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Abstract. In this paper we give existence theorems of e-fixed points for multi-functions from a
subset to another in a Banach space. Our result extends previous approximate fixed point theorems.
As a consequence we obtain new theorems of existence of best proximity pairs.
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1. INTRODUCTION

Let (E,||.||) be a real Banach space, and let d(z,y) = ||z —y||,z,y € E. Let X and
Y be subsets of E.
Given a multi-function F : X — 2Y, and € > 0, we define the set of e-fized points of
F by
FIX¢(F):={zx € X :d(z,F(z)) <d(X,Y) + €}, (1.1)

where d(X,Y) = inf{d(z,y) : x € X,y € Y} and d(x, F(z) = inf{d(z,y) : y € F(z)}.
This concept, for Y = X, was introduced in [3]. Existence of e-fixed points is known
in the literature as existence of approximate fixed points (see [11]).

The pair (z, F'(x)) is called a best prozimity pair of F if d(z, F(z)) = d(X,Y). Some
times the fixed-point equation F(z) = x does not possess a solution, then the next
question that naturally arises is whether it is possible to find an element z in a suitable
space such that z is close to F(z) in some sense. Best proximity pair theorems are
adequate to be explored in this direction. Under suitable conditions a best proximity
theorem boils down to a fixed-point theorem. Thus, best proximity pair theorems
also serve as a generalization of fixed-point theorems. Existence theorems of best
proximity pairs were given in [4], [7], [9], and [10].

The interest to obtain theorems of existence of fixed points and approximate fixed
points is based on its usefulness in applications, as game theory and mathematical eco-
nomics (see [1]). Existence theorems of best proximity pairs imply existence theorems
of equilibrium pairs for constrained generalized games (see [8], [9], and [10]).
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In [3] the authors gave new approximate fixed point theorems for multi-functions
from a set into itself. Using the technique employed by them, we extend these the-
orems in two ways. In first place we consider multi-functions from a set to another
and in second place we substitute the assumption that X has nonempty interior by
a more general condition over a certain set X°. Our approach allow us to obtain, in
Section 2, new existence theorems of approximate fixed points which extend previous
results proved in [3](see Corollary 2.5, 2.8, and Theorem 2.9). In Section 3, we also
obtain new existence theorems of best proximity pairs.

Let A and B be subsets of E, and let F': A — 28 be a multi-function. F is called
closed (weak closed) on A if for all net z, € A, converging (weakly converging) to
z € X, and y, € F(z,), converging (weakly converging) to y € E, imply y € F(z).
The multi-function F' is called upper semi-continuous (weakly upper semi-continuous)
if for all x € A and for all open set U (weak open) in B such that F\(x) C U, there
is an open neighborhood (weak open neighborhood) V of = in A, verifying F(y) C U,
forallye V. .

In this work we consider the following subsets of FE,

XV:={reX:IyeY suchthat d(v,y)=d(X,Y)}, (1.2)
and o

Y':={yeY:3xr€X suchthat d(z,y)=d(X,Y)}. (1.3)
As usual Y denote the closure of Y with the norm topology. If X and Y are convex
sets, it is easy to prove that X° and Y are convex sets.

Definition 1.1. We say that the set X has the property (I) if for all0 < § < 1, there
exists xg € X such that 6X + (1 — §)xg C X.

Definition 1.2. We say that the pair (X,Y) has the property (II) if u € X and

d(u,v) = d(X,Y) for somev €Y imply u € XO.

Remark 1.3. The property (I) plays an important role in this paper. The paper [3]
was the inspiration source to define it.

Suppose A C V', where V is a subspace of F, and let INTy (A) be the V-relative
interior of A i.e., {x € A:3r > 0, with B(x,r) NV C A}. Here B(z,r) is the open
ball in E, of center x and radius r. If INTy (A) # () and A is convex, then A has the
property (I). Every convex closed nonempty set has the property (I).

For all nonempty set X, the pair (X, X) has the property (II). The property (II), in
general, is not an extremely restrictive condition.

2. EXISTENCE OF APPROXIMATE FIXED POINTS

In this Section we give new theorems of existence of approximate fixed points.
We begin establishing several lemmas concerning to the metric projection.

