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1. Introduction and preliminaries

Throughout this paper, we assume that H is a real Hilbert space, whose inner
product and norm are denoted by 〈·, ·〉 and ‖ · ‖, C is a closed convex subset of H and
A : C → H is a nonlinear mapping. We denote by PC be the projection of H onto the
closed convex subset C. The classical variational inequality problem is to find u ∈ C
such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1.1)
We denoted by V I(C,A) the set of solutions of the variational inequality. For a given
z ∈ H,u ∈ C satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ C,

if and only if u = PCz. It is known that projection operator PC is nonexpansive. It is
also known that PCx is characterized by the property: PCx ∈ C and 〈x−PCx, PCx−
y〉 ≥ 0 for all y ∈ C.

Remark 1.1. One can see that the variational inequality problem (1.1) is equivalent
to a fixed point problem, that is, an element u ∈ C is a solution of the variational
inequality (1.1) if and only if u ∈ C is a fixed point of the mapping PC(I−λA), where
λ > 0 is a constant and I is the identity mapping.

273



274 YAN HAO AND MEIJUAN SHANG

Recall the following definitions.
(1) A mapping A : C → H is said to be inverse-strongly monotone if there exists

a positive real number µ such that

〈Ax−Ay, x− y〉 ≥ µ‖Ax−Ay‖2, ∀x, y ∈ C. (1.2)

For such a case, A is also said to be µ-inverse-strongly monotone.
(2) A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Next, we denote by F (T ) the set of fixed points of T .
(3) A mapping f : C → C is said to be contractive if there exists α ∈ (0, 1) such

that
‖f(x)− f(y)‖ ≤ α‖x− y‖, ∀x, y ∈ C.

(4) A linear bounded operator B : C → C is said to be strongly positive if there exists
a constant γ̄ > 0 such that

〈Bx, x〉 ≥ γ̄‖x‖2, ∀x ∈ C.

(5) A set-valued mapping T : H → 2H is said to be monotone if, for all x, y ∈ H,
f ∈ Tx and g ∈ Ty imply 〈x− y, f − g〉 ≥ 0.

(6) A monotone mapping T : H → 2H is said to be maximal if the graph of G(T )
of T is not properly contained in the graph of any other monotone mapping.

It is known that a monotone mapping T is maximal if and only if, for any (x, f) ∈
H ×H, 〈x− y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ) implies f ∈ Tx.

Let A be a monotone mapping of C into H and NCv be the normal cone to C at
v ∈ C, i.e., NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, ∀u ∈ C} and define

Tv =

{
Av + NCv, v ∈ C,

∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A) (see [26]).

Regarding to the class of nonexpansive mappings, we have the following results.

Let C be a nonempty bounded closed and convex subset of a real Hilbert space H
and T : C → C a nonexpansive mapping. Then T has a fixed point in C.

Remark 1.2. The above result is still valid if the framework of the space is uniformly
convex Banach spaces; see [1]. In 1965, Kirk [15] proved that the existence of fixed
points of a single nonexpansive mapping in the framework of reflexive Banach spaces
which enjoy the normal structure. We also remark that the existence of common fixed
point for a nonexpansive semigroup was given by Browder, see [1] for more details.

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems (see [11,16,31-33] and the references therein). A typical
problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space H:

min
x∈Ω

1
2
〈Bx, x〉 − 〈x, b〉, (1.3)
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where B is a linear bounded operator on H, Ω is the fixed point set of a nonexpansive
mapping S and b is a given point in H.

In [32], it is proved that the sequence {xn} defined by the iterative method below,
with the initial guess x0 ∈ H chosen arbitrarily,

xn+1 = (I − αnB)Sxn + αnb, ∀n ≥ 0,

converges strongly to the unique solution of the minimization problem (1.3) provided
the sequence {αn} satisfies certain conditions.

