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1. INTRODUCTION

Let C be a closed convex subset of a real Hilbert space H and let Po be
the metric projection of H onto C. Recall that a self-mapping f on C' is a
contraction if there exists a constant k& € (0,1) such that ||f(z) — f(y)| <
kllxz — y|| for all z,y € C. If kK > 0 (respectively, k = 1), then f is Lipschitz
continuous (respectively, nonexpansive). Note that each f € I, the set of all
contractions on C, has a unique fixed point zg (that is, f(z¢) = z¢) by the
Banach contraction principle. We denote by Fix(S) = {z € C : S(z) = =},
the set of fixed points of a nonexpansive mapping S on C. It is well known
that Fix(S) is closed and convex (cf. [5]). A mapping T : C — H is called
monotone if (T'x — Ty, z — y) > 0 for all z,y € C. The variational inequality
problem is to find z € C such that (Tx,y — x) > 0 for all y € C; see, for
example, [1, 7]. The set of solutions of the variational inequality is denoted
by VI(C,T'). A mapping T : C — H is called a-inverse-strongly monotone if
there exists a positive real number « such that

<T$_Tyax_y> ZCYHT(L'—TyHZ, V377Z/€ C.

A bounded linear operator A on H is strongly positive [8] with coefficient 7,
if there is a constant 4 > 0 such that

(Az,z) > 5||? Vze H.

Marino and Xu [8] have combined the iterative methods in [13] with the vis-
cosity approximation method due to Moudafi [9] and introduced the following

general iterative algorithm:
Tni1 = (I — anA)Szy, + anyf(z,), VYn >0, (1.1)

where A (respectively, S) is strongly positive (respectively, nonexpansive) on
H, f is a contraction on C, g € H and {«,} in (0,1) satisfies appropriate
conditions. They proved strong convergence of {x,} generated by (1.1) to
Z € Fix(S), which solves the variational inequality

(A=~f)z,x —z) >0, Ve Fix(9).

Readers interested in the related minimization problems are referred to [13, 14].
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The iterative methods of nonexpansive mappings have been extensively
applied to solving the convex minimization problems and other problems in
[8, 14, 13, 6, 4, 15, 2, 3, 17, 16].

Recently, Chen et al. [4] have introduced the explicit and implicit iterative
schemes, respectively, in this context as follows:

20 € C, xpt1 = (1 —an)SPo(xn — MTxy) + anf(zy), (1.2)

zn = (1 — an)SPo(zn — AT zn) + anf(zn), (1.3)

where n > 0, D := Fix(S) N VI(C,T) # 0 and A, € [a,b] with 0 < a < b < 2«
and {a,,} C [0,1).

By imposing suitable conditions on {«, } and {\,}, they have proved strong
convergence of {zy} in (1.2) and {z,} in (1.3) to the unique ¢ € D which solves

the following variational inequality
(I - f)@),q—p) <0, VpeDandVf e lc, (1.4)

where [ stands for the identity mapping.
Ceng and Yao [3] introduced explicit and implicit versions of an extra-
gradient-like approximation method for x¢ € C' as:

Yn = (1 = n)xn + Po(xn — ATy),
Tnr1 = (1 —ap — Bn)xn + anf(yn) + BuSPo(xn — MTyn), VYn >0
(1.5)

Zn = (1 — Qp — ﬂn)zn + anf((l - Vn)zn + ’YnPC(zn - AnTzn))

+BnSPol(1=n)2n+mPo (20— AnTz2n) = AT ((1=7n) 20+ 70 Po (20— A T2n))],

(1.6)
where {A\,} C [a,b] for some a,b with 0 < a < b < 2« and {a,}, {Bn}, {7}
are sequences in [0, 1].

