‖ =
∥∥∥µ(τ1, y1)− µ(τ2, y2)

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0

[(τ2 − s)r1−1(y2 − t)r2−1 − (τ1 − s)r1−1

×(y1 − t)r2−1]f(s, t, u(s, t))dtds

+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1f(s, t, u(s, t))dtds

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1f(s, t, u(s, t))dtds

+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y1

0

(τ2 − s)r1−1(y2 − t)r2−1f(s, t, u(s, t))dtds
∥∥∥

≤ ‖µ(τ1, y1)− µ(τ2, y2)‖

+
M(1 + η∗)

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0

[(τ1 − s)r1−1(y1 − t)r2−1 − (τ2 − s)r1−1(y2 − t)r2−1]dtds

+
M(1 + η∗)

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1dtds

+
M(1 + η∗)

Γ(r1)Γ(r2)

∫ τ1

0

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1dtds

+
M(1 + η∗)

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y1

0

(τ2 − s)r1−1(y2 − t)r2−1dtds

≤ ‖µ(τ1, y1)− µ(τ2, y2)‖

+
M(1 + η∗)

Γ(r1 + 1)Γ(r2 + 1)
[2yr22 (τ2 − τ1)r1 + 2τ r12 (y2 − y1)r2

+τ r11 yr21 − τ
r1
2 yr22 − 2(τ2 − τ1)r1(y2 − y1)r2 ].
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As τ1 −→ τ2 and y1 −→ y2, the right-hand side of the above inequality tends to zero.
As a consequence of Claims 1 to 3 together with the Arzelá-Ascoli theorem, we can
conclude that N : C(J,Rn)→ C(J,Rn) is completely continuous.
Claim 4. A priori bounds.

Now it remains to show that the set

E = {u ∈ C(J,Rn) : u = λN(u) for some 0 < λ < 1}
is bounded. Let u ∈ E , then u = λN(u) for some 0 < λ < 1. Thus, for each (x, y) ∈ J,
we have

‖u(x, y)‖ ≤ ‖µ(x, y)‖

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, u(s, t))‖dtds

≤ ‖µ‖∞ +
Mar1br2

Γ(r1 + 1)Γ(r2 + 1)

+
M

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖u(s, t)‖dtds.

Set

ω = ‖µ‖∞ +
Mar1br2

Γ(r1 + 1)Γ(r2 + 1)
, c =

M

Γ(r1)Γ(r2)
.

Then Lemma 3.4 implies that for each (x, y) ∈ J,
‖u(x, y)‖ ≤ ωE(r1,r2)(cΓ(r1)Γ(r2)ar1br2) := R.

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that N has a fixed point which is a solution of the problem
(3.6)-(3.7). Denote this solution by u1. Define the functions

rk,1(x, y) = xk(u1(x, y))− x, for x ≥ 0, y ≥ 0.

Hypothesis (H3) implies that rk,1(0, 0) 6= 0 for k = 1, . . . ,m.
If rk,1(x, y) 6= 0 on J for k = 1, . . . ,m; i.e.

x 6= xk(u1(x, y)) on J, for k = 1, . . . ,m,

then u1 is a solution of the problem (1.1)-(1.3).
It remains to consider the case when r1,1(x, y) = 0 for some (x, y) ∈ J . Now

since r1,1(0, 0) 6= 0 and r1,1 is continuous, there exists x1 > 0, y1 > 0 such that
r1,1(x1, y1) = 0, and r1,1(x, y) 6= 0, for all (x, y) ∈ [0, x1)× [0, y1).
Thus by (H6) we have

r1,1(x1, y1) = 0 and r1,1(x, y) 6= 0, for all (x, y) ∈ [0, x1)× [0, y1] ∪ (y1, b].

Suppose that there exist (x̄, ȳ) ∈ [0, x1)× [0, y1]∪ (y1, b] such that r1,1(x̄, ȳ) = 0. The
function r1,1 attains a maximum at some point (s, t) ∈ [0, x1)× [0, b]. Since

(cDr
0u1)(x, y) = f(x, y, u1(x, y)), for (x, y) ∈ J,

then
∂u1(x, y)

∂x
exists, and

∂r1,1(s, t)

∂x
= x′1(u1(s, t))

∂u1(s, t)

∂x
− 1 = 0.