Recently, Marino and Xu [16] introduced a general iterative scheme by the viscosity
approximation method:

x0 ∈ H, xn+1 = (I − αnB)Sxn + αnγf(xn), ∀n ≥ 0, (1.4)

where S is a nonexpansive mapping on H, f is a contraction on H with the coefficient
α, B is a bounded linear strongly positive operator on H with the coefficient γ̄ and γ is
a constant such that 0 < γ < γ̄/α. They proved that the sequence {xn} generated by
the iterative scheme (1.4) converges strongly to the unique solution of the variational
inequality:

〈(B − γf)x∗, x− x∗〉 ≥ 0, ∀x ∈ F (S),
which is the optimality condition for the minimization problem

min
x∈F (S)

1
2
〈Bx, x〉 − h(x),

where h is a potential function for γf (i.e., h′(x) = γf(x) for all x ∈ H.)
Recently, variational inequalities and fixed point problems have been considered

by many authors. See, e.g., [8,12,13,17-20,25,28] and the references therein. For
finding a common element of the sets of fixed points of nonexpansive mappings and
solutions of variational inequalities for µ-inverse-strongly monotone mapping, Iiduka
and Takahashi [12] proposed the following iterative scheme:

x1 = x ∈ C, xn+1 = αnx + (1− αn)SPC(xn − λnAxn), ∀n ≥ 1, (1.5)

where {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2µ). They proved that
the sequence {xn} defined by (1.5) converges strongly to some z ∈ F (S) ∩ V I(C,A).

Very recently, Chen et al. [8] studied the following iterative process:

x1 ∈ C, xn+1 = αnf(xn) + (1− αn)SPC(xn − λnAxn), ∀n ≥ 1,

and also obtained a strong convergence theorem by so-called viscosity approximation
method discussed by Moudafi [17] in the framework of Hilbert spaces.

Concerning a family of nonexpansive mappings has been considered by many au-
thors. See, e.g., [4,6,7,9,19-24,27,29,32] and the references therein. The well-known
convex feasibility problem reduces to finding a point in the intersection of the fixed
point sets of a family of nonexpansive mappings. See, e.g., [3,5,29] and the references
therein. The problem of finding an optimal point that minimizes a given cost function
over the common set of fixed points of a family of nonexpansive mappings is of wide
interdisciplinary interest and practical importance. See e.g., [4,10,34] and the refer-
ences therein. A simple algorithmic solution to the problem of minimizing a quadratic
function over the common set of fixed points of a family of nonexpansive mappings is
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of extreme value in many applications including set theoretic signal estimation. See,
e.g., [14,34].

In this paper, we consider the mapping Wn defined by

Un,n+1 = I,

Un,n = γnTnUn,n+1 + (1− γn)I,

Un,n−1 = γn−1Tn−1Un,n + (1− γn−1)I,

· · ·
Un,k = γkTkUn,k+1 + (1− γk)I,

Un,k−1 = γk−1Tk−1Un,k + (1− γk−1)I,

· · ·
Un,2 = γ2T2Un,3 + (1− γ2)I,

Wn = Un,1 = γ1T1Un,2 + (1− γ1)I,

(1.6)

where γ1, γ2, . . . are real numbers such that 0 ≤ γn ≤ 1 and T1, T2, · · · be an in-
finite family of mappings of C into itself. Nonexpansivity of each Ti ensures the
nonexpansivity of Wn.

Concerning Wn, we have the following lemmas which are important to prove our
main results.

Lemma 1.1. (Shimoji and Takahashi [27]) Let C be a nonempty closed convex subset
of a strictly convex Banach space E. Let T1, T2, · · · be nonexpansive mappings of C

into itself such that
∞⋂

n=1

F (Tn) 6= ∅ and γ1, γ2, · · · be real numbers such that 0 < γn ≤

b < 1 for any n ≥ 1. Then, for all x ∈ C and k ∈ N , the limit lim
n→∞

Un,kx exists.

Using Lemma 1.1, one can define the mapping W of C into itself as follows.

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈ C. (1.7)

Such a mapping W is called the W -mapping generated by T1, T2, · · · and γ1, γ2, · · · .

Remark 1.3. Throughout this paper, we shall always assume that 0 < γi ≤ b < 1
for all i ≥ 1.

Lemma 1.2 (Shimoji and Takahashi [27]). Let C be a nonempty closed convex subset
of a strictly convex Banach space E. Let T1, T2, · · · be nonexpansive mappings of C

into itself such that
∞⋂

n=1

F (Tn) 6= ∅ and γ1, γ2, · · · be real numbers such that 0 < γn ≤

b < 1 for any n ≥ 1. Then F (W ) =
∞⋂

n=1

F (Tn).

Lemma 1.3 (Chang et al. [6]; Ceng and Yao [7]). Let C be a nonempty closed convex
subset of a Hilbert space H. Let T1, T2, · · · be nonexpansive mappings of C into itself
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such that
∞⋂

n=1

F (Tn) 6= ∅ and γ1, γ2, · · · be a real sequence such that 0 < γn ≤ b < 1

for all n ≥ 1. If K is any bounded subset of C, then

lim
n→∞

sup
x∈K

‖Wx−Wnx‖ = 0.

