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1. Introduction

Let (X, d) be a metric space, Y ⊂ X a nonempty subset ofX and f : Y → X

an operator. In what follow we shall use the following notations:
Ff = {x ∈ Y : f(x) = x} − the fixed points set of f
I(f) = {Z ⊂ Y : f(Z) ⊂ Z,Z 6= ∅} − the set of invariant subsets of f
(MI)f = ∪I(f)− the maximal invariant subset of f
(AB)f (x∗) = {x ∈ Y : fn(x) is defined for all n ∈ N and fn(x) → x∗ ∈ Ff}-
the attraction basin of the fixed point x∗ with respect to f

(AB)f =
⋃

x∗∈Ff

(AB)f (x∗)− the attraction basin of f

(PH)d : P (X)× P (X) → R+ ∪ {+∞}− the Pompeiu-Haudorff functional,

(PH)d(A,B) = max
(

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
)

.
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In [20] the author uses the weakly Picard operator technique for the study
of data dependence of fixed points of self generalized contractions. The aim
of this paper is to study the same problem in the case of non-self operators.
In addition, we introduce the ψ-condition and we study the data dependence
of the fixed points of operators satisfying the ψ-condition. A fibre non-self
contraction theorem is also established. An application to functional equations
is included.

2. Picard and weakly Picard non-self operators

We begin our considerations by some definitions. Let (X, d) be a metric
space and Y ⊂ X a nonempty subset of X.

Definition 2.1. An operator f : Y → X is said to be a Picard operator (PO)
if

(i) Ff = {x∗f};
(ii) (MI)f = (BA)f .

Definition 2.2. An operator f : Y → X is said to be a weakly Picard operator
(WPO) if

(i) Ff 6= ∅;
(ii) (MI)f = (BA)f .

Definition 2.3. For each WPO f : Y → X we define the operator f∞ :
(BA)f → (BA)f by f∞(x) = lim

n→∞
fn(x).

Remark 2.1. It is clear that f∞((BA)f ) = Ff , so f∞ is a set retraction of
(BA)f to Ff .

Remark 2.2. In terms of weakly Picard self operators the above definitions
take the following form:

f : Y → X is a WPO (PO) iff f |(MI)f
: (MI)f → (MI)f is a WPO (PO).

Let ψ : R+ → R+ be an increasing function which is continuous in 0 and
ψ(0) = 0.

Definition 2.4. An operator f : Y → X is said to be a ψ-WPO (ψ-PO) if f
is a WPO (PO) and

d(x, f∞(x)) ≤ ψ(d(x, f(x)) for every x ∈ (MI)f .
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In case that ψ(t) = ct, t ∈ R+ and c > 0, we say that f is a c-WPO (c-PO).

Example 2.1. Let Y be a nonempty subset of the metric space (X, d) and
f : Y → X be an α-contraction (0 < α < 1) with Ff = {x∗f}. Then f is a

1
1−α -PO.

Indeed, for x ∈ (MI)f we have that d(fn(x), x∗f ) → 0 as n → ∞, i.e., f is
a PO. On the other hand, for x ∈ (MI)f , we have

d(x, fn(x)) ≤ d(x, f(x)) + d(f(x), f2(x)) + ...+ d(fn−1(x), fn(x))

≤ (1 + α+ α2 + ...+ αn−1)d(x, f(x))

≤ 1
1− α

d(x, f(x))

whence

d(x, x∗f ) ≤ 1
1− α

d(x, f(x)).

Example 2.2. Let Y be a nonempty subset of the metric space (X, d) and let
f : Y → X be a generalized contraction of Ciric-Reich-Rus type, that is

d(f(x), f(y)) ≤ αd(x, f(x)) + βd(y, f(y)) + γd(x, y) (2.1)

for all x, y ∈ Y, where α, β, γ are non-negative numbers with α + β + γ < 1.

We suppose that Ff = {x∗f}. Then f is a c-PO, where c =
1− β

1− α− β − γ
.

Indeed, if we let in (2.1) y = f(x), x ∈ (BA)f , we obtain

d(f(x), f2(x)) ≤ αd(x, f(x)) + βd(f(x), f2(x)) + γd(x, f(x))

and so

d(f(x), f2(x)) ≤ α+ γ

1− β
d(x, f(x)), for all x ∈ (BA)f .

