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Abstract. In a paper by F. Galaz Fontes and F.J. Soĺıs (Iterating the Cesàro operators, Proc.
Amer. Math. Soc., 136(2008), No. 6,2147-2153) the authors study the iterates of Cesàro operators

on some subsets of s(C) (c(C), c0(C), l∞(C)) , on (C[0, 1], C) and on C([0,∞[, C). In this paper we

study the iterates of Cesàro operators on s(B), on C([0, 1], B) and on C([0,∞[, B), where (B, ‖ · ‖)
is a Banach space and s(B) is the set of all sequences with elements in B. We use the contraction

principle on a metric space and on a gauge space and we prove the convergence of the sequence of

iterates on the whole space (endowed with a weaker topology). Our proofs are suggested by the
characterization theorem of weakly Picard operators on an L-space (I.A. Rus, Picard operators and

applications, Sci. Math. Jpn., 58(2003), 191-219) and our method can be applied to a more general
class of averaging operators.
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1. Introduction

Let (B, ‖ · ‖) be a Banach space (real or complex). We denote by s(B) the set of all
sequences with elements in B. In [7] the authors study the iterates of Cesàro operators
on some subsets of s(C) (c(C), c0(C), l∞(C), . . .) , on (C[0, 1], C) and on C([0,∞[, C).

In this paper we study the iterates of Cesàro operators on s(B), on C([0, 1], B) and
on C([0,∞[, B) using the contraction principle on a metric space and on a gauge space.
In [7] the authors used the uniform norm and they obtained the convergence of the
sequence of iterates only on some subsets of the space. We use termwise convergence
on s(B) and pointwise convergence in C([0,∞[, B) and we obtain the convergence of
the sequence of iterates on the whole space, so from this viewpoint our results are
more general than the results of Theorem 1 and Theorem 4 in [7]. In section 5 we
prove that our method can be applied to a wide class of averaging operators.
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2. A fixed point theorem

Let X be a nonempty set and A : X → X an operator. We denote by FA the
fixed point set of A, i.e., FA := {x ∈ X|A(x) = x}. By A0 := 1X , A1 := A, . . . , An :=
A ◦An−1, n ∈ N, we denote the iterates of the operator A.

In this paper we use the following fixed point principle (see [5], [4] and [19]; see
also [17], p.63).

Theorem 2.1. Let (X, (dk)k∈N) be a separated and complete gauge space. Let A :
X → X be an operator such that for each k ∈ N there exists αk ∈]0, 1[ with

dk(A(x), A(y)) ≤ αkdk(x, y), ∀x, y ∈ X.

Then:
(i) FA = {x∗};
(ii) An(x) dk−→ x∗ as n →∞, ∀k ∈ N and ∀x ∈ X.

Remark 2.2. If x∗ is a fixed point for A, then the sequence of successive approxi-
mation is convergent to x∗ without the assumption of completeness and FA = {x∗}.

Remark 2.3. By definition (see [14] and [16]) an operator with the properties (i)
and (ii) is a Picard operator.

3. Cesàro operator on s(B)

Let (B, ‖·‖) be a (real or complex) Banach space. If x ∈ B, then x̃ := (x, . . . , x, . . .)
is the constant sequence defined by element x of B.

In what follows we consider the L-space (s(B), t−→), where t−→ is the termwise con-
vergence (for L-space see, for example, [14],[16],[17] and the references therein). Also,
we consider on s(B) the following family of pseudometrics D := {dk|k ∈ N}, where
dk(u, v) := max

0≤n≤k
‖un−vn‖. Then the gauge space (s(B),D) is separated and complete.

Moreover, for (un)n∈N, u ∈ s(B) we have un D−→ u as n →∞ =⇒ un t−→ u as n →∞.
We consider on s(B) the Cesàro operator C : s(B) → s(B)

(u0, u1, . . . , un, . . .) 7→
(

u0,
1
2
(u0 + u1), . . . ,

1
n + 1

(u0 + u1 + . . . + un), . . .
)

.

