STRONG CONVERGENCE THEOREMS OF FIXED POINT FOR QUASI-PSEUDO-CONTRACTIONS BY HYBRID PROJECTION ALGORITHMS

XIAOLONG QIN*, YEOL JE CHO** AND HAIYUN ZHOU***

Dedicated to Wataru Takahashi on the occasion of his retirement

*Department of Mathematics, Hangzhou Normal University Hangzhou, Zhejiang 310036, China E-mail: qxlxajh@163.com

**Department of Mathematics Education and the RINS, Gyeongsang National University, Chinju 660-701, Korea E-mail: yjcho@gsnu.ac.kr

***Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China E-mail: witman66@yahoo.com.cn

Abstract. The purpose of this paper is to propose a modified hybrid projection algorithm and prove strong convergence theorems of fixed points for a Lipschitz quasi-pseudo-contraction in the framework of Hilbert spaces. Our results improve and extend the corresponding ones announced by many others.

Key Words and Phrases: Strong convergence, hybrid projection algorithm, pseudo-contraction, Hilbert space.

2010 Mathematics Subject Classification: 47H09, 47H10.

1. Introduction and preliminaries

Throughout this paper, we assume that H is a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, respectively. Assume that C is a nonempty closed convex subset of H and $T: C \to C$ is a nonlinear mapping. We use F(T) to denote the set of fixed points of T. $P_C(\cdot)$ denotes the metric projection from H onto C.

Recall that the mapping T is said to be non-expansive if

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$
 (1.1)

The paper was presented at The 9th International Conference on Fixed Point Theory and Its Applications, July 16-22, 2009, National Changhua University of Education, Changhua, Taiwan (R.O.C.)

^{**} Corresponding author.

T is said to be strictly pseudo-contractive if there exists a constant $k \in [0,1)$ such that

$$||Tx - Ty||^2 \le ||x - y||^2 + k||(I - T)x - (I - T)y||^2, \quad \forall x, y \in C.$$
 (1.2)

Note that the class of strict pseudo-contractions strictly includes the class of non-expansive mappings. That is, T is non-expansive if and only if the coefficient k = 0. It is also said to be pseudo-contractive if k = 1. That is,

$$||Tx - Ty||^2 \le ||x - y||^2 + ||(I - T)x - (I - T)y||^2, \quad \forall x, y \in C.$$
 (1.3)

T is said to be strongly pseudo-contractive if there exists a positive constant $\lambda \in (0,1)$ such that $T - \lambda I$ is pseudo-contractive. Clearly, the class of strict pseudo-contractions falls into the one between classes of non-expansive mappings and pseudo-contractions. We remark also that the class of strongly pseudo-contractive mappings is independent of the class of strict pseudo-contractions (see, e.g., [2-4,12]).

It is very clear that, in a real Hilbert space H, (1.3) is equivalent to

$$\langle Tx - Ty, x - y \rangle \le ||x - y||^2, \quad \forall x, y \in C.$$
 (1.4)

T is called a quasi-strict pseudo-contraction if $F(T) \neq \emptyset$ and (1.2) holds for all $x \in C$ but $y \in F(T)$. In particular, if k=1, then T is said to be quasi-pseudo-contractive; if k=0, T is said to be quasi-non-expansive. Clearly pseudo-contraction with a nonempty fixed point set is quasi-pseudo-contractive, however, the converse may be not true. The following examples can be found in Chidume [5] and Zhou [12], respectively.

Example 1.1. Let $H = R^1$ and define a mapping by $T: H \to H$ by

$$Tx = \begin{cases} \frac{x}{2}\sin\frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Then T is quasi-pseudo-contractive but not pseudo-contractive.

Example 1.2. Take $C = (0, \infty)$ and define a mapping by $T: C \to C$ by

$$Tx = \frac{x^2}{1+x}$$
, for each $x \in C$.

Then T is strict pseudo-contractive but not strong pseudo-contractive.

