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Abstract. In this paper we investigate some new applications of the Gronwall lemmas to Ulam
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1. INTRODUCTION

First we begin with some notions from Picard operators theory. Throughout this
paper we follow the terminology and notations in [9]. For the convenience of the
reader we shall recall some of them.

Definition 1.1. ([9], [14], [15]). Let (X, —) be an L-space. By definition an operator
A: X — X is a Picard operator if Fiy = {2%} and A"(z) — 2% as n — oo, for all
reX.

The following abstract lemmas are well known ([9], [10], [14]).

Lemma 1.1. (Abstract Gronwall Lemma ([9], [10], [14])). Let (X,—,<) be an
ordered L-space and A : X — X an operator. We suppose that:

(i) A is a Picard operators (Fa = {z%});

(i) A is an increasing operator.

Then we have:

(a)zeX, < A(z) = z<az¥;

(b)zeX, z>Ax) = z>z.

Lemma 1.2. (Abstract Gronwall-Comparison Lemma ([10])). Let (X, —, <)
be an ordered L-space and A, B : X — X two operators. We suppose that:

(i) A and B are Picard operators;

(ii) A is an increasing operator;
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(iii) A < B.
Then
r<A(r) = z<z) <zj.

Remark 1.1. In order to use the Abstract Gronwall Lemma (Lemma 1.1) for to
have a concrete Gronwall lemma we need to determine the fixed point z%. If this is
a difficult problem we choose an operator B, as in Lemma 1.2, for to have an upper

bound for the solution x of the inequation z < A(z).

Lemma 1.3. ([5], [7], [9], [10], [11]). Let (X,—) be an L-space and A,B : X — X

two operators.
We suppose that:
(i) A and B are increasing operators;
(i) A and B are POs;
(iii) © = A(x) = x < B(x).
Then
< A(z) = z<zp.

For other results see D. Bainov, P. Simeonov [1], C. Craciun, N. Lungu [2], N.

Lungu [4], [5], N. Lungu, I. A. Rus [6], I. A. Rus [12], [13], [15].

2. ULAM-HYERS STABILITY OF VOLTERRA INTEGRAL EQUATIONS IN HIGHER

DIMENSIONS

We consider the following integral equation in higher dimensions

z1
u(xy, o, ..., xy) = a—l—/ Ki(s1,x2,...,xn)u(s1, xa,. ..
0

,l’n)d81+

xrq T2
—|—/ / Ko(s1,82,x3,...,2,)u(s1,s2,23,...,T,)ds1dss + ...+ (2.1)
o Jo

T Tn
—|—/ / Ko(s1,..oySn)u(s1,...,8,)dsy ... dsp,
0 0

where

a>0, a;>0, i=1,n, D=||[0,a;], K;€C(D
i=1

and Mg, > 0 is such that
|Ki(z)| < Mk,, VxeD, i=1,n.
Let A: C(D) — C(D) be the operator defined by
A(u)(z1,...,2,) := second part of (2.1).

We have
Theorem 2.1. ([7]) We suppose that o > 0, K; € C(D,Ry), i
(a) u*(x1,22,...,2,) >0, V (z1,22,...,2,) € D.

(b) If K;(x1,22,...,2,) is increasing with respect to x;i1, ..

creasing.
Where u* is the unique solution of the equation (2.1).

), i=1mn

=1,n. Then

.
., Xn, then u* is in-



ULAM STABILITY OF SOME VOLTERRA INTEGRAL EQUATIONS 129

Remark 2.1. First, we observe that under the conditions of Theorem 2.1 the operator
A is increasing and we have

U (81,82, 23, ..., Tpn) SU(S1, T2y ooy ),y (ST, .00y Sn)
<u*(s1,T,...,Ty) (2.2)
forall s,z € D, s <, s =(81,...,8,), T = (T1,...,Tp).