Notice that FC = {x̃|x ∈ B}. For x ∈ B we consider Yx := {u ∈ s(B)|u0 = x}. Then:
(a) Yx is a closed subset of (s(B),D), for all x ∈ B;
(b) C(Yx) ⊂ Yx, ∀x ∈ B;
(c) s(B) =

⋃
x∈B

Yx is a partition of s(B);

(d) dk(C(u), C(v)) ≤ k
k+1dk(u, v), ∀u, v ∈ Yx and ∀x ∈ B.

By Theorem 2.1 we get Cn(u) D−→ x̃ as n →∞, ∀u ∈ Yx, x ∈ B. Thus, we have:

Theorem 3.1. Cn(u) D−→ ũ0 as n →∞, ∀u ∈ s(B).

In terms of weakly Picard operators we can formulate Theorem 3.1 as follows:
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Theorem 3.1.’ The Cesàro operator C : s(B) → s(B) is weakly Picard operator on
(s(B), t−→) and C∞(u) = ũ0, ∀u = (u0, u1, . . . , um, . . .) ∈ s(B).

Remark 3.2. Our proof of Theorem 3.1 is suggested by the characterization theorem
of weakly Picard operators (see [14]; see also [13], [15] and [8]).

Remark 3.3. The Cesàro operator C : s(B) → s(B) is nonexpansive in (s(B),D), is
contraction in each (Yx,D), for all x ∈ B and is graphic contraction in (s(B),D).

Remark 3.4. The above considerations are in connection with the theory of operators
on an infinite dimensional cartesian product (see [18]).

Remark 3.5. In a similar way we can study the iterates of other summability oper-
ators (see [1], [2] and [10]).

4. Cesàro operator on C([0, 1], B)

Let (B, ‖ · ‖) be a Banach space and

C([0, 1], B) := {f : [0, 1] → B|f − continuous}.
For u ∈ B we denote by ũ the constant function t 7→ u, t ∈ [0, 1].

We consider on C([0, 1], B) the Cesàro operator C, defined by (see [7], [2], [10])

C : C([0, 1], B) → C([0, 1], B)

C(f)(x) :=

 1
x

x∫
0

f(t)dt, for x ∈]0, 1];

f(0), for x = 0.

The fixed point set of C is FC = {ũ|u ∈ B}.
In what follows we give a new proof of the following theorem.

Theorem 4.1. Cn(f)
unif.−−−→ ˜f(0) as n →∞, for all f ∈ C([0, 1], B).

This theorem was proved in [7] by a different approach. Our technique can be
applied for a wide class of general averaging operators. The main idea of the proof
is that the Cesàro operator is a contraction on a well chosen subspace of C([0, 1], B)
which is equipped with a suitable metric. We need the following two lemmas:

Lemma 4.2. On the set Hu := {f ∈ C1([0, 1], B)|f(0) = u}, the functional d1 :
Hu ×Hu → R defined by

d1(f, g) = min{M ∈ R|‖f(x)− g(x)‖ ≤ Mx, ∀x ∈ [0, 1]}.
is a metric.

Proof. Let f, g ∈ Hu. Then f − g ∈ H0, so there exists l ∈ R such that l =
lim
x→0

‖f(x)−g(x)‖
x . This implies that there exists δ > 0 such that

‖f(x)− g(x)‖ ≤ 2lx, ∀x ∈ [0, δ]. (4.1)

On [δ, 1] the function x → ‖f(x)−g(x)‖
x is continuous and this implies the existence of

a constant K0 with the property

‖f(x)− g(x)‖ ≤ K0x, ∀x ∈ [δ, 1]. (4.2)
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From (4.1) and (4.2) we deduce that, for M := max{2l, K0},
‖f(x)− g(x)‖ ≤ Mx, ∀x ∈ [0, 1], (4.3)

Hence the set M = {M ∈ R|‖f(x) − g(x)‖ ≤ Mx, ∀x ∈ [0, 1]} is not empty. It is
obvious that M is bounded from below and due to the continuity of f and g the
infimum of M is reached for some M ∈M. This implies that d1 is well defined.