Example 1.3. Take $C = R^1$ and define a mapping $T: C \to C$ by

$$Tx = \begin{cases} 1, & x \in (-\infty, -1) \\ \sqrt{1 - (1 + x)^2}, & x \in [-1, 0) \\ -\sqrt{1 - (x - 1)^2}, & x \in [0, 1] \\ -1, & x \in (1, \infty). \end{cases}$$

Then T is a strong pseudo-contraction but not a strict pseudo-contraction.

Example 1.4. Take $H = R^2$ and $B = \{x \in R^2 : ||x|| \le 1\}$, $B_1 = \{x \in B : ||x|| \le \frac{1}{2}\}$, $B_2 = \{x \in B : \frac{1}{2} \le ||x|| \le 1\}$. If $x = (a, b) \in H$, we define x^{\perp} to be $(b, -a) \in H$.

Define $T: B \to B$ by

$$Tx = \begin{cases} x + x^{\perp}, & x \in B_1, \\ \frac{x}{\|x\|} - x + x^{\perp}, & x \in B_2. \end{cases}$$

Then T is a Lipschitz pseudo-contraction but not a strict pseudo-contraction.

Recall that the normal Mann's iterative process was introduced by Mann [7] in 1953. Since then, construction of fixed points for non-expansive mappings and pseudo-contractions via the normal Mann's iterative process has been extensively investigated by many authors. The normal Mann's iterative process generates a sequence $\{x_n\}$ in the following manner:

$$\forall x_1 \in C, \quad x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n, \quad \forall n \ge 1, \tag{1.5}$$

where the sequence $\{\alpha_n\}_{n=0}^{\infty}$ is in the interval (0,1).

If T is a non-expansive mapping with a fixed point and the control sequence $\{\alpha_n\}$ is chosen so that $\sum_{n=0}^{\infty} \alpha_n (1-\alpha_n) = \infty$, then the sequence $\{x_n\}$ generated by normal Mann's iterative process (1.5) converges weakly to a fixed point of T (this is also valid in a uniformly convex Banach space with the Fréchet differentiable norm [11]).

Attempts to modify the normal Mann iteration method (1.5) for non-expansive mappings, strict pseudo-contractions and pseudo-contractions so that strong convergence is guaranteed have recently been made; see, e.g., [1,6,8,9,10,12,13] and the references therein.

Nakajo and Takahashi [10] proposed the following modification of the Mann iteration for a single non-expansive mapping T in a Hilbert space. To be more precise, They proved the following theorem:

Theorem NT. Let C be a closed convex subset of a Hilbert space H and let $T: C \to C$ be a non-expansive mapping such that $F(T) \neq \emptyset$. Assume that $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence in [0, 1] such that $\alpha_n \leq 1 - \delta$ for some $\delta \in (0, 1]$. Define a sequence $\{x_n\}_{n=0}^{\infty}$ in C by the following algorithm:

$$\begin{cases} x_{0} \in C & chosen \ arbitrarily, \\ y_{n} = \alpha_{n}x_{n} + (1 - \alpha_{n})Tx_{n}, \\ C_{n} = \{z \in C : ||y_{n} - z|| \leq ||x_{n} - z||\}, \\ Q_{n} = \{z \in C : \langle x_{0} - x_{n}, x_{n} - z \rangle \geq 0\}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}, \forall \ n \geq 1. \end{cases}$$

$$(1.6)$$

Then $\{x_n\}$ converges in norm to $P_{F(T)}x_0$.

Recently, Kim and Xu [6] adapted the iteration (1.5) in Hilbert spaces. They extended the result of Nakajo an Takahashi [10] from non-expansive mappings to asymptotically non-expansive mappings. To be more precise, they proved the following result.

Theorem KX. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let $T: C \to C$ be an asymptotically non-expansive mapping with a sequence $\{k_n\}$ such that $k_n \to 1$ as $n \to \infty$. Assume that $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence in [0,1] such

that $\limsup_{n\to\infty} \alpha_n < 1$. Define a sequence $\{x_n\}$ in C by the following algorithm:

$$\begin{cases} x_{0} \in C & chosen \ arbitrarily, \\ y_{n} = \alpha_{n}x_{n} + (1 - \alpha_{n})T^{n}x_{n}, \\ C_{n} = \{z \in C : ||y_{n} - z||^{2} \leq ||x_{n} - z||^{2} + \theta_{n}\}, \\ Q_{n} = \{z \in C : \langle x_{0} - x_{n}, x_{n} - z \rangle \geq 0\}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}, \forall \ n \geq 1, \end{cases}$$

$$(1.7)$$

where

$$\theta_n = (1 - \alpha_n)(k_n^2 - 1)(diamC)^2 \to 0, \quad as \ n \to \infty.$$

Then $\{x_n\}$ defined by (1.7) converges strongly to $P_{F(T)}x_0$.