Then, for every n, one has

d (x, fn (x)) ≤ d (x, f (x)) + d
(
f (x) , f2 (x)

)
+ ...+ d

(
fn−1 (x) , fn (x)

)
≤ 1

1− α+γ
1−β

d (x, f (x))

=
1− β

1− α− β − γ
d (x, f (x)) .

Consequently, f is a c-PO.
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Example 2.3. Let Y be a nonempty subset of the metric space (X, d) and let
f : Y → X be a generalized contraction of Ciric type, that is

d(f(x), f(y)) ≤ qmax{d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))}

for all x, y ∈ Y and some q ∈ [0, 1
2). We suppose that Ff = {x∗f}. Then A is a

c-PO, where c =
1− q

1− 2q
.

Example 2.4. Let f : Y → X be a closed graphic contraction, i.e., f is closed
(i.e. it has closed graph) and there exists α ∈ (0, 1) such that

d(f2(x), f(x)) ≤ αd(x, f(x))

for all x for which f2(x) is defined. We suppose that Ff 6= ∅. Then f is a
1

1−α -WPO.

Indeed, the graphic contraction condition implies that for every x ∈ (MI)f ,

the sequence (fn(x)) is convergent. Since f is closed the limit of sequence
(fn(x)) is a fixed point of f. Thus f is a WPO. In addition, if x ∈ (BA)f ,

then

d(x, fn(x)) ≤ d(x, f(x)) + d(f(x), f2(x)) + ...+ d(fn−1(x), fn(x))

≤ (1 + α+ α2 + ...+ αn−1)d(x, f(x))

≤ 1
1− α

d (x, f (x))

and letting n→∞, we obtain

d (x, f∞ (x)) ≤ 1
1− α

d (x, f (x)) .

Example 2.5. Let ϕ : R+ → R+ be a strict comparison function (see [19]),
i.e.,

(a) ϕ is increasing;
(b) ϕn(t) → 0 as n→∞, for all t ∈ R+;
(c) t− ϕ(t) → +∞ as t→∞.

Let (X, d) be a metric space, Y ⊂ X and f : Y → X a strict ϕ- contraction,
i.e.,

d(f(x), f(y)) ≤ ϕ(d(x, y)) for all x, y ∈ Y,
with Ff 6= ∅. Then f is a ψϕ -PO, with respect to ψϕ : R+ → R+,

ψϕ(η) = sup{t ∈ R+ : t− ϕ(t) ≤ η}.
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Indeed, f |(MI)f
is a PO as follows from Matkowski’s fixed point theorem

(see [11], [10] and [19]). Let Ff = {x∗}. Then, for x ∈ (BA)f , we have

d(x, x∗) ≤ d(x, f(x)) + d(f(x), x∗)

≤ d(x, f(x)) + ϕ(d(x, x∗)).

Hence

d(x, x∗)− ϕ(d(x, x∗)) ≤ d(x, f(x)).

So

d(x, x∗) ≤ ψϕ(d(x, f(x))).

Therefore f is a ψϕ- PO.

Remark 2.3. It is clear that if f : X → X is a WPO (PO), then f |Y : Y → X

is also a WPO (PO).

3. Data dependence for ψ-WPOs and ψ-POs

Let (X, d) be a metric space, Y ⊂ X a nonempty subset of X and f, g :
Y → X two operators. Denote by (PH)d the Pompeiu-Hausdorff functional.

Theorem 3.1. Assume that the following conditions are satisfied:
(i) f and g are ψ-WPOs;
(ii) Fg ⊂ (BA)f and Ff ⊂ (BA)g;
(iii) there exists η > 0 such that

d(f(x), g(x)) ≤ η for all x ∈ Y.

Then

(PH)d(Ff , Fg) ≤ ψ(η).

Proof. If x ∈ Fg, then

d(x, f∞(x)) ≤ ψ(d(x, f(x))) = ψ(d(g(x), f(x))) ≤ ψ(η).

If y ∈ Ff , then

d(y, g∞(y)) ≤ ψ(d(y, g(y))) = ψ(d(f(y), g(y))) ≤ ψ(η).

Now the conclusion follows from the next lemma from [19]. �
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Lemma 3.1. Let (X, d) be a metric space and A, B ⊂ X two nonempty sets.If
τ > 0 is such that:

(1) for each a ∈ A there exists b ∈ B such that d(a, b) ≤ τ ;
(2) for each b ∈ B there exists a ∈ A such that d(a, b) ≤ τ,

then (PH)d(A,B) ≤ τ.