In this paper, motivated by Chen et al. [8], Cho et al. [9], Iiduka and Takahashi
[12], Marino and Xu [16], Maingé [18] and Takahashi and Toyoda [28], we introduce
a general iterative process as follows:

x1 ∈ C, xn+1 = αnγf(xn) + (I − αnB)WnPC(I − λnA)xn, ∀n ≥ 1, (1.8)

where A is a µ-inverse-strongly monotone mapping from C into H, B is a linear
bounded strongly positive self-adjoint operator with the coefficient γ̄, f : C → C
is a contraction with the coefficient α (0 < α < 1) and Wn is a mapping defined
by (1.6), and prove that the sequence {xn} generated by the iterative scheme (1.8)
converges strongly to a common element of the sets of common fixed points of an
infinite nonexpansive mappings and solutions of variational inequalities for the µ-
inverse-strongly monotone mapping, which solves another variational inequality:

〈γf(q)−Bq, p− q〉 ≤ 0, p ∈
∞⋂

i=1

F (Ti) ∩ V I(C,A),

and is also the optimality condition for the minimization problem:

min
x∈F

1
2
〈Bx, x〉 − h(x),

where F is the intersection of the common fixed point set of the infinite family of
nonexpansive mappings T1, T2, · · · and the set of solutions of variational inequali-
ties for µ-inverse-strongly monotone mappings, h is a potential function for γf (i.e.,
h′(x) = γf(x) for all x ∈ C.)

The results obtained in this paper improve and extend the recent ones announced
by Chen et al. [8], Iiduka and Takahashi [12], Marino and Xu [16] and many others.

In order to prove our main results, we also need the following lemmas.

Lemma 1.4 In a real Hilbert space H, the the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Lemma 1.5. (Marino and Xu [16]) Assume that B is a strong positive linear bounded
operator on a Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖B‖−1. Then
‖I − ρB‖ ≤ 1− ργ̄.

Lemma 1.6 (Marino and Xu [16]). Let H be a Hilbert space, B be a strongly positive
linear bounded self-adjoint operator on H with the coefficient γ̄ > 0. Assume that
0 < γ < γ̄/α. Let T : H → H be a nonexpansive mapping with a fixed point xt of
the contraction x 7→ tγf(x) + (I − tB)Tx. Then {xt} converges strongly as t → 0 to
a fixed point x̄ of T , which solves the variational inequality:

〈(B − γf)x̄, x̄− z〉 ≤ 0, ∀z ∈ F (T ).
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Equivalently, x̄ = PF (γf + I −B)x̄.

Lemma 1.7 (Xu [31]). Assume that {αn} is a sequence of nonnegative real numbers
such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∞∑

n=1

γn = ∞;

(ii) lim sup
n→∞

δn

γn
≤ 0 or

∞∑
n=1

|δn| < ∞.

Then lim
n→∞

αn = 0.

Lemma 1.8. Let H be a Hilbert space, C a closed convex subset of H, f : C → C
a contraction with the coefficient α ∈ (0, 1) and B a strongly positive linear bounded
operator with the coefficient γ̄ > 0. Then, for any 0 < γ < γ̄

α ,

〈x− y, (B − γf)x− (B − γf)y〉 ≥ (γ̄ − γα)‖x− y‖2, ∀x, y ∈ C.

That is, B − γf is strongly monotone with the coefficient γ̄ − αγ.

Proof. From the definition of strongly positive linear bounded operator, we have

〈x− y, B(x− y)〉 ≥ γ̄‖x− y‖2.

On the other hand, it is easy to see that

〈x− y, γfx− γfy〉 ≤ γα‖x− y‖2.

Therefore, for all x, y ∈ C, we have
〈x − y, (B − γf)x − (B − γf)y〉 = 〈x − y, B(x − y)〉 − 〈x − y, γfx − γfy〉 ≥

(γ̄ − γα)‖x− y‖2. �

2. Main results

Now, we are ready to give our main results in this paper.