Hence,

z1
u*(z) = A(u*)(z) < a+/ Ki(s1,xo,...,xn)u”(s1,22,...,2,)ds1+
0
T o
+/ / Ko(s1,82,@3, ..., Tn)u"(81,22,...,2Tpn)ds1dsa + ...+ (2.3)
o Jo

Xy T
—|—/ / K, (s1,...,8p)u (51,22, ..., Tn)ds1 ... dsy.
0 0
Consider now the operator B : C(D) — C(D) defined by
B(u)(z) :=last part of (2.3) in which we put u instead of u*.

The operator B is PO on (C(D), ™)
fixed point of B. Thus we have u* < u}p.
Theorem 2.2. We suppose that:

(i) K; € C(D,Ry), i =1,n and let Mk, > 0 be such that |K;(z)] < Mg,,V z € D,
i=1,n.
Then:

(a) The equation (2.1) has in C(D) a unique solution u*;

(b) For each e > 0, if u € C(D) is a solution of the inequation

and is increasing. Let u} be the unique

z1
U(I’l,lﬂg,...,ﬁcn)*a*\/ Ki(s1,x2,...,xn)u(s1, T, ..., &,)ds1—
0
] xro
—/ / Ko(s1,82, %3, ..., Tn)u(S1, 2, X3, ...,2y)ds1dss — ... — (2.4)
o Jo

T pxo T
7/ / / K, (s1,82,...,8,)u(s1,89,...,8,)ds1dss ... ds,| <e, Va €D,
o Jo 0

then
lu(z) —u*(z)] < Cg-e, V€D,
where
Cr =exp(Mg,a1 + Mg,a1a2 + ... + Mg, aras . .. ay),
i.e., the equation (2.1) is Ulam-Hyers stable.

Proof. (a) It is a well known result (see [7]).
(b) We have:

[u(zy, o, ... xy) — u* (21, o, ..y xy)| < w1, 22, ..., Tpn) — a—

z1
—/ Ki(s1,22,. .. @p)u(S1, @2, ..., Tn)ds1—
0
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/ / K2 81,82,$3,..., ) (51,82,2133, ..,a:n)dsldsz—...—

T o
/ / / K, (851,82, .,8n)u(81,82,...,8,)ds1dsy ... ds, |+

/ |K1(s1, @2, ... xn)||u(s1, 22, ..., xn) — u(s1, 22, ..., 2n)|ds1+
1 o
—|—/ / |K2(s1,82,%3, ..., Tn)| |u(s1, 82,23, ..., 2n) —u" (51,82, %3, ...,Zn)|ds1ds2+...+
Ozl 012 Tn
+/ / / |Kn(s1,82,--58n)| - [u(s1,82,...,80) —u"(81,82,...,8n)|ds1dsz .. .ds,.
o Jo 0

From Lemmas 1.2 and 1.3 and from Remark 1.1 it follows that

|w(zy, oy ..y xn) —u* (21, T2, ..oy 2p)| <

<

u(zy, o, ..., Ty —a—/ Ki(s1,x2,...,xn)u(s1,xa, ... &, )ds1—

/ / K2 81,82,1'3,..., ) (81,82,$37...,$n)d81d82—...—

ZTq o
/ / / K, (s1,892,...,8,)u(s1,S2,...,8,)ds1dss ...ds, |+

/ |K1(s1,@2, ... xn)| - Ju(st, @, ... @n) —u*(s1, 22, ..., 2,)|ds1+
/ / |K2(81,82, @3, .-y Tn)|-|u(s1, T2y .oy n)—u" (81,22, ..., Tpn)|ds1dsa+. ..+

T2
/ / / n(81,82,. .., 8n)| - Ju(si, o2, ..., xn) —u" (81,22, ..,%s)|ds1ds2 . .. dsp

and we have
|w(z1, 22y s xn) — U™ (21, T2y ..oy p)| < (2.5)

z1
< 5+/ |K1(81, T2y yxpn)| - Ju(sy, 2, ..oy 8n) — u*(s1,22,. .., @y)|ds1+
Xy xro 0