Lemma 2.1. Let E be a Banach space. If X is a bounded set then there exists r > 0
such that YO C B(0,r)NY.

Proof. There is M > 0 such that ||z|]| < M for all x € X. Let r = 2M + (3,
where 8 = d(X,Y). Let y € Y be such that ||y|| > 7. Then for all x € X we have
d(z,y) >r—|lz| > M + 8. So, y ¢ Y°. In consequence, Y° C B(0,7)NY. O
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Lemma 2.2. Let E be a reflexive Banach space. Suppose that X and Y are bounded
and convex sets, X° # () and Y° ﬂ If the pair (X,Y) has the property (II), then
the metric projection Pgs : YO — X0 is closed (weakly closed) on Y°.

Proof. Since F is reflexive, it is known that the metric projection on the convex closed
set X0 is well defined, i.e.,

Pio(y) == {z € X0 : d(y,x) = d(y, X°)} # 0,

for all y € E. Let 2z, € Y° be converging (weakly converging) to z € Y and let
Wo € Pxo(2a) be with w, converging (weakly converging) to w. There exists a net
Uo € X With d(ug, 26) = d(X,Y). Since the pair (X,Y) has the property (II), then
Uy € XO. Therefore we obtain d(za,ws) = d(2a, X0) < d(2a,us) = d(X,Y). As
W — Zo weakly converges to w — z, using the Lemma 27([5],p. 68), in either case
we have d(w, z) < limd(wa, zo) = d(X,Y’). In consequence w € Ps5(z). The proof is
complete. O

Lemma 2.3. Let E be a Banach space. Suppose that X° # 0, X° compact, and
YO £, Let Prmi B — X0 be the metric projection. We have

(1) If the pair (X,Y) has the property (II), then Pgg is closed on Y.

(2) Pxo is upper-semi continuous on E.

Proof. Since X0 is compact it is known that the metric projection on the compact
set X0 is well defined and with compact values. Now, the proof of that it is closed
follows as in the proof of Lemma 2.2.

Next, we prove that the projection is upper semi-continuous. Let y € E and let U be
an open set such that Pg5(y) C U. Since Py(y) is compact, there is 7 > 0 such that

Pe(y)+r:={z€ E:d(z,Pg(y)) <r} CU.

Then it will be sufficient to prove that there exists s > 0, such that P(B(y, s)) C

Ps(y)) + r. Suppose that it is not true, so there are two sequences z, € E,y, €
Px(z,) such that d(z,,y) < + and d(yn, Pxs(y) > r. From the compactness of X0,
there exists a subsequence ¥y, of y, with y,,, converging to a point 3y € X0. Clearly,
we have d(yn,, X°) = d(Yn,,%n.) — d(Y0,9), so d(yo,y) = d(yo, X0) = 0. It is a

contradiction. O

Theorem 2.4. Let E be a reflexive Banach space. Let X and Y be convex subsets
where either X or'Y is bounded. Assume X° # (), with the property (I), and that the
pair (X,Y) has the property (II). Let F : X — 2Y be a weakly closed multi-function
with convex set values such that F(x)NY? # 0,2 € X°. Then FIX(F) # (), for each
€>0.

Proof. Let F': X° — 2¥° defined by F'(z) = F(z) N Y,z € X°. o
If P : £ — X0 is the metric projection, we also write Py : 2F — X0 for the

multi-function given by

Pg(A) = | Pgola), ACE.
a€A
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Since X satisfies the property (I), given A € (0,1) there exists 2o € X° such that
Z = AXO0+ (1 — Nz C XO.
Now, we consider the multi-function H : Z — 2% defined by
H(z) = APggo F'(z) + (1 = N)xo, z € Z.