Theorem 2.1. Let H be a real Hilbert space, C be a nonempty closed convex subset
of H such that C±C ⊂ C and A : C → H be a µ-inverse-strongly monotone mapping.
Let f : C → C be a contraction with the coefficient α (0 < α < 1) and T1, T2, · · · be
a sequence of nonexpansive self-mappings on C. Let B be a strongly positive linear
bounded self-adjoint operator of C into itself with the coefficient γ̄ > 0. Assume that
0 < γ < γ̄

α . Let the sequence {xn} be generated by (1.8), where the mapping Wn is
defined by (1.6), {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2µ). If

F =
∞⋂

i=1

F (Ti) ∩ V I(C,A) 6= ∅ and {αn} and {λn} are chosen such that

(C1) lim
n→∞

αn = 0;

(C2)
∞∑

n=1

αn = ∞;
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(C3)
∞∑

n=1

|λn+1 − λn| < ∞ and
∞∑

n=1

|αn+1 − αn| < ∞;

(C4) {λn} ⊂ [u, v] for some u, v with 0 < u < v < 2µ,
then the sequence {xn} converges strongly to some x∗ ∈ F , which uniquely solves the
following variation inequality:

〈Bx∗ − γf(x∗), x∗ − p〉 ≤ 0, ∀p ∈ F. (2.1)

Equivalently, we have x∗ = PF (γf + I −B)x∗.

Proof. First, we show that the mapping I − λnA is nonexpansive for each n ≥ 1.
Indeed, from the condition (C4), for x, y ∈ C, we have

‖(I − λnA)x− (I − λnA)y‖2

= ‖(x− y)− λn(Ax−Ay)‖2

≤ ‖x− y‖2 − 2λn〈Ax−Ay, x− y〉+ λ2
n‖Ax−Ay‖2

≤ ‖x− y‖2 − 2λnµ‖Ax−Ay‖2 + λ2
n‖Ax−Ay‖2

= ‖x− y‖2 + λn(λn − 2µ)‖Ax−Ay‖2

≤ ‖x− y‖2.

This shows that I − λnA is a nonexpansive mapping for each n ≥ 1. Noticing that
condition (C1), we may assume, with no loss of generality, that αn ≤ ‖B‖−1 for all
n ≥ 1. From Lemma 1.5, we know that, if 0 < αn ≤ ‖B‖−1 for all n ≥ 1, then
‖I − αnB‖ ≤ 1− αnγ̄.

Now, we are in a position to show that the sequence {xn} is bounded. Letting
p ∈ F , we have

‖xn+1 − p‖
= ‖αn(γf(xn)−Bp) + (I − αnB)(WnPC(I − λnA)xn − p)‖
≤ αn‖γf(xn)−Bp‖+ (1− αnγ̄)‖WnPC(I − λnA)xn − p‖
≤ αnγ‖f(xn)− f(p)‖+ αn‖γf(p)−Bp‖+ (1− αnγ̄)‖xn − p‖
≤ [1− αn(γ̄ − γα)]‖xn − p‖+ αn‖γf(p)−Bp‖.

By simple inductions, we obtain

‖xn − p‖ ≤ max{‖x1 − p‖, ‖Bp− γf(p)‖
γ̄ − γα

} ∀n ≥ 1,

which yields that the sequence {xn} is bounded.
Next, we show that lim

n→∞
‖xn+1 − xn‖ = 0. Putting ρn = PC(I − λnA)xn, we have

‖ρn+1 − ρn‖
= ‖PC(I − λn+1A)xn+1 − PC(I − λnA)xn‖
≤ ‖(I − λn+1A)xn+1 − (I − λnA)xn‖
= ‖(I − λn+1A)xn+1 − (I − λn+1A)xn + (I − λn+1A)xn − (I − λnA)xn‖
= ‖xn+1 − xn‖+ |λn+1 − λn|‖Axn‖.

(2.2)
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From (1.8), we see that

‖xn+2 − xn+1‖
= ‖(I − αn+1B)(Wn+1ρn+1 −Wnρn)− (αn+1 − αn)BWnρn

+ γ[αn+1(f(xn+1)− f(xn)) + f(xn)(αn+1 − αn)]‖
≤ (1− αn+1γ̄)(‖ρn+1 − ρn‖+ ‖Wn+1ρn −Wnρn‖) + |αn+1 − αn|‖BWnρn‖

+ γ[αn+1α‖xn+1 − xn‖+ ‖f(xn)‖|αn+1 − αn|].