In this paper, motivated and inspired by the iterative schemes (1.1)-(1.3), we
suggest and analyze a more general iterative method for two strongly positive
operators, a nonexpansive self-mapping S (respectively, a contraction) on C
and an a-inverse-monotone mapping 1. Let A,B : H — H be strongly
positive linear bounded operators with coefficients ¥ € (0,1) and 8 > 0,
respectively. Let 0 < v < % For an arbitrary initial guess zg € C, we define
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the explicit iterative scheme {x,} as follows:

Yn = Po(xn, — M\Txy),
T+l = PC{(I - anA)S(yn) + an[Syn - /Bn(BSyn - ’Yf(xn))]}v

where n > 0, {ay,} C (0,1], {8,} C (0,min{1, | B]|~'}), and {\,} C (0,20).
The implicit iterative scheme {z,} is introduced as:

(1.7)

zn = Po{(I — anA)SPo(zn — AT z)

+an[SPo(zn — AT zn) — Bn(BSPo(zn — AT zn) — vf(2n))]}- (1.8)

It is proved that under appropriate conditions, the sequences {z,} and
{zn} converge strongly to a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of the variational inequality
for an a-inverse-strongly monotone mapping which solves some variational
inequality problems in a Hilbert space. Similar results are proved for the
extragradient-like approximation schemes given in (1.5) and (1.6). The results
presented in this paper improve and extend some recent results in the current
literature, including the corresponding results of Marino and Xu [8], Tiduka
and Takahashi [6], Chen et al. [4] and Ceng and Yao [3].

2. PRELIMINARIES

For a sequence {z,}, x, — x (respectively, z,, — x) denotes weak (respec-
tively, strong) convergence to x. Let H be a real Hilbert space with inner
product (.,.) and norm || - ||, and let C' be a nonempty closed convex subset of
H. For every point x € H, there exists a unique nearest point in C, denoted
by Pox, such that

|z — Pozx|| < ||z —yl, VeeC.
It is well known that the metric projection Pg satisfies
(x —y, Pox — Poy) > ||Pox — Poy||®, Vaz,y € H, (2.1)
Moreover, for all z € H, y € C
(x — Pox, Pox —y) > 0 and |l& — y|* > |l — Pox|* + ||y — Pex|.
In the context of variational inequality problem, this implies that

weVIC,T) < wu=Po(u—ATu), forall A>0. (2.2)
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If T is an a-inverse-strongly monotone mapping of C' into H, then obviously
T is monotone and is é—Lipschitz continuous. For all z,y € C' and A > 0,

I(I = AT)z — (I = XT)yl* = |(z — y) = M(Tz = Ty)[I” = ||z - y|*
—2Mz —y, T — Ty) + N||Tx — Ty||” < |l — y||* + A(A — 20) | Tz — Tyl
So, if A < 2a, then I — AT is a nonexpansive mapping of C' into H.

A set-valued mapping F : H — 2 is called monotone if for all z,y €
H, vw € Fr and v € Fy imply (x —y,u —v) > 0. A monotone mapping
F : H — 28 is maximal if G(F), the graph of F, is not properly contained
in the graph of any other monotone mapping. It is known that a monotone
mapping F' is maximal if and only if for (z,u) € H x H, (x —y,u—v) > 0 for
every (y,v) € G(F) implies u € Fz. Let T be an inverse-strongly monotone

mapping of C' into H and let Nox be the normal cone to C at x € C, that is,
Nerx ={we H: (x —y,w) >0, for all y € C'}. Define

Tx+ Noz, x¢€C,

Fx=

0, g C.
Then F' is maximal monotone and 0 € Fz if and only if z € VI(C,T); see, for
example, [11].

The following known lemmas will be used in the proof of our main results.

Lemma 2.1. ([14], Lemma 2.1) Let {s,} be a sequence of nonnegative num-
bers satisfying the condition

Spt1 < (1 - an)sn +anfp, Yn=>0,

where {a,}, {8,} are sequences of real numbers such that
o0

[e.e]
(i) {an} C [0,1] and Z oy, = 00, or equivalently, H(l —ay) =0;
n=0 n=0
(ii) limsup G, <0, or
n—oo
oo
(ii)’ Z an [y is convergent.
n=0
Then, lim s, = 0.
n—oo

Lemma 2.2. [5] Assume that 7" is a nonexpansive self-mapping of a closed
convex subset C' of a Hilbert space H. If T" has a fixed point, then I — T is
demiclosed (that is, whenever {x,} — z in C and the sequence {({ —T")x,} —
y, it follows that (I — T)z = y).
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Lemma 2.3. ([12], Lemma 2.3) Let C be a closed convex subset of a Hilbert
space H, f : C — C be a contraction with coefficient k£ € (0,1), and B be
a strongly positive linear bounded operator with coefficient § > 0. Then, for
0<y<?