—|—/ / | Ko(s1, 82,23, ..., xn)| |u(s1, o, ..., xn)—u"(s1,22,...,2n)|ds1dsa+. ..+

T2
/ / / n(81,82, .., 8n)| |u(st, z2, ..., xn) —u™(s1,T2,...,Tn)|ds1ds2 ... ds,

From the Abstract Gronwall-Comparison Lemma (Lemma 1.2) and Gronwall
lemma, we have

z1
lu(zy, o, ..., xn) — u*(z1,Ta,...,2,)] < cexp </ Ki(s1,29,...,2,)ds1+
0

Xy T2
+/ / K2(81,82,£E37...,(En)dslng+...+
0 0

X1 o Ty
+/ / / Kn(81782,...,Sn)d81d52...dsn) <
o Jo 0
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<eexp(Mg,a1 + Mi,a1as + ...+ Mk, ajas ... ay).
Hence we have
lu(zy, o, ..., xy) — u* (21,2, ...,2,)| < Cg - €
where
Cr = exp(MKlal + MK2a1a2 + ...+ MKna1a2 . ..an)7

and i.e., the equation (2.1) has the Ulam-Hyers stability.
Remark 2.2. Theorem 2.2 remains true if (2.1) is replaced by

u(xy, o, ..., Ty )foz+/ Ki(s1,29,. .. xn)f1(u(s1,z2,...,2n))ds1 + ...+

/ / / K, (51,82, 8n) fn(u(s1,82,...,8,))ds1dss . .. dsy,

where f;(u) < wu, f; increasing and Lipschitz.

3. ULAM-HYERS-RASSIAS STABILITY OF VOLTERRA INTEGRAL EQUATIONS IN
HIGHER DIMENSIONS

In what follows we consider the equation (2.1). We have the following theorem:
Theorem 3.1. We suppose that:
(i) K; € C(D,Ry), i = 1,n and there exists My, > 0 such that

|Ki(z)| < Mk,, VeeD, i=1,n and @€ C(D,R.);
(i) ¢ is an increasing function.
Then:

(a) The equation (2.1) has in C(D) a unique solution u*;
(b) If w € C(D) is such that

w(xy, o, ..., Ty) — @ — / Ki(s1,@9, ..., xn)u(s1, @, ..., x,)ds1—
1 T2
—/ / Ko(s1,82, %3, ..., Tn)u(s1, S2, X3, ..., 2Tn)ds1dss — ... — (3.1)

/ / / Kn(s1,.- y80)u(81,...,8n)ds1dss ... dsy| < p(x1,22,...,Tn),
Vx € D, then

lu(z1, 22y oy Tn) — U™ (21, T2y ..y 2n)| < Ck - (X1, 22, ..., Zy) (3.2)
where
Cr = exp(Mg,a1 + Mg,a1a2 + ... + Mg, ar1as . .. ay),
u*(21,xa,...,2,) is the unique fized point of the equation (2.1), i.e., the equation
(2.1) has the Ulam-Hyers-Rassias stability.

Proof. (a) It is a well known result (see [7]).
(b) By analogous method as in Theorem 2.1, we have

lu(z1, X2y oy @) — U™ (21, T2y ..oy 2n)| < @(X1, T2, ..., @0)+ (3.3)
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z1
/ |K1(s1,@2, ... xn)| - Ju(st, o, ..., xy) — u*(s1, 20, ..., x,)|ds1+
/ / |Ko(s1,82, @3, xn)|-|u(s1, Tay .oy @p)—u* (81,2, .., Tp)|ds1dsa+. .. +

T3
/ / / n(81,82, .., 8n)| |u(st, To, ..., xn) —u"(51,T2,...,2n)|ds1dsa . .. dsn,.