(2.3)

Since Ti and Un,i are nonexpansive, it follows from (1.6) that

‖Wn+1ρn −Wnρn‖ = ‖γ1T1Un+1,2ρn − γ1T1Un,2ρn‖
≤ γ1‖Un+1,2ρn − Un,2ρn‖
= γ1‖γ2T2Un+1,3ρn − γ2T2Un,3ρn‖
≤ γ1γ2‖Un+1,3ρn − Un,3ρn‖
≤ · · ·
≤ γ1γ2 · · · γn‖Un+1,n+1ρn − Un,n+1ρn‖

≤ M1

n∏
i=1

γi,

(2.4)

where M1 ≥ 0 is an appropriate constant such that ‖Un+1,n+1ρn − Un,n+1ρn‖ ≤ M1

for all n ≥ 1. Substituting (2.2) and (2.4) into (2.3), we arrive at

‖xn+2 − xn+1‖ ≤ [1− αn+1(γ̄ − αγ)]‖xn+1 − xn‖

+ M2(
n∏

i=1

γi + 2|αn+1 − αn|+ |λn+1 − λn|),
(2.5)

where M2 is an appropriate constant such that

M2 = max{M1, sup
n≥1

{‖Axn‖}, γ sup
n≥1

{‖f(xn)‖}, sup
n≥1

{‖BWnρn‖}}.

Observing the conditions (C1)-(C3) and applying Lemma 1.7 to (2.5), we obtain that

lim
n→∞

‖xn+1 − xn‖ = 0. (2.6)

Next, we prove that lim
n→∞

‖Wρn − ρn‖ = 0. For all p ∈ F , we have

‖ρn − p‖2

= ‖PC(I − λnA)xn − PC(I − λnA)p‖2

≤ ‖(xn − p)− λn(Axn −Ap)‖2

= ‖xn − p‖2 − 2λn〈xn − p, Axn −Ap〉+ λ2
n‖Axn −Ap‖2

≤ ‖xn − p‖2 − 2λnµ‖Axn −Ap‖2 + λ2
n‖Axn −Ap‖2

= ‖xn − p‖2 + λn(λn − 2µ)‖Axn −Ap‖2.

(2.7)
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On the other hand, we have

‖xn+1 − p‖2

= ‖αnγf(xn) + (I − αnB)Wnρn − p‖2

≤ (αn‖γf(xn)−Bp‖+ (1− αnγ̄)‖Wnρn − p‖)2

≤ (αn‖γf(xn)−Bp‖+ (1− αnγ̄)‖ρn − p‖)2

≤ αn‖γf(xn)−Bp‖2 + ‖ρn − p‖2 + 2αn‖γf(xn)−Bp‖‖ρn − p‖.

(2.8)

Substituting (2.7) into (2.8), we obtain

‖xn+1 − p‖2 ≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 + λn(λn − 2µ)‖Axn −Ap‖2

+ 2αn‖γf(xn)−Bp‖‖ρn − p‖.

It follows from the condition (C4) that

u(2µ− v)‖Axn −Ap‖2

≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2αn‖γf(xn)−Bp‖‖ρn − p‖
≤ αn‖γf(xn)−Bp‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖

+ 2αn‖γf(xn)−Bp‖‖ρn − p‖.

From the condition (C1) and (2.6), it follows that

lim
n→∞

‖Axn −Ap‖ = 0. (2.9)

On the other hand, from the firm nonexpansivity of PC , we have

‖ρn − p‖2 =‖PC(I − λnA)xn − PC(I − λnA)p‖2

≤〈(I − λnA)xn − (I − λnA)p, ρn − p〉

=
1
2
{‖(I − λnA)xn − (I − λnA)p‖2 + ‖ρn − p‖2

− ‖(I − λnA)xn − (I − λnA)p− (ρn − p)‖2}

≤1
2
{‖xn − p‖2 + ‖ρn − p‖2 − ‖(xn − ρn)− λn(Axn −Ap)‖2}

=
1
2
{‖xn − p‖2 + ‖ρn − p‖2 − ‖xn − ρn‖2 − λ2

n‖Axn −Ap‖2

+ 2λn〈xn − ρn, Axn −Ap〉},

which yields that

‖ρn − p‖2 ≤‖xn − p‖2 + 2λn‖xn − ρn‖‖Axn −Ap‖ − ‖xn − ρn‖2. (2.10)

Substitute (2.10) into (2.8) yields that

‖xn+1 − p‖2

≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 + 2λn‖xn − ρn‖‖Axn −Ap‖
+ 2αn‖γf(xn)−Bp‖‖ρn − p‖ − ‖xn − ρn‖2.
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It follows that

‖xn − ρn‖2

≤ αn‖γf(xn)−Bp‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2λn‖xn − ρn‖‖Axn −Ap‖+ 2αn‖γf(xn)−Bp‖‖ρn − p‖
≤ αn‖γf(xn)−Bp‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖

+ 2λn‖xn − ρn‖‖Axn −Ap‖+ 2αn‖γf(xn)−Bp‖‖ρn − p‖.