A similar result holds for ψ-POs.

Theorem 3.2. Assume that the following conditions are satisfied:
(i) f is a ψ-PO (Ff = {x∗f});
(ii) ∅ 6= Fg ⊂ (BA)f ;
(iii) there exists η > 0 such that

d(f(x), g(x)) ≤ η for all x ∈ Y.

Then
d(x∗f , x

∗
g) ≤ ψ(η) for all x∗g ∈ Fg.

Proof. Let x∗g ∈ Fg. Then

d(x∗g, x
∗
f ) ≤ ψ(d(x∗g, f(x∗g))) = ψ(d(g(x∗g), f(x∗g))) ≤ ψ(η). �

A better result holds in case of strict ϕ- contractions.

Theorem 3.3. Assume that the following conditions are satisfied:
(i) f is a strict ϕ-contraction with Ff = {x∗f};
(ii) Fg 6= ∅;
(iii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, for all x ∈ Y.

Then
d(x∗g, x

∗
f ) ≤ ψϕ(η), for all x∗g ∈ Fg.

(For the definition of ψϕ see Example 2.5).

Proof. Let x∗g ∈ Fg. We have

d(x∗g, x
∗
f ) ≤ d(x∗g, f(x∗g)) + d(f(x∗g), x

∗
f )

≤ η + ϕ(d(x∗g, x
∗
f )).

Hence
d(x∗g, x

∗
f )− ϕ(d(x∗g, x

∗
f )) ≤ η.
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Then
d(x∗g, x

∗
f ) ≤ ψϕ(η). �

We also have the following result:

Theorem 3.4. Assume that the following conditions are satisfied:
(i) there exist α, β ∈ R+, α+ 2β < 1 such that

d(f(x), f(y)) ≤ αd(x, y) + β[d(x, f(x)) + d(y, f(y))]

for all x, y ∈ X, and let Ff = {x∗f};
(ii) Fg 6= ∅;
(iii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, for all x ∈ Y.

Then
d(x∗g, x

∗
f ) ≤ 1 + β

1− α
η, for all x∗g ∈ Fg. (3.1)

Proof. Let x∗g ∈ Fg. We have

d(x∗g, x
∗
f ) ≤ d(x∗g, f(x∗g)) + d(f(x∗g), x

∗
f )

≤ η + αd(x∗g, x
∗
f ) + βd(x∗g, f(x∗g))

≤ η + αd(x∗g, x
∗
f ) + βη.

This immediately gives (3.1). �

Remark 3.1. In particular, condition (i) in Theorem 3.1 and Theorem 3.2
follows from a continuation principle ([1], [2], [3], [4], [5], [6], [8], [12], [13],
[14], [15], [16], [17], [18]). For example, we have:

Theorem 3.5. Let (X, d) be a complete metric space, U ⊂ X open and f :
U → X an operator. Assume that there exists H : U × [0, 1] → X continuous
such that:

(a) there exists x0 ∈ U with H(·, 0) = x0;
(b) H(x, 1) = f(x) for all x ∈ U ;
(c) there exists α ∈ [0, 1) such that

d(H(x, λ),H(y, λ)) ≤ αd(x, y)

for all x, y ∈ U and λ ∈ [0, 1];
(d) H(x, λ) 6= x for all x ∈ ∂U and λ ∈ [0, 1];
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(e) H(x, λ) is continuous in λ, uniformly for x ∈ U.
Then:
(1) f has a unique fixed point x∗f and f is a 1

1−α -PO;
(2) if g is as in Theorem 3.2, then d(x∗f , x

∗
g) ≤

η
1−α .

Proof. From conditions (c), (d) and (e) we have that the homotopy
H : U × [0, 1] → X has the properties from Granas’ continuation principle
for contractions on complete metric spaces ( [8]). In addition we have that
H(., 0) = x0 has a unique fixed point. So Hλ has a unique fixed point in U

for all λ ∈ [0, 1]. Then, from condition (b), f has a unique fixed point x∗f , that
is f(x∗f ) = x∗f , and using Example 2.1 f is a 1

1−α -PO. Now (2) follows from
Theorem 3.2. �

4. Data dependence for operators satisfying the ψ-condition

4.1. The ψ- condition in the case Ff = {x∗f}. Let ψ : R+ → R+ be
continuous in zero and ψ (0) = 0. Let (X, d) be a metric space, Y ⊂ X and
f : Y → X be any operator with Ff = {x∗f}.