Subsequently, Marino and Xu [8] extended the result of Nakajo an Takahashi [10] from non-expansive mappings to strict pseudo-contractions. They proved

Theorem MX. Let C be a closed convex subset of a Hilbert space H and $T: C \to C$ be a k-strict pseudo-contraction for some $0 \le k < 1$ and assume that the fixed point set F(T) of T is nonempty. Define a sequence $\{x_n\}$ in C by the algorithm:

$$\begin{cases} x_{0} \in C & chosen \ arbitrarily, \\ y_{n} = \alpha_{n}x_{n} + (1 - \alpha_{n})Tx_{n}, \\ C_{n} = \{z \in C : \|y_{n} - z\|^{2} \leq \|x_{n} - z\|^{2} + (k - \alpha_{n})(1 - \alpha_{n})\|x_{n} - Tx_{n}\|^{2}\}, \\ Q_{n} = \{z \in C : \langle x_{0} - x_{n}, x_{n} - z \rangle \geq 0\}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}, \quad \forall n \geq 0. \end{cases}$$

$$(1.8)$$

Assume that the control sequence $\{\alpha_n\}$ is such that $0 \le \alpha_n < 1$ for all $n \ge 0$. Then $\{x_n\}$ converges in norm to $P_{F(T)}x_0$.

In this paper, motivated by Kim and Xu [6], Marino and Xu [8], Martinez-Yanes and Xu [9], Nakajo and Takahashi [10], and Zhou [12], we introduce a new hybrid projection algorithm to modify the normal Mann iterative scheme to obtain the strong convergence for Lipschitz quasi-pseudo-contractions in the framework of Hilbert spaces without any compact assumption.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 ([8]). Let H be a real Hilbert space. Then the following equations hold:

- $\begin{array}{l} \text{(i)} \ \, \|x-y\|^2 = \|x\|^2 \|y\|^2 2\langle x-y,y\rangle \ \, \textit{for all} \ \, x,y \in H. \\ \text{(ii)} \ \, \|tx+(1-t)y\|^2 = t\|x\|^2 + (1-t)\|y\|^2 t(1-t)\|x-y\|^2 \ \, \textit{for all} \ \, t \in [0,1] \ \, \textit{and} \end{array}$ $x, y \in H$.

Lemma 1.2. Let C be a closed convex subset of real Hilbert space H and let P_C be the metric projection from H onto $C(i.e., for x \in H, P_C x \text{ is the only point in } C \text{ such }$ that $||x - P_C x|| = \inf\{||x - z|| : z \in C\}$). Let $x \in H$ and $z \in C$ be given. Then $z = P_C x$ if and only if there holds the relations:

$$\langle x - z, y - z \rangle \le 0 \quad \forall \ y \in C.$$

Lemma 1.3. Let C be a nonempty closed convex subset of H and T a Lipschitz quasi-pseudo-contraction with the Lipschitz constant $L \geq 1$. Then F(T) is nonempty closed convex subset of C.

Proof. From the continuity of T, one has that F(T) is closed. Next, we show F(T) is convex. Let $p_1, p_2 \in F(T)$. We prove $p \in F(T)$, where $p = tp_1 + (1 - t)p_2$, for $t \in (0, 1)$. Put $y_{\alpha} = (1 - \alpha)p + \alpha Tp$, where $\alpha \in (0, \frac{1}{1 + L})$. For all $w \in F(T)$, one sees