From the condition (C1), (2.6) and (2.9), we have

lim
n→∞

‖xn − ρn‖ = 0. (2.11)

Notice that
‖ρn −Wnρn‖ ≤ ‖xn+1 −Wnρn‖+ ‖xn − xn+1‖+ ‖xn − ρn‖

≤ αn‖γf(xn)−BWnρn‖+ ‖xn − xn+1‖+ ‖xn − ρn‖.

It follows from the condition (C1), (2.5) and (2.10) that

lim
n→∞

‖ρn −Wnρn‖ = 0. (2.12)

Since the sequence {xn} is bounded, we see that {ρn} is also a bounded sequence in
C. Without loss of generality, we can assume that there exists a bounded set K ⊂ C
such that ρn ∈ K for all n ≥ 1. On the other hand, we have

‖Wρn − ρn‖ ≤ ‖Wρn −Wnρn‖+ ‖Wnρn − ρn‖
≤ sup

ρ∈K
‖Wρ−Wnρ‖+ ‖Wnρn − ρn‖.

From Lemma 1.3 and (2.12), we obtain

lim
n→∞

‖Wρn − ρn‖ = 0. (2.13)

Finally, we show that xn → x∗ as n → ∞. First, we prove that the uniqueness of
the solution of the variational inequality (2.1), which is indeed a consequence of the
strong monotonicity of B − γf . Suppose that x∗ ∈ F and x∗∗ ∈ F both are solutions
to (2.1). Then we have

〈(B − γf)x∗, x∗ − x∗∗〉 ≤ 0

and
〈(B − γf)x∗∗, x∗∗ − x∗〉 ≤ 0.

Adding up the two inequalities, we see that

〈(B − γf)x∗ − (B − γf)x∗∗, x∗ − x∗∗〉 ≤ 0.

The strong monotonicity of B − γf (see Lemma 1.8) implies that x∗ = x∗∗ and
the uniqueness is proved. Let x∗ be the unique solution of (2.1). That is, x∗ =
PF (γf + (I −B))x∗.

Next, we show that

lim sup
n→∞

〈Bx∗ − γf(x∗), x∗ − xn〉 ≤ 0. (2.14)
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To show it, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈Bx∗ − γf(x∗), x∗ − xn〉 = lim
i→∞

〈Bx∗ − γf(x∗), x∗ − xni〉.

Since {xni} is bounded, it follows that there is a subsequence {xnij
} of {xni} converges

weakly to p. We may assume, without loss of generality, that xni ⇀ p. Therefore, we
have p ∈ F . Indeed, let us first show that p ∈ V I(C,A). Put

Tw =

{
Av + NCv, v ∈ C

∅, v /∈ C.

Then T is maximal monotone. Let (v, w) ∈ G(T ). Since w − Av ∈ NCv and ρn ∈ C,
we have

〈v − ρn, w −Av〉 ≥ 0.

On the other hand, from ρn = PC(I − λnA)xn, we have

〈v − ρn, ρn − (I − λnA)xn〉 ≥ 0

and hence

〈v − ρn,
ρn − xn

λn
+ Axn〉 ≥ 0.

It follows that

〈v − ρni
, w〉

≥ 〈v − ρni
, Av〉 ≥ 〈v − ρni

, Av〉 − 〈v − ρni
,
ρni − xni

λni

+ Axni
〉

≥ 〈v − ρni
, Av − ρni − xni

λni

−Axni
〉

= 〈v − ρni
, Av −Aρni

〉+ 〈v − ρni
, Aρni

−Axni
〉 − 〈v − ρni

,
ρni − xni

λni

〉

≥ 〈v − ρni
, Aρni

−Axni
〉 − 〈v − ρni

,
ρni − xni

λni

〉,

which implies that 〈v − p, w〉 ≥ 0. We have p ∈ A−10 and hence p ∈ V I(C,A).