Since
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∂u1(x, y)

∂x
= ϕ′(x) +

r1 − 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−2(y − t)r2−1f(s, t, u1(s, t))dtds,

then

x′1(u1(s, t))[ϕ′(s) +
r1 − 1

Γ(r1)Γ(r2)

∫ s

0

∫ t

0

(s− θ)r1−2(t− η)r2−1f(θ, η, u1(θ, η))dηdθ] = 1,

which contradicts (H6). From (H3) we have

rk,1(x, y) 6= 0 for all (x, y) ∈ [0, x1)× [0, b] and k = 1, ...m.

Step 2. In what follows set

Xk := [xk, a]× [0, b]; k = 1, ...,m.

Consider now the problem

(cDr
0u)(x, y) = f(x, y, u(x, y)), if (x, y) ∈ X1, (3.8)

u(x+
1 , y) = I1(u1(x1, y)), if y ∈ [0, b]. (3.9)

Consider the operator N1 : C(X1,Rn)→ C(X1,Rn) defined as

N1(u) = ϕ(x) + I1(u1(x1, y))− I1(u1(x1, 0))

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds.

As in Step 1 we can show that N1 is completely continuous. Now it remains to show
that the set

E∗ = {u ∈ C(X1,Rn) : u = λN1(u) for some 0 < λ < 1}

is bounded. Let u ∈ E∗, then u = λN1(u) for some 0 < λ < 1. Thus, from (H2) and
(H4) we get for each (x, y) ∈ X1,

‖u(x, y)‖ ≤ ‖ϕ(x)‖+ ‖I1(u1(x1, y))‖+ ‖I1(u1(x1, 0))‖

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, u(s, t))‖dtds

≤ ‖ϕ‖∞ + 2M∗(1 + ‖u1‖) +
Mar1br2

Γ(r1 + 1)Γ(r2 + 1)

+
M

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖u(s, t)‖dtds.

Set

ω∗ = ‖ϕ‖∞ + 2M∗(1 + ‖u1‖) +
Mar1br2

Γ(r1 + 1)Γ(r2 + 1)
, c =

M

Γ(r1)Γ(r2)
.

Then Lemma 3.4 implies that for each (x, y) ∈ X1,

‖u(x, y)‖ ≤ ω∗E(r1,r2)(cΓ(r1)Γ(r2)ar1br2) := R∗.
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This shows that the set E∗ is bounded. As a consequence of Schaefer’s theorem, we
deduce that N1 has a fixed point u which is a solution to problem (3.8)-(3.9). Denote
this solution by u2. Define

rk,2(x, y) = xk(u2(x, y))− x, for (x, y) ∈ X1.

If rk,2(x, y) 6= 0 on (x1, a]× [0, b] and for all k = 1, . . . ,m, then

u(x, y) =

{
u1(x, y), if (x, y) ∈ [0, x1)× [0, b],

u2(x, y), if (x, y) ∈ [x1, a]× [0, b],

is a solution of the problem (1.1)-(1.3). It remains to consider the case when
r2,2(x, y) = 0, for some (x, y) ∈ (x1, a]× [0, b]. By (H5), we have

r2,2(x+
1 , y1) = x2(u2(x+

1 , y1)− x1

= x2(I1(u1(x1, y1)))− x1 > x1(u1(x1, y1))− x1 = r1,1(x1, y1) = 0.

Since r2,2 is continuous, there exists x2 > x1, y2 > y1 such that r2,2(x2, y2) = 0, and
r2,2(x, y) 6= 0 for all (x, y) ∈ (x1, x2)× [0, b].
It is clear by (H3) that

rk,2(x, y) 6= 0 for all (x, y) ∈ (x1, x2)× [0, b], k = 2, . . . ,m.

Now suppose that there are (s, t) ∈ (x1, x2)× [0, b] such that r1,2(s, t) = 0. From (H5)
it follows that

r1,2(x+
1 , y1) = x1(u2(x+

1 , y1)− x1

= x1(I1(u1(x1, y1)))− x1 ≤ x1(u1(x1, y1))− x1 = r1,1(x1, y1) = 0.

Thus r1,2 attains a nonnegative maximum at some point (s1, t1) ∈ (x1, a)× [0, x2)∪
(x2, b]. Since

(cDr
0u2)(x, y) = f(x, y, u2(x, y)), for (x, y) ∈ X1,

then we get

u2(x, y) = ϕ(x) + I1(u1(x1, y))− I1(u1(x1, 0))

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u2(s, t))dtds,

hence

∂u2

∂x
(x, y) = ϕ′(x) +

r1 − 1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−2(y − t)r2−1f(s, t, u2(s, t))dtds,

then
∂r1,2(s1, t1)

∂x
= x′1(u2(s1, t1))

∂u2

∂x
(s1, t1)− 1 = 0.