$$\begin{split} &\|p-Tp\|^2 \\ &= \langle p-Tp, p-Tp \rangle \\ &= \frac{1}{\alpha} \langle p-y_{\alpha}, p-Tp \rangle \\ &= \frac{1}{\alpha} \langle p-y_{\alpha}, p-Tp-(y_{\alpha}-Ty_{\alpha}) \rangle + \frac{1}{\alpha} \langle p-y_{\alpha}, y_{\alpha}-Ty_{\alpha} \rangle \\ &= \frac{1}{\alpha} \langle p-y_{\alpha}, p-Tp-(y_{\alpha}-Ty_{\alpha}) \rangle + \frac{1}{\alpha} \langle p-w+w-y_{\alpha}, y_{\alpha}-Ty_{\alpha} \rangle \\ &= \frac{1}{\alpha} \langle p-y_{\alpha}, p-Tp-(y_{\alpha}-Ty_{\alpha}) \rangle + \frac{1}{\alpha} \langle p-w+w-y_{\alpha}, y_{\alpha}-Ty_{\alpha} \rangle \\ &\leq \frac{1+L}{\alpha} \|p-y_{\alpha}\|^2 + \frac{1}{\alpha} \langle p-w, y_{\alpha}-Ty_{\alpha} \rangle + \frac{1}{\alpha} \langle w-y_{\alpha}, y_{\alpha}-Ty_{\alpha} \rangle \\ &\leq (1+L)\alpha \|p-Tp\|^2 + \frac{1}{\alpha} \langle p-w, y_{\alpha}-Ty_{\alpha} \rangle, \end{split}$$

which yields that

$$\alpha[1 - (1+L)\alpha] \|p - Tp\|^2 \le \langle p - w, y_\alpha - Ty_\alpha \rangle, \quad \forall w \in F(T).$$
 (1.9)

Taking $w = p_i$ i = 1, 2 in (1.9), multiplying t and (1 - t) on the both sides of (1.9), respectively, and adding up, one has

$$\alpha[1 - (1+L)\alpha] \|p - Tp\|^2 \le \langle p - p, y_\alpha - Ty_\alpha \rangle = 0.$$

This shows that $p \in F(T)$. This completes the proof.

2. Main results

Theorem 2.1. Let C be a nonempty closed and convex subset of a Hilbert space H and T a Lipschitz quasi-pseudo-contraction from C into itself with the Lipschitz constant $L \geq 1$. Let $\{x_n\}$ be a sequence generated by the following algorithm:

$$\begin{cases} x_{0} \in H & chosen \ arbitrarily, \\ C_{1} = C, \\ x_{1} = P_{C_{1}}x_{0}, \\ y_{n} = (1 - \alpha_{n})x_{n} + \alpha_{n}Tx_{n}, \\ C_{n+1} = \{z \in C_{n} : \alpha_{n}[1 - (1 + L)\alpha_{n}] \|x_{n} - Tx_{n}\|^{2} \le \langle x_{n} - z, y_{n} - Ty_{n} \rangle \}, \\ x_{n+1} = P_{C_{n+1}}x_{0}, \ \forall \ n \ge 1. \end{cases}$$

$$(2.1)$$

Assume that the control sequence satisfies the restriction: $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n \le a < 1$, where $a \in (0, \frac{1}{1+L})$. Then $\{x_n\}$ converges strongly to $P_{F(T)}x_0$.

Proof. First, we show that C_n is closed and convex for all $n \geq 1$. It is obvious that $C_1 = C$ is closed and convex. Suppose that C_k is closed and convex for some $k \in \mathbb{N}$. For any $z \in C_k$, one can easily see that

$$\alpha_k [1 - (1 + L)\alpha_k] ||x_k - Tx_k||^2 \le \langle x_k - z, y_k - Ty_k \rangle$$

is closed and convex. So, C_{k+1} is closed and convex. Then, for all $n \geq 1$, C_n is closed and convex. This shows that $P_{C_{n+1}}x_0$ is well defined.