Next, let us show p ∈
∞⋂

i=1

F (Ti). Since Hilbert spaces are Opial’s spaces, it follows

from (2.11) that

lim inf
i→∞

‖ρni
− p‖ < lim inf

i→∞
‖ρni

−Wp‖

= lim inf
i→∞

‖ρni −Wρni + Wρni −Wp‖

≤ lim inf
i→∞

‖Wρni
−Wp‖

≤ lim inf
i→∞

‖ρni
− p‖,
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which is a contradiction. Thus we have p ∈ F (W ) =
∞⋂

i=1

F (Ti). On the other hand,

we have
lim sup

n→∞
〈Bx∗ − γf(x∗), x∗ − xn〉 = lim

i→∞
〈Bx∗ − γf(x∗), x∗ − xni〉

= 〈Bx∗ − γf(x∗), x∗ − p〉 ≤ 0.

That is, (2.14) holds. It follows from Lemma 1.4 that

‖xn+1 − x∗‖2

= ‖αn(γf(xn)−Bx∗) + (I − αnB)(Wnρn − x∗)‖2

≤ (1− αnγ̄)2‖Wnρn − x∗‖2 + 2αn〈γf(xn)−Bx∗, xn+1 − x∗〉
≤ (1− αnγ̄)2‖xn − x∗‖2 + αγαn(‖xn − x∗‖2 + ‖xn+1 − x∗‖2)

+ 2αn〈γf(x∗)−Bx∗, xn+1 − x∗〉.

Therefore, we have

‖xn+1 − x∗‖2

≤ (1− αnγ̄)2 + αnγα

1− αnγα
‖xn − x∗‖2 +

2αn

1− αnγα
〈γf(x∗)−Bx∗, xn+1 − x∗〉

=
(1− 2αnγ̄ + αnαγ)

1− αnγα
‖xn − x∗‖2 +

α2
nγ̄2

1− αnγα
‖xn − x∗‖2

+
2αn

1− αnγα
〈γf(x∗)−Bx∗, xn+1 − x∗〉

≤ [1− 2αn(γ̄ − αγ)
1− αnγα

]‖xn − x∗‖2

+
2αn(γ̄ − αγ)

1− αnγα
[

1
γ̄ − αγ

〈γf(x∗)−Bx∗, xn+1 − x∗〉+
αnγ̄2

2(γ̄ − αγ)
M3],

(2.15)

where M3 is an appropriate constant such that M3 ≥ supn≥1 ‖xn − x∗‖2. Put

bn =
2αn(γ̄ − αγ)

1− αnαγ
,

cn =
1

γ̄ − αγ
〈γf(x∗)−Bx∗, xn+1 − q〉+

αnγ̄2

2(γ̄ − αγ)
M3.

Then, from (2.15), we have

‖xn+1 − x∗‖2 ≤ (1− bn)‖xn − x∗‖+ bncn. (2.16)

It follows from the conditions (C1), (C2) and (2.14) that

lim
n→∞

bn = 0,
∞∑

n=1

bn = ∞, lim sup
n→∞

cn ≤ 0.

Therefore, applying Lemma 1.7, we have xn → x∗ as n → ∞. This completes the
proof.
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Taking γ = 1 and B = I (the identity mapping) in Theorem 2.1, we have the
following results.

Theorem 2.2. Let H be a real Hilbert space, C be a nonempty closed convex subset
of H and A : C → H be a µ-inverse-strongly monotone mapping. Let f : C → C
be a contraction with the coefficient α (0 < α < 1) and T1, T2, · · · be a sequence of
nonexpansive self-mappings on C. Let the sequence {xn} be generated by

x1 ∈ C, xn+1 = αnf(xn) + (1− αn)WnPC(I − λnA)xn, ∀n ≥ 1,

where the mapping Wn is defined by (1.6), {αn} is a sequence in (0, 1) and {λn} is a

sequence in [0, 2µ]. If F =
∞⋂

i=1

F (Ti) ∩ V I(C,A) 6= ∅ and {αn} and {λn} are chosen

such that
(C1) lim

n→∞
αn = 0;

(C2)
∞∑

n=1

αn = ∞;

(C3)
∞∑

n=1

|λn+1 − λn| < ∞ and
∞∑

n=1

|αn+1 − αn| ≤ ∞;

(C4) {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2µ,
then the sequence {xn} converges strongly to x∗ ∈ F , where x∗ = PF f(x∗), which
solves the following variation inequality:

〈f(x∗)− x∗, p− x∗〉 ≤ 0, ∀p ∈ F.