(x—y,(B=~f)x— (B=~f)y) = (B—~k)|z —y||>, forallz,yeC

That is, B — v f is strongly monotone with coefficient 3 — k.

Lemma 2.4. ([8], Lemma 2.5) Assume that A is a strongly positive linear
bounded operator on a Hilbert space H with coefficient ¥ > 0 and 0 < p <
JAJ L. Then |1 — pA|l < 1— p3.

Lemma 2.5. [10] In an inner product space F, for all z,y,z € E and «, 3,
v € [0,1] with a + 8+ v = 1, we have

laz+By+vz)* = allz|*+8lly >+ 2l* ~abllz—y|* ~arlla—=zl* - By]ly—=]*.

Lemma 2.6. ([12], Lemma 2) Let {z,} and {z,} be bounded sequences in
a Banach space X and let {g,} be a sequence in [0, 1] with 0 < liminf g,, <
n—od

limsup g0, < 1. Suppose that z, 1 = opxn + (1 — 0n) 2z, for all integers n > 0
n—oo
and limsup (||zn41 — 2nl| = [[Zn+1 — 2n|]) < 0. Then lim ||z, — z,] = 0.
n—oo n—oo

Lemma 2.7. In a real Hilbert space H, the following inequality holds:

lz+yl? < ||lz|*> 4+ 2(y,z +v), forall z,y € H.

3. VISCOSITY METHODS FOR STRONGLY POSITIVE OPERATORS

In this section, we study strong convergence of the iterative schemes (1.7)
and (1.8) to the unique ¢ € D which solves a new variational inequality in
Hilbert spaces. First of all, we show that the explicit iterative scheme (1.7) is
well defined.

In the sequel, we always assume that f : C' — C is a contraction with
coefficient k£ € (0,1). Let A, B be strongly positive bounded linear operators
with coefficients 5 € (0,1) and S > 0, respectively. Let 0 < v < % and

. 1-7 2-7
lim 8, = n € ( ,
no T= Bk Bk

). Then, we may assume without loss of

. . 1-3  2-7
generality that there exists ¢ € (ﬁ_—;’k, ﬁ_—%) such that
1-7 25
<c< B < , forallm>0. 3.1
B -k "Bk (31)
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Let T : C' — H be an a-inverse-strongly monotone mapping and let S be a
nonexpansive self-mapping on C.
For each n > 0, consider a mapping V,, : C'— C defined by

Vo = Po{(I — an,A)SPo(x — \yTx) + an[SPo(x — A\ Tx)

~Bu(BSPo(z — MTx) — 2 f@)]}, (3.2
for all x € C.
By (3.1)-(3.2) and Lemma 2.4, we have
Vo = Vayll = | Pe{(I — anA)SPo(z — AnTx)
+ap[SPo(x — A\Tx) — B (BSPo(x — \Tx) — v f(x))]}
—Po{(I = an A)SPe(y — MTy)
+on[SPo(y — MTy) — Bu(BSPe(y — MTy) — vf ()1}
< [{(I - and)SPo(z — \uTx)
an[SPo( — MT2) — fu(BSPe(z — MTa) —4/(2))]}
(I — an A)SPely — MTy) + anlSPe(y — MTy)
—Bn(BSFPc(y — AnTy) =7 f ()1}
<N (I=anA)SPo(x—NTx)— (I —anA)SPo(y— A Ty)|| + || an[SPe(x— A Tx)
—Bn(BSFPo(x — ATx) —vf(2))] — an[SPo(y — AnTy)
—Pn(BSPo(y — AnTy) =7 f (W)l
< = anAll[|SPe(x = AnTz) = SPo(y — A Ty)||
+on||(I = BnB)(SPo(x — ATx) — SFe(y — MTy)) + Buy(f(2) = f(y)ll
< = anAll[|SPe(I = AnT)x — SPo(I — AT)y|
+an[II = BBl ISPe(I = AT)x — SPo(I — ATyl + Buyll f(2) — f(y)]]
< A —any)lle =yl + an[(L = BuB)llz =yl + Buvklle — yl]
= [l —an(y =14 Bu(B=vk)lllz =yl = (1 — anma)llz — yll,
where 7, ;=5 — 1 + B,(8 — ya).

