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Abstract. We investigate the functional inequality
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1. Introduction

A classical question in the theory of functional equations is the following:
“When is it true that a function which approximately satisfies a functional
equation must be close to an exact solution of the equation?”. If the prob-
lem accepts a solution, we say that the equation is stable. The first stability
problem concerning group homomorphisms was raised by Ulam [24] in 1940
and affirmatively solved by Hyers [11] in the next year. In 1951, Bourgin [3]
treated the same problem. The result of Hyers was generalized by Aoki [2] for
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additive mappings and by Th.M. Rassias [22] for linear mappings by allow-
ing the difference Cauchy equation ‖f(x + y) − f(x) − f(y)‖ to be bounded
by ε(‖x‖p + ‖y‖p). In 1994, a generalization of Th.M. Rassias’ theorem was
obtained by Găvruta [8], who replaced the bound ε(‖x‖p + ‖y‖p) by a gen-
eral control function ϕ(x, y). Since then the stability problems of various
functional equations and mappings and their pexiderized versions with more
general domains and ranges have been investigated by a number of authors
(see [6, 9, 12, 13, 23]).

Gilányi [10] and Fechner [7] proved the stability of the the functional in-
equality ‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x+ y)‖ and its stability in Banach
spaces. Cho and Kim [4] studied the functional inequalities∥∥∥∥f (

x− y

2
− z

)
+ f(y) + 2f(z)

∥∥∥∥ ≤ ∥∥∥∥f (
x+ y

2
+ z

)∥∥∥∥ + ϕ(x, y, z)

and

‖f(x) + f(y) + 2f(z)‖ ≤
∥∥∥∥2f

(
x+ y

2
+ z

)∥∥∥∥ + ϕ(x, y, z) .

In addition, Lee, Park and Shin [16] investigated the functional inequality
‖af(x)+ bf(y)+ cf(z)‖ ≤ ‖f(αx+βy+γz)‖, where a, b, c, α, β, γ are nonzero
complex numbers (see also [20]).

Let E be a set. A function d : E×E → [0,∞] is called a generalized metric
on E if d satisfies

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ E;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E.
We recall the following theorem by Margolis and Diaz.

Theorem 1.1. [17] Let (E, d) be a complete generalized metric space and let
J : E → E be a strictly contractive mapping with Lipschitz constant L < 1.
Then for each given element x ∈ E, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a non-negative integer n0 such
that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
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(3) y∗ is the unique fixed point of J in the set Y = { y ∈ E : d(Jn0x, y) <
∞};

(4) d(y, y∗) ≤ 1
1−Ld(y, Jy) for all y ∈ Y .

Throughout this paper, let A be a unital C∗-algebra with unitary group
U(A), unit e and norm | · |. Assume that X and Y are left Banach A-
modules and Y complete. An additive mapping T : X → Y is called A-linear
if T (ax) = aT (x) for all a ∈ A and all x ∈ X.

In this paper, we investigate the functional inequality∥∥f(x− y

2
+ z

)
+ f

(y − z

2
+ x

)
+ f

(z − x

2
+ y

)∥∥ ≤ ‖f(x+ y + z)‖ (1.1)

(see also [19]). By using the fixed point method (see [1, 5, 14, 18, 21]) we prove
the stability of A-linear mappings in Banach A-modules associated with the
functional inequality (1.1).
For convenience, we use the following abbreviation for a given a ∈ A and a
mapping f : X → Y

Daf(x, y, z) := f
(ax− ay

2
+ az

)
+ f

(ay − az

2
+ ax

)
+ af

(z − x

2
+ y

)
for all x, y, z ∈ X .

2. Functional inequalities in Banach modules

We start our work with the following useful lemma.

Lemma 2.1. Let f : X → Y be a mapping such that

‖Daf(x, y, z)‖ ≤ ‖f(ax+ ay + az)‖ (2.1)

for all x, y, z ∈ X and all a ∈ U(A). Then f is A-linear.

Proof. Letting x = y = z = 0 and a = e ∈ U(A) in (2.1), we get that
f(0) = 0. Letting z = −x− y and a = e ∈ U(A) in (2.1), we get∥∥f(−x− 3y

2
)

+ f
(3x+ 2y

2
)

+ f
(−2x+ y

2
)∥∥ ≤ ‖f(0)‖ = 0

for all x, y ∈ X . Hence

f(−x− 3y) + f(3x+ 2y) + f(−2x+ y) = 0 (2.2)

for all x, y ∈ X .
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Replacing x and y by x+3y
7 and 2x−y