Definition 4.1. The operator f satisfies the ψ-condition if

d(x, x∗f ) ≤ ψ(d(x, f(x))) for all x ∈ Y.

Example 4.1. If f : Y → X is an α-contraction (0 < α < 1) , then f satisfies
the ψ-condition with respect to ψ(t) = t

1−α .

Example 4.2. If f : Y → X a strict ϕ-contraction with respect to some
strict comparison function ϕ : R+ → R+, then f satisfies the ψ-condition with
respect to ψ(r) = sup{t ∈ R+ : t− ϕ(t) ≤ r}.

Example 4.3. If Y = X and f is a ψ-PO, then f satisfies the ψ-condition
(see [20] and [23]).

The above examples give rise to the following problems:

Problem 4.1. Which metric conditions on f imply the ψ-condition with re-
spect to some function ψ : R+ → R+?

Problem 4.2. Let Y = X. For which generalized contractions we have that:
(i) f satisfies the ψ- condition with respect to some function ψ : R+ → R+;
(ii) f is not a ψ-PO.
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Theorem 4.1. If f satisfies the ψ-condition, then the fixed point problem is
well posed for f.

Proof. Let xn ∈ Y be such that (see [22])

d(xn, f(xn)) → 0 as n→∞.

Then, from the ψ-condition, we have

d(xn, x
∗
f ) ≤ ψ(d(xn, f(xn))) → 0 as n→∞. �

Theorem 4.2. Assume that the following conditions are satisfied:
(i) Y = X;
(ii) f satisfies the ψ- condition;
(iii) f is asymptotically regular.
Then f is a ψ-PO.

Proof. Let x ∈ X. We have

d(fn(x), x∗f ) ≤ ψ(d(fn(x), fn+1(x))) → 0 as n→∞.

So, f is a PO. Now (ii) implies that f is a ψ-PO. �

Now we state a data dependence result for operators satisfying the ψ-
condition.

Theorem 4.3. Let (X, d) be a metric space, Y ⊂ X and f, g : Y → X two
operators. We suppose that:

(i) f satisfies the ψ- condition;
(ii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, for every x ∈ Y.

Then

d(x∗f , x
∗
g) ≤ ψ(η)

for every x∗g ∈ Fg.

Proof. Let x∗g ∈ Fg. Then (i) and (ii) guarantee that

d(x∗g, x
∗
f ) ≤ ψ(d(x∗g, f(x∗g))) = ψ(d(g(x∗g), f(x∗g))) ≤ ψ(η). �

In particular, for ϕ-contractions (see Example 2.5) we have the following
result:
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Theorem 4.4. Let (X, d) be a metric space, Y ⊂ X and f, g : Y → X be two
operators. We suppose that:

(i) f is a ϕ-contraction;
(ii) there exists η > 0 such that

d(f(x), g(x)) ≤ η for every x ∈ Y.

Then

d(x∗f , x
∗
g) ≤ ψ(η)

for every x∗g ∈ Fg.

4.2. The ψ-condition in the case Ff 6= ∅. Let ψ : R+ → R+ be continuous
in zero and ψ (0) = 0. Let (X, d) be a metric space, Y ⊂ X and f : Y → X

be any operator with Ff 6= ∅.

Definition 4.2. The operator f satisfies the ψ- condition if there exists a set
retraction χf : Y → Ff such that

d(x, χf (x)) ≤ ψ(d(x, f(x))) for every x ∈ Y.

Example 4.4. Let Y = X and let f : X → X be a ψ-WPO. In this case we
take χf = f∞ and f satisfies the ψ-condition.

Example 4.5. Let (X, d) be a metric space, Y ⊂ X and f : Y → X. We
suppose that

(i) Y =
⋃
i∈I

Yi is a partition of Y such that Ff ∩ Yi = {x∗i }, i ∈ I;

(ii) f |Yi : Yi → X is an α-contraction, i ∈ I.
Then f satisfies the ψ- condition with respect to ψ(t) = t

1−α .

Problem 4.3. Which generalized contractions f satisfy the ψ-condition with
respect to some function ψ?