Since ¢ € (ﬁl—_jkv ;__jk>, if we denote 7: =5 — 1+ ¢(8 —ya) € (0,1), then

we have
Tn == 14088 —7k) 27— 1+c(B—7k)=T.
Hence we get
Vaz = Vayll < (1 = anT)lz = y. (3-3)
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This shows that V,, is a contraction. Therefore, by the Banach contraction
principle, V,, has a unique fixed point z,, € C' such that

zn = Po{(I — anA)SPco(zn — AMTzn) + an[SPo(zn — AT z)
- Bn(BSPC(Zn - AnTzn) - Vf(zn))]}

Hence the scheme (1.7) is well-defined.

Note that z, indeed depends on f but we will suppress this dependence in
the sequel for simplicity of notation.

We now prove our strong convergence theorems for a nonexpansive mapping,
an a-inverse-strongly monotone mapping and two strongly positive operators.
Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H.
Let f: C'— C be a contraction, T': C' — H an a-inverse-strongly monotone
mapping and S a nonexpansive self-mapping on C such that D # (). Let A, B
be strongly positive bounded linear operators on H. Let 0 < v < % Suppose
that {x,} is the sequence in C' generated by xg € C as in (1.7). Assume that

the following conditions hold:

oo o
(C1) nh—%lo an =0, Zan = oo and Z lon1 — am| < oo
n=0 n=0

. 1-7 2-7 S
C2) lim B, =n¢€ s and An11Bn+1 — anBn| < 00;
(C2) lim " (5_% ﬁ_,yk) T;I +16n+1 |
(C3) ) A1 = Anl < 0.

n=0
Then {x,} converges strongly to the unique ¢ € D which solves the following
variational inequality:
([A—I+n(B—-~f)g,q—p) <0, forallpe D and fellc. (3.4)

Proof. We may assume, in view of lim a,, = 0, that a, < ||A]~!.
n—oo

By Lemma 2.4, we obtain
Il —anAl <1— gy, for every n € N.
Let p € D. Then we have:
1yn = pll = | Pe(2n — AnTxn) — Po(p — AnTp)||

= |Pc(I = M\T)xy, — Po(I — \T)p|| < ||zn, —pl|, for every n € N.
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Observe that V,p =

PcA{ (I, A)SPo (p-AnTp)+an [SPo (p— A T'p) — n(BSPo(p—ATp)—7 f ()]}

= Po{(I — anA)p+ anlp — Bn(Bp —vf(p))]}.

Then from (3.3) we have

Hxn—i—l _pH = ”ann —Vap+Viup _pH < anxn - an + anp _pH

< (1 = an7)||lzn — pll + 1Pc{(I — anA)p + an[p — Bu(Bp —vf(p)]} — Popl|

< (= an7)|lzn —pll + [(I = anA)p + anlp — Bu(Bp — v f(p))] — pll

< (1= anm)||lzn —pll + anll = Ap+p — Bu(Bp — vf(p)) |l

< (1= an7)|zn = pll + anlllA = I{llipll + [ Bllllpll + ~I[f )],

which implies that

[ A = Illllpll + 1 BI[[lpll + I/ ()]

T

|z —pl < maX{Hl‘o -, | } , for all n > 0.