From (3.3), Lemma 1.3, Theorem 2.1 and Gronwall lemma we have

lu(z1, o, ..., xn) — u* (21,22, ..., 2,)| <

T1
< p(x1,22,...,2Tn) XD (/ Ki(s1,22,...,xp)ds1+
0

1 1)
—|—/ / K2(51,82,$3,...,xn)dsldSQ—|—...+
0 0

] o Ty
+/ / / Kn(sl,SQ,...,sn)dsldSQ...dsn) <
o Jo 0

< p(z1,xa,...,x,) exp(Mg, a1 + Mg,a1a2 + ... + Mg, a1as ... ap).
Hence we have
lu(z1, o, ... xy) — u™ (21, @2, ..., xn)| < C - (w1, T2, ..., 2p) (3.4)

where
Cr = exp(Mg,a1 + Mg,a1a2 + ... + Mg, aras ... ap). (3.5)
Then, the equation (2.1) is Ulam-Hyers-Rassias stable.

4. ULAM-HYERS STABILITY OF VOLTERRA INTEGRAL EQUATION

In what follows we consider the integral equation
o)+ [ flas () gu@)ds, @€ pa) (41)
0

and (B, |-]) a (real or complex) Banach space, f € C([0,a) % [0,a) xB2?,B), h: [0,a) —
B, g € C([0,a) x C([0,a))), a € (0,00].

First we consider the equation (4.1). Following I. A. Rus [12], [13], [14] and I. A.
Rus, N. Lungu [11], we have a stability result of Ulam-Hyers type for the equation
(4.1).

Theorem 4.1. If we have:
(i) f € C([0,a] x [0,a] x B2, B), h € C([0,a],B), g € C([0,a] x C([0,a]));
(i) there exists L1, Lo > 0 such that

|f(z,s,u,v) — f(z,s,u,0)| < Li|u — 7| + Lajv — 7|, V s,z € [0,a], wu,v,u,v € B;
(iii) there exists Ly > 0 such that
lg(u) — g(v)| < Ls|u —v|, for all u,v € B,

then
(a) The equation (4.1) has in C(]0,a],B) a unique solution u*;
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(b) For each e >0, if u € C([0,a],B) is a solution of the inequation

/ f(z,s,u(s), g(u(s)))ds| <e, ¥z €[0,a], (4.2)
then
lu(z) —u*(z)] < Cj-e, Vxellal, (4.3)
where
Cy =exp(Ly + LaL3)a, (4.4)

hence, the equation (4.1) is Ulam-Hyers stable.
Proof. (a) It is a known result ([15]).
(b) We have

u(z) —u*(z)] <

/ f( 5, u(s), g(u(s)))ds| +
+ / | F s us), g(u(s))) — F( 5,u*(s), gl (5)))]ds <
0

<e+ (L1 + Lng)/ |u(s) —u*(s)|ds.
0
From the Gronwall lemma, we have
() — u*(z)] < cexp(Ls + LaLg)a = Cy -, (4.5)
where
Cf = exp(Ll + Lng)a.
Hence, the equation (4.1) is Ulam-Hyers stable.
In the following theorem we have a stability result of Ulam-Hyers-Rassias type
([11], [12]), for the equation (4.1).
Theorem 4.2. We suppose that
(i) f € C([0,a] x [0,a] x B*,B), h € C([0,a],B), g € C([0,a] x C([0,a])) and
pE C([Oa a]a R+);
(i) there exists L1, Ly > 0 such that
|f(z,s,u,v) — f(x,s,u,0)| < Lilu—a| + Lajv — |, ¥ s,z € [0,a], u,v,u,v € B;
(i1i) there exists Ls > 0 such that
lg(u) — g(v)| < Ls|u —v|, for all u,v € B;

(iv) the function ¢ is an increasing function.

Then:
(a) The equation (4 1) has in C(]0,a],B) a unique solution u*;
(b) If u € C([0,a],B) is such that

/ f(z,s,u(s), g(u(s)))ds| < p(x), ¥V x €[0,d],

then

lu(z) —u*(z)| < ¢(z) - Cf, (4.6)
where

Cf = exp((Ll + L2L3)(1).
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Proof. Is analogous as in Theorem 4.1.
Remark 4.1. The Theorems 4.1 and 4.2 remains true if (4.1) is replaced by

u(z,y) = h(a:,y)—l—/oz /Oy f(zyy, s, t,u(s, t), g(u(s,t)))dsdt, x,s€[0,al, y,t € [0,al.