Problem 4.4. In the case Y = X, for which generalized contractions we have
that:

(i) f satisfies the ψ-condition;
(ii) f is not a ψ−WPO?

We have the following data dependence result.
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Theorem 4.5. Let (X, d) be a metric space, Y ⊂ X and f, g : Y → X be two
operators. We suppose that:

(i) f, g satisfy the ψ-condition and Ff 6= ∅;
(ii) there exists η > 0 such that

d(f(x), g(x)) ≤ η, for every x ∈ Y ;

(iii) Fg 6= ∅.
Then

(PH)d(Ff , Fg) ≤ ψ(η).

Proof. Let x ∈ Fg. Then

d(x, χf (x)) ≤ ψ(d(x, f(x))) = ψ(d(g(x), f(x))) ≤ ψ(η).

Similarly, if y ∈ Ff , then

d(y, χg(y)) ≤ ψ(d(y, g(y))) = ψ(d(f(y), g(y))) ≤ ψ(η).

Now from Lemma 3.1 we have

(PH)d(Ff , Fg) ≤ ψ(η). �

5. Fibre non-self contraction theorems

In what follows we need the notion of L-space structure. Let X be a
nonempty set. Let

s(X) = {(xn)n∈N : xn ∈ X, n ∈ N}.

Let c(X) ⊂ s(X) be a subset of s(X) and Lim : c(X) → X an operator.

Definition 5.1. Following M. Fréchet [7] (1905) the triple (X, c(X), Lim) is
called an L− space if the following conditions are satisfied:

(i) If xn = x for every n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x;
(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences

(xni)i∈N of (xn)n∈N we have that (xni)i∈N ∈ c(X) and Lim(xni)i∈N = x.

In what follows an L-space (X, c(X), Lim) will be simply denoted by (X,→).
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Theorem 5.1. Let (X,→) be an L−space, X1 ⊂ X a nonempty set and
(Y, d) a complete metric space. Let g : X1 → X, h : X1 × Y → Y and
f : X1 × Y → X × Y, f(x, y) = (g(x), h(x, y)). We suppose that:

(i) g is a WPO (PO);
(ii) there exists α ∈ (0, 1) such that

d(h(x, y1), h(x, y2)) ≤ αd(y1, y2)

for all x ∈ (AB)g and y1, y2 ∈ Y ;
(iii) f is continuous.
Then f is a WPO (PO).

Proof. First of all we remark that (MI)f = (MI)g ×Y and (MI)g = (AB)g.

Let x0 ∈ (AB)g and y0 ∈ Y. Define xn+1 = g(xn), yn+1 = h(xn, yn) for n ∈ N.
It is clear that xn → x∗ ∈ Fg as n → ∞. Let Fh(x∗,.·) = {y∗}. Let us prove
that yn → y∗. We have

d(yn+1, y
∗) = d(h(xn, yn), y∗)

≤ d(h(xn, yn), h(xn, y
∗)) + d(h(xn, y

∗), y∗)

≤ αd(yn, y
∗) + d(h(xn, y

∗), y∗)

...

≤ αn+1d(y0, y
∗) + αnd(h(x0, y

∗), y∗)+

...+ αd(h(xn−1, y
∗), y∗) + d(h(xn, y

∗), y∗).

Then d(yn+1, y
∗) → 0 by the Cauchy lemma, see [24] Indeed, in Cauchy lemma

we take ak = αk, bk = d(h(xk, y
∗), y∗) and we have

∞∑
k=0

ak < ∞, bn → 0 as

n→ 0. So
n+1∑
k=0

an+1−kbk → 0 as n→∞. �

The above result is very useful to study the differentiability of solutions
of operator equations with respect to a parameter. For example, let us to
consider the following equation

x(t, λ) = F (t, x(t, λ), λ), t ∈ [a, b], λ ∈ J ⊂ R, (5.1)

where F : [a, b]× I × J → R. We suppose that:
(i) I, J ⊂ R are compact intervals;
(ii) F ∈ C([a, b]× I × J);
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(iii) F (t, ·, ·) ∈ C1(I × J) for every t ∈ [a, b];

(iv)
∣∣∣∣∂F∂x (t, u, λ)

∣∣∣∣ ≤ α < 1 for every t ∈ [a, b], u ∈ I, λ ∈ J.