7 respectively, in (2.2), we get

f(−x) + f(x+ y) + f(−y) = 0 (2.3)

for all x, y ∈ X . Since f(0) = 0, letting y = 0 in (2.3), we infer that f is odd.
It follows from (2.3) that

f(x+ y) = f(x) + f(y)

for all x, y ∈ X . Hence f(rx) = rf(x) for all x ∈ X and all r ∈ Q. By letting
z = −x and y = 0 in (2.1) and using the oddness of f , we get

f(ax) = af(x) (2.4)

for all a ∈ U(A) and all x ∈ X . It is clear that (2.4) holds for a = 0.
Now let a ∈ A (a 6= 0) and m an integer greater than 4|a|. Then | a

m | <
1
4 <

1− 2
3 = 1

3 . By Theorem 1 of [15], there exist three elements u1, u2, u3 ∈ U(A)
such that 3

ma = u1 + u2 + u3. Hence by (2.4) we have

f(ax) =
m

3
f
( 3
m
ax

)
=
m

3
f(u1x+ u2x+ u3x)

=
m

3
[f(u1x) + f(u2x) + f(u3x)]

=
m

3
(u1 + u2 + u3)f(x) =

m

3
.
3
m
af(x) = af(x)

for all x ∈ X . So f : X → Y is A-linear, as desired. �

Now we prove the stability of A-linear mappings in Banach A-modules.

Theorem 2.2. Let f : X → Y be a mapping for which there exists a function
ϕ : X 3 → [0,∞) such that

lim
n→∞

2nϕ
( x
2n
,
y

2n
,
z

2n

)
= 0, (2.5)

‖Daf(x, y, z)‖ ≤ ‖f(ax+ ay + az)‖+ ϕ(x, y, z) (2.6)

for all x, y, z ∈ X and all a ∈ U(A). If there exists a constant L < 1 such
that the function

x 7→ ψ(x) := 2ϕ
(x
7
,
2x
7
,
−3x

7
)

+ ϕ
(4x

7
,
x

7
,
−5x

7
)

has the property

2ψ(x) ≤ Lψ(2x)



AN APPLICATION OF A FIXED POINT THEOREM 145

for all x ∈ X , then there exists a unique A-linear mapping T : X → Y such
that

‖f(x)− T (x)‖ ≤ 1
1− L

ψ(x) (2.7)

for all x ∈ X .

Proof. It follows from (2.5) that ϕ(0, 0, 0) = 0. Letting x = y = z = 0 and
a = e ∈ U(A) in (2.6), we get that f(0) = 0. Letting z = −x− y in (2.6), we
get ∥∥f(−x− 3y

2
)

+ f
(3x+ 2y

2
)

+ f
(−2x+ y

2
)∥∥ ≤ ϕ(x, y,−x− y)

for all x, y ∈ X . So

‖f(−x− 3y) + f(3x+ 2y) + f(−2x+ y)‖ ≤ ϕ(2x, 2y,−2x− 2y) (2.8)

for all x, y ∈ X . Replacing x and y by x+3y
7 and 2x−y

7 , respectively, in (2.8),
we get

‖f(−x) + f(x+ y) + f(−y)‖ ≤ ϕ
(2x+ 6y

7
,
4x− 2y

7
,
−6x− 4y

7
)

(2.9)

for all x, y ∈ X . Letting y = 0 and y = x in (2.9), respectively, we get

‖f(−x) + f(x)‖ ≤ ϕ
(2x

7
,
4x
7
,
−6x

7
)
, (2.10)

‖f(2x) + 2f(−x)‖ ≤ ϕ
(8x

7
,
2x
7
,
−10x

7
)

(2.11)

for all x ∈ X . It follows from (2.10) and (2.11) that∥∥∥f(x)− 2f
(x
2
)∥∥∥ ≤ ψ(x) (2.12)

for all x ∈ X . Let E be the set of all mappings g : X → Y with g(0) = 0
and introduce a generalized metric on E as follows:

d(g, h) := inf{C ∈ [0,∞] : ‖g(x)− h(x)‖ ≤ Cψ(x) for all x ∈ X }.

It is easy to show that (E, d) is a generalized complete metric space [5].
Now we consider the mapping Λ : E → E defined by

(Λg)(x) = 2g
(x
2
)
, for all g ∈ E and x ∈ X .

Let g, h ∈ E and let C ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ C.
From the definition of d, we have

‖g(x)− h(x)‖ ≤ Cψ(x)
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for all x ∈ X . By the assumption and last inequality, we have

‖(Λg)(x)− (Λh)(x)‖ = 2
∥∥∥g(x

2
)
− h

(x
2
)∥∥∥ ≤ 2Cψ

(x
2
)
≤ CLψ(x)

for all x ∈ X . So
d(Λg,Λh) ≤ Ld(g, h)

for any g, h ∈ E. It follows from (2.12) that d(Λf, f) ≤ 1. Therefore according
to Theorem 1.1, the sequence {Λnf} converges to a fixed point T of Λ, i.e.,