and convex. This shows that $P_{C_{n+1}}x_0$ is well defined. Next, we prove $F(T) \subset C_n$ for all $n \geq 1$. $F(T) \subset C_1 = C$ is obvious. Suppose $F(T) \subset C_k$ for some $k \in \mathbb{N}$. Then, for all $w \in F(T) \subset C_k$, one has

$$\begin{split} &\|x_k - Tx_k\|^2 \\ &= \langle x_k - Tx_k, x_k - Tx_k \rangle \\ &= \frac{1}{\alpha_k} \langle x_k - y_k, x_k - Tx_k \rangle \\ &= \frac{1}{\alpha_k} \langle x_k - y_k, x_k - Tx_k - (y_k - Ty_k) \rangle + \frac{1}{\alpha_k} \langle x_k - y_k, y_k - Ty_k \rangle \\ &= \frac{1}{\alpha_k} \langle x_k - y_k, x_k - Tx_k - (y_k - Ty_k) \rangle + \frac{1}{\alpha_k} \langle x_k - w + w - y_k, y_k - Ty_k \rangle \\ &\leq \frac{1 + L}{\alpha_k} \|x_k - y_k\|^2 + \frac{1}{\alpha_k} \langle x_k - w, y_k - Ty_k \rangle + \frac{1}{\alpha_k} \langle w - y_k, y_k - Ty_k \rangle \\ &\leq (1 + L)\alpha_k \|x_k - Tx_k\|^2 + \frac{1}{\alpha_k} \langle x_k - w, y_k - Ty_k \rangle. \end{split}$$

It follows that

$$\alpha_k [1 - (1+L)\alpha_k] ||x_k - Tx_k||^2 \le \langle x_k - w, y_k - Ty_k \rangle,$$

which shows $w \in C_{k+1}$. This implies that $F(T) \subset C_n$ for all $n \geq 1$. From $x_n = P_{C_n} x_0$, one sees that

$$\langle x_0 - x_n, x_n - y \rangle \ge 0, \quad \forall y \in C_n.$$
 (2.2)

Since $F(T) \subset C_n$ for all $n \geq 1$, we arrive at

$$\langle x_0 - x_n, x_n - w \rangle \ge 0, \quad \forall w \in F(T). \tag{2.3}$$

From Lemma 1.3, we have that $P_{F(T)}x_0$ is well defined. There exists a unique p such that $p = P_{F(T)}x_0$. It follows that

$$0 \le \langle x_0 - x_n, x_n - p \rangle$$

= $\langle x_0 - x_n, x_n - x_0 + x_0 - p \rangle$
 $\le -\|x_0 - x_n\|^2 + \|x_0 - x_n\| \|x_0 - p\|,$

which yields that

$$||x_0 - x_n|| < ||x_0 - p||. (2.4)$$

It follows from (2.4) that the sequence $\{x_n\}$ is bounded. Noticing that $x_{n+1} \in C_{n+1} \subset C_n$ and (2.2), one has

$$\langle x_0 - x_n, x_n - x_{n+1} \rangle \ge 0.$$

It follows that

$$0 \le \langle x_0 - x_n, x_n - x_{n+1} \rangle$$

$$= \langle x_0 - x_n, x_n - x_0 + x_0 - x_{n+1} \rangle$$

$$\le -\|x_0 - x_n\|^2 + \|x_0 - x_n\| \|x_0 - x_{n+1}\|,$$

that is, $||x_0 - x_n|| \le ||x_0 - x_{n+1}||$. This together with the boundedness of $\{x_n\}$ implies that $\lim_{n\to\infty} ||x_0 - x_n||$ exists. By the construction of C_n , one has that $C_m \subset C_n$ and $x_m = P_{C_m} x_0 \in C_n$ for any positive integer $m \ge n$. From (2.2), we have

$$\langle x_0 - x_n, x_n - x_{n+m} \rangle \ge 0. \tag{2.5}$$

It follows that

$$||x_{n} - x_{n+m}||^{2} = ||x_{n} - x_{0} + x_{0} - x_{n+m}||^{2}$$

$$= ||x_{n} - x_{0}||^{2} + ||x_{0} - x_{n+m}||^{2} - 2\langle x_{0} - x_{n}, x_{0} - x_{n+m} \rangle$$

$$\leq ||x_{0} - x_{n+m}||^{2} - ||x_{n} - x_{0}||^{2} - 2\langle x_{0} - x_{n}, x_{n} - x_{n+m} \rangle$$

$$\leq ||x_{0} - x_{n+m}||^{2} - ||x_{n} - x_{0}||^{2}.$$

$$(2.6)$$

Letting $n \to \infty$ in (2.6), one has $\lim_{n\to\infty} ||x_n - x_{n+m}|| = 0$, for each m > n. Hence, $\{x_n\}$ is a Cauchy sequence. Since H is a Hilbert space and C is closed and convex, one can assume that

$$x_n \to q \in C$$
 as $n \to \infty$.