(v) equation (5.1) has at least one solution.
Then we have:

Theorem 5.2. Under the above conditions equation (5.1) has in C([a, b]×J, I)
a unique solution x∗ and x∗(t, ·) ∈ C1(J) for every t ∈ [a, b].

Proof. Let X = C([a, b] × J, I) with the supremum norm ‖.‖C and let B :
C([a, b]× J, I) → C([a, b]× J) be defined by B(x)(t, λ) = F (t, x(t, λ), λ).

From the conditions (iv) and (v) it follows that FB = {x∗}. Let Y = {x ∈
C([a, b] × J, I) : B(x)(t, λ) ∈ I for all t ∈ [a, b], λ ∈ J}. It is clear that
x∗ ∈ Y, B(Y ) ⊂ Y and B : Y → Y is a PO. Let x0 ∈ Y be such that there

exists
∂x0

∂λ
and

∂x0

∂λ
∈ C([a, b] × J). Let us suppose that there exists

∂x∗

∂λ
.

Then we have that
∂x∗(t, λ)
∂λ

=
∂F (t, x∗(t, λ), λ)

∂x
· ∂x

∗(t, λ)
∂λ

+
∂F (t, x∗(t, λ), λ)

∂λ
.

This relation suggests us to consider the following operators:

C : Y × C([a, b]× J) → C([a, b]× J)

defined by

C(x, y)(t, λ) =
∂F (t, x(t, λ), λ)

∂x
· y(t, λ) +

∂F (t, x(t, λ), λ)
∂λ

and
A : Y × C([a, b]× J) → Y × C([a, b]× J)

with
A(x, y) = (B(x), C(x, y)).

From Theorem 3.2 we have that A is a PO. This implies that the sequences
xn+1 = B(xn), yn+1 = C(xn, yn) converge, xn → x∗, yn → y∗ and x∗ = B(x∗),
y∗ = C(x∗, y∗).

Let us take y0 =
∂x0

∂λ
. Then yn =

∂xn

∂λ
. So

xn → x∗ as n→∞, with respect to the norm ‖.‖C

and
∂xn

∂λ
→ y∗ as n→∞.
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These imply that y∗ ∈ C1([a, b]× J) and y∗ =
∂x∗

∂λ
. �

References
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[7] M. Fréchet, Les espaces abstraits, Gauthier-Villars, Paris, 1928.

[8] A. Granas, Continuation method for contractive maps, Topological Methods Nonlinear

Anal., 3(1994), 375-379.

[9] M.W. Hirsch and C. C. Pugh, Stable manifolds anf hyperbolic sets, Proc. Symp. in Pure

Math., Amer. Math. Soc., 14(1970), 133-143.

[10] W.A. Kirk and B. Sims (eds.), Handbook of Metric Fixed Point Theory, Kluwer, Boston,

2001.

[11] J. Matkowski, Integrable solutions of functional equations, Dissert. Math. 77, Warszawa,

1975.

[12] D. O’Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon

and Breach, Amsterdam, 2001.

[13] D. O’Regan and R. Precup, Continuation theory for contractions on spaces with two

vector-valued metrics, Applicable Analysis, 82(2003), 131-144.

[14] D. O’Regan and R. Precup, Existence theory for nonlinear operator equations of Ham-

merstein type in Banach spaces, Dynamic Systems Appl., 14(2005), 121-134.

[15] R. Precup, Discrete continuation method for boundary value problems on bounded sets

in Banach spaces, J. Comput. Appl. Math., 113(2000), 267-281.

[16] R. Precup, Continuation results for mappings of contractive type, Seminar on Fixed

Point Theory 2(2001), 23-40.

[17] R. Precup, The continuation principle for generalized contractions, Bull. Appl. Comput.

Math. (Budapest), 96(2001), 367-373.

[18] R. Precup, Methods in Nonlinear Integral Equations, Kluwer, Dordrecht-Boston-

London, 2002.



DATA DEPENDENCE OF FIXED POINTS 87

[19] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-

Napoca, 2001.

[20] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58

(2003), No. 1, 191-219.

[21] I.A. Rus, Metric space with fixed point property with respect to contractions, Studia
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[23] I.A. Rus, A. Petruşel, M.A. Şerban, Weakly Picard operators: equivalent definitions,

applications and open problems, Fixed Point Theory, 7(2006), No. 1, 3-22.
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