From the definition we deduce d1(f, g) ≥ 0, for all f, g ∈ Hu. If d1(f, g) = 0, we
obtain f(x) = g(x), for all x ∈ (0, 1], so f = g (because f, g ∈ Hu). If f, g, h ∈ Hu

and M1 = d1(f, g), M2 = d1(g, h), then

‖f(x)− h(x)‖ ≤ ‖f(x)− g(x)‖+ ‖g(x)− h(x)‖ ≤ (M1 + M2)x, ∀x ∈ [0, 1].

This guaranties d1(f, h) ≤ M1 + M2, hence d1 is a metric on Hu. �

Lemma 4.3. If (fn)n≥0 is a convergent sequence in (Hu, d1) and f∗ is it’s limit,

then fn
unif.−−−→ f∗.

Proof. fn
d1−→ f∗ implies that

‖fn(x)− f∗(x)‖ ≤ Mnx ≤ Mn, ∀x ∈ [0, 1], (4.4)

where Mn = d1(fn, f∗). But Mn → 0 as n → ∞ and this implies the uniform
convergence of the sequence (fn)n≥0 to f∗. �

Proof of Theorem 4.1. We remark that C1([0, 1], B) =
⋃

u∈B
Hu is a partition of

C1([0, 1], B) and each set Hu is an invariant set of the operator C, moreover each
set Hu contains a unique fixed point of C. To complete the proof of Theorem 4.1
we need only to observe that the Cesàro operator is a contraction on (Hu, d1). If
f, g ∈ Hu and M = d1(f, g), then ‖f(t)− g(t)‖ ≤ Mt, ∀t ∈ [0, 1].
Hence

‖C(f)(x)− C(g)(x)‖ =
∥∥∥∥ 1

x

∫ x

0

(f(t)− g(t))dt

∥∥∥∥
≤ 1

x

∫ x

0

‖f(t)− g(t)‖dt ≤ M

2
x, ∀x ∈ [0, 1].

This inequality and the definition of the metric imply

d1(Cf,Cg) ≤ 1
2
d1(f, g),

so the Cesàro operator is a contraction on (Hu, d1). But ũ is a fixed point of C in Hu,
so it is the unique fixed point of C in Hu and the sequence of successive approximation
converges to ũ. This implies that Cn(f) d1−→ ˜f(0) as n → ∞, and due to Lemma 4.3

Cn(f) unif.−−−→ ˜f(0) as n →∞. Using the density of C1([0, 1], B) in C([0, 1], B) and the
nonexpansive property of the Cesàro operator on (C([0, 1], B) we can conclude that

Cn(f) unif.−−−→ ˜f(0) for all f ∈ C([0, 1], B). �

Remark 4.4. The Cesàro operator C is weakly Picard operator on the L-space

(C([0, 1], B), unif.−−−→) and C∞(f) = ˜f(0),∀f ∈ C([0, 1], B).
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Remark 4.5. The proof of Theorem 4.1 is suggested by the characterization theorem
of weakly Picard operators (see [14]; see also [13] and [15]).

Remark 4.6. If B = C we have a new proof for Theorem 3 from [7].

5. General averaging operators on C([0, 1], B)

Denote by w : [0, 1] → R+ a continuous function with w(x) > 0, for x > 0 and
define the averaging operator Cw : C([0, 1], B) → C([0, 1], B) (see [3], [11], [12]) by

Cw(f)(x) :=


xR

0
w(t)f(t)dt

xR

0
w(t)dt

, for x ∈]0, 1];

f(0), for x = 0.

(5.1)

Remark 5.1. For w(x) = 1, ∀x ∈ [0, 1], Cw is the Cesàro operator. Notice also that
the fixed point set of Cw is FCw

= {ũ|u ∈ B}.