We will prove that H is weakly closed on Z. By Lemma 2.1, without loss of generality,
we can assume X° and Y? bounded. Let z, € Z be weakly converging x € Z,
and let u, € H(z,) be weakly converging to u € X0, From definition of H, there
are yo € F'(r,) and to € Pig(ya) such that uq, = Aty + (1 — A)xg. Since X0 is
bounded and E is reflexive there exists a sub-net ¢,, weakly converging to a point
t € X0, Therefore, u,, weakly converges to A\t + (1 — N)xzg € X0. In consequence,
u=At+ (1 = N)zg. Since ya, € F(z4,) NY? and Y is bounded, there is a sub-
net, which we again denote by y,,, weakly converging to a point y € Y. As F is
weakly closed, y € F(x), so y € Y. In addition, there exists v,, € X such that
d(Vay s Yo ) = d(X,Y). The sub-net v,, has a sub-net, that we again denote in the
same way, weakly converging to a point v € X. Thus we get

d(’U, y) < md(vak’yak) = d(X’ Y)a
which implies that y € Y°. We have proved that y € F’(x). By Lemma 2.2, t €
P o F'(z), in consequence u € H(x).

X0
Next, we show that H has convex set values. In fact, let v € [0,1] and let t; €

P50 F'(z),i = 1,2, € X°, then there are r; € F’(z) such that t; € Ps(r;). Since
F'(z) is a convex set, yry + (1 — v)re € F'(x). Further, 7; € Y implies that there is
b; € X, with d(r;,b;) = d(X,Y). Thus, d(r;,t;) = d(r;, X9) < d(r;,b;), which implies
that d(r;,t;) = d(X,Y). It follows that

d(yri 4+ (1 = y)r2, vt + (1 = y)t2) = d(X,Y).
In consequence, vt; + (1 —¥)t2 € P(yr: + (1 —)ra).
Since H is a weakly closed multi-function, from a weakly compact set with convex
nonempty values into itself and F with the weak topology is a convex locally Hausdorff
vectorial space, by Glicksberg Theorem [6], H has a fixed point in Z, say x*.
Clearly, there are y € F'(2*) and x € Ps5(y) such that 2% = Az 4 (1 — N)zo. We
recall that X0 is bounded, so there is M > 0 such that [ju| < M, for all u € X0,
Given € > 0, we chose A € (0,1) satisfying 1 — A < 55;. Then

dz*,z) = (1 = N)d(zg,z) <2(1 =AM <e. (2.1)
As y € YO then d(y, X0) = d(X,Y). Finally, from (2.1) we get

d(z*, F(z*) < d(a*,y) < d(z*,2) + d(z,y) = d(z*, ) + d(y, X°) < e +d(X,Y).
U

The next Corollary was proved in [3].

Corollary 2.5. Let E be a reflexive Banach space. Let X be a convexr bounded subset
of E. Assume that X has nonempty interior. Let F : X — 2% be a weakly closed
multi-function with convex nonempty set values for each x € X. Then FIX¢(F) # 0,
for each € > 0.
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Proof. Here we have X =Y = X? =Y. As we have observed the property (II) for
the pair (X,Y) immediately follows. If 2y € IntX, it is easy see that AX +(1—\)zo C
X for all A € [0,1], so X© has the property (I). In addition, we have F(x) NY? # (.
Then the corollary immediately follows from Theorem 2.4. O

Corollary 2.6. Let E be a reflexive Banach space. Let X andY be convex nonempty
subsets where either X orY is bounded. Assume that X is closed. Let F': X — 2Y be
a weakly closed multi-function with convex set values such that F(x)NY°? # 0,z € X°.
Then FIX<(F) # 0, for each € > 0.

Proof. Clearly the pair (X,Y) has the property (II). Let z, € X be a sequence
fulfilling limd(z,,,Y) = d(X,Y). Since z, is bounded, there exists a subsequence,
denoted also by z,, and =z € X, such that z, weakly converges to x, because X
is a convex and closed set. Let § > 0. For each n € N there is y, € Y such that
d(zn,yn) < = 4+ d(zy,Y). For sufficiently big n we have d(z,,y,) < L +6+d(X,Y).
Since ¥, is bounded, we can get a subsequence again denoted by ¥.,,, weakly converging
toy €Y. Thus

d(z,Y) =d(z,Y) < d(z,y) < limd(z,,y,) <6+ d(X,Y). (2.2)

As § > 0 is arbitrary, from (2.2) follows that d(z,y) = d(X,Y). Therefore, z € X°.