5. STABILITY OF FUNCTIONAL VOLTERRA INTEGRAL EQUATION
Let (B,|-]) a (real or complex) Banach space, ¢ € C([0,a) x [0,a),R}), K €
C([0,a]* x B2, B), g € C([0,a]? x B,B). We consider the following functional Volterra

integral equation
) =gt h(e) + [ [ Kostutso, s onasi. 6.1

Theorem 5.1. If we have:
(i) K € C([0,a]* x B2, B), g € C([0,a)® x B,B), ¢ € C([0,a]?,Ry) increasing;
(i) there exists lx,,lx, > 0 such that

|K(x,y, s,t,u,v) - K(x,y,s,t,ﬂ,@)\ < ZK1|U - ﬂ| + lK2‘rU 7ﬁ|a

for all z,y,s,t € [0,a], u,v,w,v € B;
(i) there exists I, > 0 such that
l9(2,y, 1) — gz, y, €2)| < lgler — eal;

(iv) there exists lp, > 0 such that
[h(u) = h(v)] < lnlu—vf;

(v) there exists Iy > 0 such that
[f(u) = f(0)| < lplu—ol;

(m') lg-Ip < L.

Then:
(a) The equation (5.1) has in C([0,a] x [0,a],B) a unique solution u*;
(b) If w € C([0,a] x [0,a],B) is such that

ul(z,y) — g,y hiu)(zy)) - / ’ / " K (g5, tu(s 1), f(u(s,tmdsdt] < o)
(5.2)

for all z,y,s,t € [0,a], then
|u(x,y) - U*(way” < CK,!Lh»f ’ @(xay)a Vaz,ye [0,(1]
1 I, + 1k lf 2
C = ! 2 5.3
Koaghd =937 1, P ( 11,0, )" (5:3)
i.e., the equation (5.1) is the Ulam-Hyers-Rassias stable.
Proof. (a) It is a known result (see [6]).
(b) We have

where

|u(:z:,y) - U*('rvy” < ‘u(x,y) - g(m,y,h(u)(w,y))—
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— /OI /Oy K(z,y,s,t,u(s,t), f(u(s,t)))dsdt|+

+g(@, y, h(u) (@, y)) — g(@, y, h(u*)(2, y)) |+
+/ / |K (x,y,s,t,u(s, t), f(u(s, 1)) — K(z,y,s,t,u"(s,t) f(u*(s,t)))|dsdt <

o Jo
< p(z,y) + lg|h(u) — h(u®)|+
[ o) = 5.0+ i u(s.8) = 0 () st <
< (P(mvy) + lglhlu(ma y) - u*(x, y)|+
+ /O /0 (s Ju(s, £) — u* (s, )| + Lyl (s, £) — u* (s, 0)])dsdt.

Hence, we have

|u(a:,y) - U*(l‘,y)| < Qp(l‘vy) + Zglh|u(m7y) - U*(Z‘,y)|+

x Yy
—|—/ / (Ig, + L) u(s, t) — u* (s, t)|dsdt.
0 0
Then,
Ty
(1= tylue.) = . )] < play) + e, +lacly) [ [ ulsst) = (s, 0)ldsa,
0 0

and we have

1 ! Ik,
lu(z,y) — u*(z,y)| < o(x,y) + Kt K”“/ / u(s,t) — u*(s,t)|dsdt.

1=yl 1— 14l
From Gronwall-lemma ([3]) it follows that

1 lKI —|—lK2lf 2
lu(z,y) —u*(2,y)| < =i Xp< =L ° e(z,y),
and
lu(z,y) — u*(2,9)| < Cr,g,n,s - (2, Y), (5.4)

where Cg g, is given by (5.3) and the equation (5.1) is the Ulam-Hyers-Rassias
stable.
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