Therefore

x′1(u2(s1, t1))[ϕ′(s1)+
r1 − 1

Γ(r1)Γ(r2)

∫ s1

x1

∫ t1

0

(s1−θ)r1−2(t1−η)r2−1f(θ, η, u2(θ, η))dηdθ]=1,

which contradicts (H6).
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Step 3. We continue this process and take into account that um+1 := u
∣∣∣
Xm

is a

solution to the problem

(cDr
0u)(x, y) = f(x, y, u(x, y)), a.e. (x, y) ∈ (xm, a]× [0, b],

u(x+
m, y) = Im(um−1(xm, y)), if y ∈ [0, b].

The solution u of the problem (1.1)-(1.3) is then defined by

u(x, y) =


u1(x, y), if (x, y) ∈ [0, x1]× [0, b],

u2(x, y), if (x, y) ∈ (x1, x2]× [0, b],

. . .

um+1(x, y), if (x, y) ∈ (xm, a]× [0, b].

We give now (without proof) a uniqueness result for the problem (1.1)-(1.3) using
the Banach contraction principle.

Theorem 3.6. Assume (H1), (H3), (H5), (H6) and the following conditions

(H7) There exists d > 0 such that

‖f(x, y, u)− f(x, y, ū)‖ ≤ d‖u− ū‖, for each (x, y) ∈ J, u, ū ∈ Rn,
(H8) There exists ck > 0; k = 1, 2, ...m such that

‖Ik(x, y, u)− Ik(x, y, ū)‖ ≤ ck‖u− ū‖, for each (x, y) ∈ J, u, ū ∈ Rn,
hold. If

2ck +
dar1br2

Γ(r1 + 1)Γ(r2 + 1)
< 1,

then the IVP (1.1)-(1.3) has a unique solution.

4. Nonlocal impulsive partial differential equations

This section is concerned with a generalization of the result presented in the pre-
vious section to nonlocal impulsive partial hyperbolic differential equations. We shall
present existence results for the following nonlocal initial value problem

(cDr
0u)(x, y) = f(x, y, u(x, y)), if (x, y) ∈ J, x 6= xk(u(x, y)), k = 0, . . . ,m, (4.1)

u(x+, y) = Ik(u(x, y)), if (x, y) ∈ J, x = xk(u(x, y)), k = 0, . . . ,m, (4.2)

u(x, 0) +Q(u) = ϕ(x), u(0, y) +K(u) = ψ(y), x ∈ [0, a], y ∈ [0, b], (4.3)

where f, ϕ, ψ, Ik; k = 1, ...m, are as in problem (1.1)-(1.3) and Q,K : Ω→ Rn are
continuous functions.

Definition 4.1. A function u ∈ Ω whose r-derivative exists on J ′ is said to be a so-
lution of (4.1)-(4.3) if u satisfies (cDr

0u)(x, y) = f(x, y, u(x, y)) on J ′ and conditions
(4.2) and (4.3) are satisfied.

Theorem 4.2. Assume (H1)− (H6) and the following conditions hold:

(H ′2) There exists L̃ > 0 such that‖Q(u)‖ ≤ L̃(1 + ‖u‖∞), for any u ∈ Ω,
(H ′′2 ) There exists L∗ > 0 such that‖K(u)‖ ≤ L∗(1 + ‖u‖∞), for any u ∈ Ω. Then

there exists at leat one solution for IV P (4.1)-(4.3) on J.
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Theorem 4.3. Assume (H1), (H3), (H5)− (H8) and the following conditions hold:

(H ′3) There exists l > 0 such that‖Q(u)−Q(v)‖ ≤ l‖u− v‖∞, for any u, v ∈ Ω,
(H ′′3 ) There exists l∗ > 0 such that‖K(u)−K(v)‖ ≤ l∗‖u− v‖∞, for any u, v ∈ Ω.

If

l + l∗ + 2ck +
dar1br2

Γ(r1 + 1)Γ(r2 + 1)
< 1,

then there exists a unique solution for IV P (4.1)-(4.3) on J.

5. An Example

As an application of our results we consider the following impulsive partial hyper-
bolic differential equations of the form

(cDr
0u)(x, y) =

1 + u(x, y)

9 + ex+y
, if (x, y) ∈ J, x 6= xk(u(x, y)); k = 1, . . . ,m, (5.1)

u(x+
k , y) = dku(xk, y); y ∈ [0, 1], k = 1, . . . ,m, (5.2)

u(x, 0) = x, u(0, y) = y2, x ∈ [0, 1], y ∈ [0, 1], (5.3)

where J = [0, 1] × [0, 1], r = (r1, r2), 0 < r1, r2 ≤ 1, xk(u) = 1 − 1
2k(1+u2)

and
√

2
2 < dk ≤ 1, for k = 1, . . . ,m.