Finally, we show that $q = P_{F(T)}x_0$. To show this, we first show $q \in F(T)$. By taking m = 1 in (2.6), one arrives at $||x_n - x_{n+1}|| \to 0$, as $n \to \infty$. Noticing that $x_{n+1} \in C_{n+1}$, we obtain

$$\alpha_n[1-(1+L)\alpha_n]||x_n-Tx_n||^2 \le ||x_n-x_{n+1}|||y_n-Ty_n||.$$

It follows from the assumptions on $\{\alpha_n\}$ and boundedness of $\{y_n - Ty_n\}$ that $\lim_{n\to\infty} \|x_n - Tx_n\| = 0$. Thus, $Tx_n \to q$ as $n \to \infty$. Now the closed-ness property of T gives that q is a fixed point of T. From (2.3), one has

$$\langle x_0 - q, q - w \rangle \ge 0, \quad \forall w \in F(T),$$

which implies that $q = P_{F(T)}x_0$. This completes the proof.

If T is a Lipschitz pseudo-contraction in Theorem 2.1, then the following result can be obtained immediately.

Corollary 2.2. Let C be a nonempty and closed convex subset of a Hilbert space H and T a Lipschitz pseudo-contraction from C into itself with the Lipschitz constant $L \geq 1$ with a nonempty fixed point set. Let $\{x_n\}$ be a sequence generated by the following algorithm:

$$\begin{cases} x_0 \in H & chosen \ arbitrarily, \\ C_1 = C, \\ x_1 = P_{C_1}x_0, \\ y_n = (1 - \alpha_n)x_n + \alpha_n Tx_n, \\ C_{n+1} = \{z \in C_n : \alpha_n [1 - (1 + L)\alpha_n] \|x_n - Tx_n\|^2 \le \langle x_n - z, y_n - Ty_n \rangle \}, \\ x_{n+1} = P_{C_{n+1}}x_0, \ \forall \ n \ge 1. \end{cases}$$

Assume that the control sequence satisfies the restriction:

$$0<\liminf_{n\to\infty}\alpha_n\leq\limsup_{n\to\infty}\alpha_n\leq a<1,$$

where $a \in (0, \frac{1}{1+L})$, Then $\{x_n\}$ converges strongly to $P_{F(T)}x_0$.

Remark 2.3. Corollary 2.2 improves the result of Marino and Xu [8] from strict pseudo-contractions to Lipschitz pseudo-contraction. It also includes the results of Nakajo and Takahashi [10] as a special case. The hybrid projection algorithm is also simpler than those studied by [8-10].

Remark 2.4. It is of interest to entitle the hybrid projection algorithm (2.1) "C method" regarding to the "CQ method" introduced by Martinez-Yanes and Xu [9].

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-C00050).

References

- G. Lopez Acedo, H.K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 67(2007), 2258-2271.
- [2] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad. Sci. USA, 53(1965), 1272-1276.
- [3] F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Ration. Mech. Anal., 24(1967), 82-90.
- [4] F.E. Browder, W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(1967), 197-228.
- [5] C.E. Chidume, S.A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudo-contractions, Proc. Amer. Math. Soc., 129(2001), 2359-2363.
- [6] T.K. Kim, H.K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., 64(2006), 1140-1152.
- [7] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(1953), 506-510.
- [8] G. Marino, H.K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., 329(2007), 336-346.
- [9] C. Martinez-Yanes, H.K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64(2006), 2400-2411.
- [10] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279(2003), 372-379.
- [11] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67(1979), 274-276.
- [12] H. Zhou, Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., 343(2008), 546-556.
- [13] H. Zhou, Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 69(2008), 456-462.

Received: December 31, 2009; Accepted: May 2, 2010.