On the other hand, X© is closed. In fact, let z, € X° be with d(z,,r) — 0, as n — oc.
Clearly z € X. For each n € Nlet y,, € Y be such that d(zy,,y,) = d(X,Y). As before
we can assume that v, weakly converges to y € Y. Since z, — 1, weakly converges
to z — y we have d(z,y) < limd(z,,y,) = d(X,Y). It follows that 2 € X°. Finally,
since X is nonempty, convex and closed, it has the property (I), then we can apply
the Theorem 2.4. O

Theorem 2.7. Let E be a Banach space. Let X andY be conver subsets where either
X orY is bounded. Assume X° # 0, with the property (I), and totally bounded. Let
F: X — 2Y be a multi-function with conver set values such that F(x) NY° # (0, x €
X°. We have

(1) If the pair (X,Y) has the property (II) and F is closed, or

(2) F is upper semi-continuous,
then FIX¢(F) # 0, for each € > 0.

Proof. Let € > 0. Let F' : X° — 2YD7 P B — X0, M, and A € (0,1) as in the
proof of Theorem 2.4. There exists 9 € X such that Z := AX0 + (1 — Az € X°.
Let the multi-function H : Z — 2% be defined by H(z) = AP o F'(z) + (1 — A)zo.
First, we suppose that the pair (X,Y’) has the property (II) and F is closed. By
Lemma 2.3, Px5 is closed on Y9, Using that X0 is compact and that it has the
property (I), we can analogously prove to the proof of Theorem 2.4 that H is closed.

Suppose now F' upper semi-continuous. We now consider the multi-function G : Z —
Z defined by

G(2z) = AP (F'(2)) + (1 = N)xo, = € Z.
We will see that G is upper semi-continuous on Z. Let x € Z and let U be an open
set in E such that H(z) C U. By Lemma 2.3, Pso is upper semi-continuous on E,
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then for each y € F’(x) there exists an open neighborhood V,, of y such that
1

X(U — (1= XNzg) =:C, for all z € V.
We consider the following open set

e= U v

yeEF'(z)

Pi(2) C

Since F is a normal topological space, there is an open set D such that

F'(zx)y)cDcDcCQ.

F' is upper semi-continuous, then there is an open neighborhood J of z such that
F'(t) € D for all t € J. So, F'(t) ¢ D C Q for all t € J. In consequence,
P o F'(t) € Cforallt € J, orie, G(t) C U for all t € J. Then, G is upper
semi-continuous.

On the other hand, G(x) is closed for all z € Z, it follows that G is closed (see [1]).
We have proved that both multi-functions H and G are closed. We can apply the
Glicksberg’s Theorem to H and G ([6]). Thus, G has a fixed point in Z, say z*.
Clearly, there are y € F'(x*) and x € Pg5(y) such that 2* = Az 4 (1 — A)xo. Then

d(z*,2) = (1 — Nd(xg,x) <2(1 =AM <. (2.3)
In addition, for each n € N we can get z € F(z*) such that d(y,2) < 1. As 2 € Y°
then d(z, X0) = d(X,Y). Finally, from (2.3) we get

d(z*, F(z")) < d(z*, z) < d(z*,2) + d(z,y) + d(y,z) <

1
n

i} 1 — 2 — 2 (2.4)
<d(z*,z)+ —+d(y, X)) <e+ —+d(2,X% =+ — +d(X,Y).

n n n
As n is arbitrary we obtain d(z*, F(z*)) < e+ d(X,Y).
The proof of FIX¢(F) # (), under the hypothesis (1), follows the same patterns that
the proof of Theorem 2.4, using that the multi-function H is closed. O

The next Corollary was proved in [3].

Corollary 2.8. Let E be a Banach space and let X be a convex totally bounded
set with non-empty interior. Assume that F : X — 2% is a closed or upper semi-

continuous multi-function such that F(x) is a non-empty and convex set for each
x € X. Then FIX¢(F) # 0 for each € > 0.