Remark 2.3. Theorem 2.2 mainly improves the corresponding results in Chen et al.
[8] which just involved a single nonexpansive mapping.

Further, if f(x) = x1 for all x ∈ C in Theorem 2.2, we have the following theorem.

Theorem 2.4. Let H be a real Hilbert space, C be a nonempty closed convex subset
of H and A : C → H be a µ-inverse-strongly monotone mapping. Let T1, T2, · · · be a
sequence of nonexpansive self-mappings on C. Let the sequence {xn} be generated by

x1 ∈ C, xn+1 = αnx1 + (1− αn)WnPC(I − λnA)xn, ∀n ≥ 1,

where the mapping Wn is defined by (1.6), {αn} is a sequence in (0, 1) and {λn} is a

sequence in [0, 2µ]. If F =
∞⋂

i=1

F (Ti) ∩ V I(C,A) 6= ∅ and {αn} and {λn} are chosen

such that
(C1) lim

n→∞
αn = 0;

(C2)
∞∑

n=1

αn = ∞;

(C3)
∞∑

n=1

|λn+1 − λn| < ∞ and
∞∑

n=1

|αn+1 − αn| ≤ ∞;

(C4) {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2µ,
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then the sequence {xn} converges strongly to x∗ ∈ F .

Remark 2.5. Theorem 2.4 includes Theorem 3.1 of Iiduka and Takahashi [12] as a
special case.

If we take A = 0 in Theorem 2.4, then we have the following results.

Theorem 2.6. Let H be a real Hilbert space, C be a nonempty closed convex subset of
H. Let T1, T2, · · · be a sequence of nonexpansive self-mappings on C. Let the sequence
{xn} be generated by

x1 ∈ C, xn+1 = αnx1 + (1− αn)Wnxn, ∀n ≥ 1,

where the mapping Wn is defined by (1.6), {αn} is a sequence in (0, 1). If F =
∞⋂

i=1

F (Ti) 6= ∅ and {αn} is chosen such that

(C1) lim
n→∞

αn = 0;

(C2)
∞∑

n=1

αn = ∞;

(C3)
∞∑

n=1

|αn+1 − αn| < ∞,

then the sequence {xn} converges strongly to x∗ ∈ F .

Remark 2.7. Theorem 2.6 mainly improves the results of Wittmann [30] from a
single mapping to a family of mappings.

3. Applications

As some applications of our main results, we consider another class of important
nonlinear operator: strict pseudo-contractions.

Recall that a mapping S : C → C is said to be a k-strict pseudo-contraction if
there exists a constant k ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + k‖(I − S)x− (I − S)y‖2, ∀x, y ∈ C.

Note that the class of k-strict pseudo-contractions strictly includes the class of
nonexpansive mappings. Put A = I − S, where S : C → C is a k-strict pseudo-
contraction. Then A is 1−k

2 -inverse-strongly monotone (see [2, 6, 12]).

Theorem 3.1. Let H be a real Hilbert space, C be a nonempty closed convex subset
of H and S : C → C be a k-strict pseudo-contraction. Let f : C → C be a contraction
with the coefficient α (0 < α < 1) and T1, T2, · · · be a sequence of nonexpansive
self-mappings on C. Let the sequence {xn} be generated by

x1 ∈ C, xn+1 = αnf(xn) + (1− αn)Wn((1− λn)xn + λnSxn), ∀n ≥ 1,

where Wn is defined by (1.6), {αn} is a sequence in (0, 1) and {λn} is a sequence in

[0, 2(1− k)]. If F =
∞⋂

i=1

F (Ti) ∩ F (S) 6= ∅ and {αn} and {λn} are chosen such that
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(C1) lim
n→∞

αn = 0;

(C2)
∞∑

n=1

αn = ∞;

(C3)
∞∑

n=1

|λn+1 − λn| < ∞ and
∞∑

n=1

|αn+1 − αn| ≤ ∞;

(C4) {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2(1− k),
then the sequence {xn} converges strongly to x∗ ∈ F .

Proof. Put γ = 1, B = I and A = I − S. Then A is 1−k
2 -inverse-strongly monotone.

We have

F (S) = V I(C,A), PC(I − λnA)xn = (1− λn)xn + λnSxn.

It is easy to conclude the desired conclusion from Theorem 2.1.
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