Using the same technique as in the proof of 4.1 we obtain the following results:

Theorem 5.2. If for the continuous function w : [0, 1] → R+ w(x) > 0, for x > 0
and there exists L < 1 such that

x∫
0

tw(t)dt ≤ Lx

x∫
0

w(t)dt, ∀x ∈ [0, 1], (5.2)

then Cn
w(f)

unif.−−−→ ˜f(0) as n →∞, for all f ∈ C([0, 1], B).

Remark 5.3. If w(x) = 1, ∀x ∈ [0, 1], then 5.2 is satisfied with L = 1
2 .

Remark 5.4. If w(x) = xα, ∀x ∈ (0, 1] and α > −1, then (5.2) is satisfied with
L = α+1

α+2 and Theorem 5.2 can be used even if w is not continuous in 0.

Theorem 5.5. If w : [0, 1] → (0,∞) is a continuous function, then Cn
w(f)

unif.−−−→ ˜f(0)
as n →∞, for all f ∈ C([0, 1], B).

Proof of Theorem 5.2. If f ∈ Hu, then from the continuity of w we have Cw(f) ∈ Hu.

If d1(f, ˜f(0)) = M, then

−Mx ≤ ‖f(x)− ˜f(0)‖ ≤ Mx, ∀x ∈ [0, 1]
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and we obtain

‖Cw(f)(x)− Cw( ˜f(0))(x)‖ =
1

x∫
0

w(t)dt

∥∥∥∥∥∥
x∫

0

(f(t)− ˜f(0)(t))w(t)dt

∥∥∥∥∥∥
≤ 1

x∫
0

w(t)dt

x∫
0

‖f(t)− ˜f(0)(t)‖w(t)dt

≤ M
x∫
0

w(t)dt

x∫
0

tw(t)dt ≤ MLx.

Thus
d1(Cw(f), ˜f(0)) ≤ Ld1(f, ˜f(0)).

The above inequality and the fact thatL < 1 implies Cn
w(f) unif.−−−→ ˜f(0). �

To prove theorem 5.5 we need the following two lemmas

Lemma 5.6. Suppose that the function v : [0, 1] → [0,∞) is continuously differ-
entiable with v(0) = 0, v(x) 6= 0 for x > 0 and v′(0) 6= 0. Then, on the set
Hu := {f ∈ C1([0, 1], B)|f(0) = u} the functional dv : Hu ×Hu → R defined by

dv(f, g) = min{M ∈ R|‖f(x)− g(x)‖ ≤ Mv(x), ∀x ∈ [0, 1]}
is a metric.

Proof. f−g ∈ H0, so there exists l ∈ R such that l = lim
x→0

‖f(x)−g(x)‖
x . v ∈ C1[0, 1] and

v′(0) 6= 0, so there exist l = lim
x→0

x
v(x) = 1

v′(0) . This implies that lim
x→0

‖f(x)−g(x)‖
v(x) = l

v′(0) ,

so for K1 = 2l
v′(0) there exists δ > 0 such that,

‖f(x)− g(x)‖ ≤ K1v(x), ∀x ∈ [0, δ]. (5.3)

On [δ, 1] the function x → ‖f(x)−g(x)‖
v(x) is continuous and this implies the existence of

a constant K2 with the property

‖f(x)− g(x)‖ ≤ K2v(x), ∀x ∈ [δ, 1]. (5.4)

From (5.3) and (5.4) we deduce that for M = max{K1,K2}
‖f(x)− g(x)‖ ≤ Mv(x), ∀x ∈ [0, 1]. (5.5)

Hence the set M = {M ∈ R|‖f(x) − g(x)‖ ≤ Mv(x), ∀x ∈ [0, 1]} is not empty. It
is obvious that M is bounded from below and due to the continuity of f and g the
infimum of M is reached for some M ∈M. This implies that dv is well defined.