Denote f(x, y, u) = 1+u
9+ex+y , (x, y, u) ∈ [0, 1] × [0, 1] × R and Ik(u) = dku, u ∈

R, and k = 1, . . . ,m. Let u ∈ R then we have

xk+1(u)− xk(u) =
1

2k+1(1 + u2)
> 0 for k = 1, . . . ,m.

Hence 0 < x1(u) < x2(u) < . . . < xm(u) < 1, for each u ∈ R.
Also, for each u ∈ R we have

xk+1(Ik(u))− xk(u) =
1 + (2d2

k − 1)u2

2k+1(1 + u2)(1 + d2
k)
> 0.

Thus, for all (x, y) ∈ J and each u ∈ R we get |Ik(u)| = |dku| ≤ |u| ≤ 3(1+|u|) for k =

1, . . . ,m, and |f(x, y, u)| = |1+u|
9+ex+y ≤ 1

10 (1 + |u|).
Since all conditions of Theorem 3.5 are satisfied, the problem (5.1)-(5.3) has at least
one solution on [0, 1]× [0, 1].
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equations with infinite delay in Fréchet spaces, Appl. Anal., 85(2006), 1459-1470.
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16 SAÏD ABBAS AND MOUFFAK BENCHOHRA

[33] S.K. Kaul, X.Z. Liu, Impulsive integro-differential equations with variable times, Nonlinear
Stud., 8(2001), 21-32.

[34] A.A. Kilbas, B. Bonilla, J. Trujillo, Nonlinear differential equations of fractional order in a

space of integrable functions, Dokl. Ross. Akad. Nauk, 374(2000), no. 4, 445-449.
[35] A.A. Kilbas, S.A. Marzan, Nonlinear differential equations with the Caputo fractional derivative

in the space of continuously differentiable functions, Differential Equations, 41(2005), 84-89.

[36] A.A. Kilbas, Hari M. Srivastava, Juan J. Trujillo, Theory and Applications of Fractional Differ-
ential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam,

2006.
[37] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations,

World Scientific, Singapore, 1989.

[38] V. Lakshmikantham, S. Leela, J. Vasundhara, Theory of Fractional Dynamic Systems, Cam-
bridge Academic Publishers, Cambridge, 2009.

[39] V. Lakshmikantham, N.S. Papageorgiou, J. Vasundhara, The method of upper and lower solu-

tions and monotone technique for impulsive differential equations with variable moments, Appl.
Anal., 15(1993), 41-58.

[40] V. Lakshmikantham, S.G. Pandit, The method of upper, lower solutions and hyperbolic partial

differential equations, J. Math. Anal. Appl., 105(1985), 466-477.
[41] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics,

in ”Fractals and Fractional Calculus in Continuum Mechanics” (A. Carpinteri and F. Mainardi,

Eds.), Springer-Verlag, Wien, 1997, 291-348.
[42] F. Metzler, W. Schick, H.G. Kilian, T.F. Nonnenmacher, Relaxation in filled polymers: A

fractional calculus approach, J. Chem. Phys., 103(1995), 7180-7186.
[43] G. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential

equations, Nonlinear Anal., 72(2010), 1604-1615.

[44] S.G. Pandit, Monotone methods for systems of nonlinear hyperbolic problems in two independent
variables, Nonlinear Anal., 30(1997), 235-272.

[45] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[46] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and
Applications, Gordon and Breach, Yverdon, 1993.

[47] A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singa-

pore, 1995.
[48] N.P. Semenchuk, On one class of differential equations of noninteger order, Differents. Uravn.,

10(1982), 1831-1833.

[49] A.N. Vityuk, Existence of solutions of partial differential inclusions of fractional order, Izv.
Vyssh. Uchebn., Ser. Mat., 8(1997), 13-19.

[50] A.N. Vityuk, A.V. Golushkov, Existence of solutions of systems of partial differential equations

of fractional order, Nonlinear Oscil., 7(2004), no. 3, 318-325.
[51] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional diffrential

equations, Electron. J. Differential Equations, 2006(2006), no. 36, 12 pp.

Received: September 10, 2009; Accepted: April 10, 2010.