Proof. In the Theorem 2.7 we consider X =Y = X? = Y9 Then X° # ( with
the property (I), and X is a totally bounded set. Further the pair (X,Y) has the
property (II). Therefore the Corollary immediately follows from Theorem 2.7. d

The following Theorem was established in [3], with the assumptions IntX # () and
E separable. As we show the last hypothesis is not necessary.

Theorem 2.9. Let E be a reflexive Banach space. Let X be a non-empty conver
subset and bounded of E fulfilling the property (I). Assume that F : X — 2% s
a weakly upper semi-continuous multi-function such that F(x) is a non-empty and
convex subset of X for each x € X. Then FIX¢(F) # 0 for each € > 0.
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Proof. Let € > 0 and let M > 0 be such that ||z|| < M for all x € X. We choose

A€ (0,1) with 1 — X < 557, and 2o € X satisfying

Z:=AX+(1—-Nxg C X.

Here, we consider the multi-function G : Z — 2%, defined by G(z) = AF(x)+(1—\)xo.
We will prove that G is weakly upper semi-continuous. Let x € G and let U be a
weak open set containing to G(x). Then

Fla) %(U — (1= A)zp) = C.

Since X is weakly compact, it is normal with the weak topology. In addition, F(z)
convex implies F'(z) = F(x)w Thus, there is a weak open V in E such that

Flz)cVNnXcV'nXcCuX.

On the other hand, as F' is weakly upper semi-continuous and F'(x) C V, there is a
weak open neighborhood of z, say D, such that F(z) C VNX forall z € DN X.
Therefore,

F(z)=F(z) cV'nXcc,
for all z € DN X. In consequence, G(z) C U for all z € D, so G is weakly upper
semi-continuous. Since G(z) is a weakly closed set for all x€ Z we have G is weakly

closed. Then, G has a fixed point. Now, the proof follows the same patterns that the
proof of Theorem 2.4. O

Remark 2.10. To establish the Theorem 2.9 for a weakly upper semi-continuous
multi-function ' : X — Y following our arguments, we need that Py be weakly
upper semi-continuous. However, as far as we know, the metric projection weakly
upper semi-continuous essentially implies X0 compact (see [2], Remark 1, p. 798). In
consequence, we establish the next theorem with this requirement.

Theorem 2.11. Let E be a Banach space. Let X and Y be convexr subsets where
either X or Y is bounded. Assume that X° # () with the property (I), and X° is
a totally bounded set. Let F : X — 2Y be a weakly upper semi-continuous multi-
function with convex set values such that F(x)NY° #£ 0,z € X°. Then FIX(F) # 0,
for each € > 0.

Proof. The proof is analogous to the proof of Theorem 2.7. (|

3. EXISTENCE OF BEST PROXIMITY PAIRS

In this section we will give two theorems of existence of best proximity pairs and
a theorem of existence of fixed points. They will be consequence of the existence
theorems of e-fixed points proved in Section 2.

Theorem 3.1. Assume the hypothesis of Theorem 2.4. In addition, we suppose that
X is a closed set. Then I has a best proximity pair.
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Proof. By Lemma 2.1 we can suppose that X and Y are bounded sets. The Theorem
2.4 implies that for each n € N, there is a 1/n-fixed point, say x,,. On the other hand,
there exists y, € F(z,) such that

d(n,yn) < d(p, F(x,)) + 1/n,

for all n € N. Then d(z,,y,) < d(X,Y) + 2/n, for all n € N.
Since E is reflexive we can find subsequences z,, and y,,, weakly converging to
r € X =X and y € Y, respectively. Now, F is weakly closed, so y € F(x). Further

d(z,y) < limd(2y,, yn,) = d(X,Y).
In consequence, d(z, F(z)) = d(X,Y). The proof is complete. O

The proof of the following theorems are analogous to the proof of Theorem 3.1 and
we omit it.

Theorem 3.2. Assume the hypothesis of Theorem 2.9. In addition, we suppose that
X is a closed set. Then F has a fizxed point, i.e., there is x € X such that x € F(x).

Theorem 3.3. Assume the same hypothesis of Theorem 2.11. In addition, we suppose
that X is a closed set. Then F has a best proximity pair.
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