T : X → Y , T (x) = lim
n→∞

(Λnf)(x) = lim
n→∞

2nf
( x
2n

)
and T (2x) = 2T (x) for all x ∈ X . Also T is the unique fixed point of Λ in
the set E∗ = {g ∈ E : d(f, g) <∞} and

d(T, f) ≤ 1
1− L

d(Λf, f) ≤ 1
1− L

,

i.e., inequality (2.7) holds true for all x ∈ X . It follows from the definition of
T , (2.5) and (2.6) that

‖DaT (x, y, z)‖ = lim
n→∞

2n
∥∥∥Daf

( x
2n
,
y

2n
,
z

2n

)∥∥∥
≤ lim

n→∞
2n

∥∥∥f(ax+ ay + az

2n

)∥∥∥ + lim
n→∞

2nϕ
( x
2n
,
y

2n
,
z

2n

)
= ‖T (ax+ ay + az)‖

for all x, y, z ∈ X and all a ∈ U(A). By Lemma 2.1, the mapping T : X → Y

is A-linear. Finally it remains to prove the uniqueness of T . Let P : X → Y

be another A-linear mapping satisfying (2.7). Since d(f, P ) ≤ 1
1−L , and P is

additive, then P ∈ E∗ and (ΛP )(x) = 2P (x/2) = P (x) for all x ∈ X, i.e., P is
a fixed point of Λ. Since T is the unique fixed point of Λ in E∗, then P = T .
�

Corollary 2.3. Let r > 1 and θ be non-negative real numbers and let f :
X → Y be a mapping such that

‖Daf(x, y, z)‖ ≤ ‖f(ax+ ay + az)‖+ θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X and all a ∈ U(A). Then there exists a unique A-linear
mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2r(3 + 2.2r + 2.3r + 4r + 5r)
7r(2r − 2)

θ‖x‖r

for all x ∈ X .
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Proof. The proof follows from Theorem 2.2 by taking

ϕ(x, y, z) := θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X . Then we can choose L = 21−r and we get the desired
result. �

Theorem 2.4. Let f : X → Y be a mapping with f(0) = 0 for which there
exists a function Φ : X 3 → [0,∞) such that

lim
n→∞

1
2n

Φ(2nx, 2ny, 2nz) = 0,

‖Daf(x, y, z)‖ ≤ ‖f(ax+ ay + az)‖+ Φ(x, y, z)

for all x, y, z ∈ X and all a ∈ U(A). If there exists a constant L < 1 such
that the function

x 7→ Ψ(x) := 2ϕ
(2x

7
,
4x
7
,
−6x

7
)

+ ϕ
(8x

7
,
2x
7
,
−10x

7
)

has the property

Ψ(2x) ≤ 2LΨ(x)

for all x ∈ X , then there exists a unique A-linear mapping T : X → Y such
that

‖f(x)− T (x)‖ ≤ L

1− L
Ψ(x) (2.13)

for all x ∈ X .

Proof. Using the same method as in the proof of Theorem 2.2, we have∥∥∥1
2
f(2x)− f(x)

∥∥∥ ≤ 1
2
Ψ(2x) ≤ LΨ(x) (2.14)

for all x ∈ X . We introduce the same definitions for E and d as in the proof
of Theorem 2.2 such that (E, d) becomes a generalized complete metric space.
Let Λ : E → E be the mapping defined by

(Λg)(x) =
1
2
g(2x), for all g ∈ E and x ∈ X .

One can show that d(Λg,Λh) ≤ Ld(g, h) for any g, h ∈ E. It follows from
(2.14) that d(Λf, f) ≤ L. Due to Theorem 1.1, the sequence {Λnf} converges
to a fixed point T of Λ, i.e.,

T : X → Y , T (x) = lim
n→∞

(Λnf)(x) = lim
n→∞

1
2n
f(2nx)
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and T (2x) = 2T (x) for all x ∈ X . Also

d(T, f) ≤ 1
1− L

d(Λf, f) ≤ L

1− L
,

i.e., inequality (2.13) holds true for all x ∈ X .
The rest of the proof is similar to the proof of Theorem 2.4 and we omit

the details. �

Corollary 2.5. Let 0 < r < 1 and θ, δ be non-negative real numbers and let
f : X → Y be a mapping satisfying f(0) = 0 and the inequality

‖Daf(x, y, z)‖ ≤ ‖f(ax+ ay + az)‖

+ δ + θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X and all a ∈ U(A). Then there exists a unique A-linear
mapping T : X → Y such that

‖f(x)− L(x)‖ ≤ 3.2r

2− 2r
δ +

4r(3 + 2.2r + 2.3r + 4r + 5r)
7r(2− 2r)

θ‖x‖r

for all x ∈ X .

Proof. The proof follows from Theorem 2.4 by taking

ϕ(x, y, z) := δ + θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X . Then we can choose L = 2r−1 and we get the desired
result. �
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