From the definition we deduce dv(f, g) ≥ 0, for all f, g ∈ Hu. If dv(f, g) = 0, we
obtain f(x) = g(x), for all x ∈ (0, 1], so f = g (because f, g ∈ Hu). If f, g, h ∈ Hu

and M1 = dv(f, g), M2 = dv(g, h), then

‖f(x)− h(x)‖ ≤ ‖f(x)− g(x)‖+ ‖g(x)− h(x)‖ ≤ (M1 + M2)v(x), ∀x ∈ [0, 1].
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This guaranties dv(f, h) ≤ M1 + M2, hence dv is a metric on Hu. �

Lemma 5.7. If (fn)n≥0 is a convergent sequence in (Hu, dv) and f∗ is it’s limit,

than fn
unif.−−−→ f∗.

Proof. fn
d1−→ f∗ implies that

‖fn(x)− f∗(x)‖ ≤ Mnv(x) ≤ MnM, ∀x ∈ [0, 1], (5.6)

where Mn = d1(fn, f∗) and M = max
x∈[0,1]

v(x). But Mn → 0 as n →∞ and this implies

the uniform convergence of the sequence (fn)n≥0 to f∗. �

Proof of Theorem 5.5. We prove that the averaging operator Cw is a contraction on

(Hu, dv) where v(x) =
x∫
0

w(t)dt, x ∈ [0, 1]. Due to the assumptions on w the function

v satisfies the conditions of Lemma 5.6. If f, g ∈ Hu and M = dv(f, g), then

‖f(t)− g(t)‖ ≤ Mv(t), ∀t ∈ [0, 1].

Hence

‖C(f)(x)− C(g)(x)‖ =
1

v(x)

∥∥∥∥∫ x

0

w(t)(f(t)− g(t))dt

∥∥∥∥
≤ 1

v(x)

∫ x

0

w(t)‖f(t)− g(t))‖dt

≤ M

v(x)

x∫
0

v′(t)v(t)dt ≤ M

2
v(x), ∀x ∈ [0, 1].

This inequality and the definition of the metric imply

dv(Cf,Cg) ≤ 1
2
dv(f, g).

Thus, the averaging operator is a contraction on (Hu, dv). But ũ is a fixed point of
Cw in Hu, so it is the unique fixed point of C in Hu and the sequence of successive
approximation converges to ũ. This implies that Cn

w(f) dw−−→ ˜f(0) as n → ∞, and

due to Lemma 5.7 Cn
w(f) unif.−−−→ ˜f(0) as n →∞. Using the density of C1([0, 1], B) in

C([0, 1], B) and the nonexpansive property of the averaging operator on C([0, 1], B)

we can conclude that Cn
w(f) unif.−−−→ ˜f(0) for all f ∈ C([0, 1], B). �

6. Cesàro operator on C([0,+∞[, B)

By a similar reasoning as in the proof of Theorem 4.1 we obtain the following
theorem.

Theorem 6.1. Cn(f)
unif.−−−→ ˜f(0) as n →∞, for all f ∈ C([0, k], B) and k ∈ N∗.
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On the other hand let, us consider the Cesàro operator C : C([0,∞), B) →
C([0,∞), B). Since C has the Volterra property we can consider the restriction of
C to C([0, k], B) for each k ∈ N∗. From theorem 6.1 we deduce that for each fixed

k ∈ N∗ Cn(f) unif.−−−→ ˜f(0) on [0, k]. This implies that Cn(f) unif.−−−→ ˜f(0) on every
compact subset of [0,∞) so we have the following theorem.

Theorem 6.2. On every compact subset of [0,∞) Cn(f)
unif.−−−→ ˜f(0) as n →∞, for

all f ∈ C([0,∞), B).

Remark 6.3. Theorem 6.2 is valid for the general averaging operators defined in
(5.1) if w : [0,∞) → [0,∞) is a continuous function satisfying the assumptions of
Theorem 5.2 or 5.5.
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