So, {zy} is bounded and hence {y,}, {Syn}, {Tx,} and {f(z,)} are bounded.
Since I — A\, T is nonexpansive and p = Po(p — A\, T'p), we also have

HynJrl - ynH < ||(-Tn+1 - >\n+1T"En+1) - (l'n - )\nTxn)H
<N = A1 D) wpgr — (= A1 D)wp|| + [(1 = A1 D) — (I — ATz ||

<N #ng1 — znll + [Ant1 — Aall|Tzn]|, for every n € N.

Denote by M a positive constant such that M > [|[(A — I)Syx| + || BSyx| +
Y| f(xy)]|| for every n € N. Thus, it follows that:
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[Pc{(I = anA)Syn + an[Syn — Bn(BSyn — 7f(zn))]}

—Pc{(I — anA)Syn—1+ anlSyn—1 — Bn(BSyn—1 — vf(xn—1))]}l

< {{ — anA)Syn + anlSyn — Bu(BSyn — vf(2n))]}

—{(I = anA)Syn—1+ an[Syn—1 — Bu(BSyn—1 — vf(xn-1))]}l
= [|({ = anA)Syn — (I — anA)Syn—1 + an[(I — 8,B)Syn

—(I = BnB)Syn—1 + Bpy(f(zn) — flzn-1))]|

< T = an)[[Syn = Syn—1ll + anlllI = BuB[|Syn — Syn-1ll
+8u M f (@n) — f(@n-1)ll]

< (1= anY)llyn = yn-1ll + an(l = Bnf)llyn — yn-1ll

+on B vkl 20 — Tp—1]]

<[ —any) + an(l = BuB)llllen — zn-all + |An = An—1[[| T2 1 ]|
+an/5n7k||xn - xn—lH

=1 —an(y =1+ Bu(B = vE)lllon — zpall + [(1 — an(y

=1+ BuB)[An — A1 || T 21|

<[ —an(¥ =1+ Bu(B = vk)](lzn — Zp—1ll + [An — M| | T2p-1]])
= (1= anm)(|zn — zn-all + [An = Al T2p-1))

< (1= an7)llzn — a1l + [An — Al Tzp-a |-

(3.5)

Furthermore, note that

| Pc{(I — anA)Syn—1+ an[Syn—1 — Ba(BSYn—1 — vf(2n-1))]}

—Pco{(I — an-14)SYn—1+ an-1[Syn—1 — Bn-1(BSYn—1 — 7f(®0n-1))]}|

< ”{(I — anA)Syn_1 + an[Syn—l - 5n(BSyn—1 - 'Yf(xn—l))]}

—~{(I = an-14)SYn—1+ an-1[SYn-1 — Bu-1(BSyn—1 — vf(xn-1))]}l

= H(I - an(A - I))Syn—l — anBnBSYn—1 + an/@n'Yf(l'n—l)

—(I —an1(A—=1))Syn—1+ an-18n-1BSYn—1 — an_18n-17f(xn-1)|l

< ‘an — an—l’”(A - I)Syn—lH + ‘Oén/Bn - an—lﬁn—lH‘Bsyn—IH

+anfn — an—1Bn—1 7| f (@n-1)l

< M‘an — an—1| + M|anﬁn - O‘n—lﬁn—1|a

(3.6)

So from (3.5) and (3.6) we derive

Hl'n—‘rl - !Tn” < ||PC{(I - anA)Syn + an[Syn - Bn(BSyn - ’yf(xn))]}

—Pc{(I — OdnA)Syn—l + an[Syn—l - ﬂn(BSyn—l - 'Yf(wn—l))]}”
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HPeA(I — and)Syn—1 + an[Syn—1 = Bu(BSyn—1 — vf(zn-1))]}
—Pc{(I — an-14)Syn—1 + an-1[Syn—1 — Bn-1(BSYn—1 — vf(xn-1)) 1}
< (= an?)||zn — Tp_1ll + [An — An—1 || T2 ]
+M|ow — 1| + M|onBp — an—18p-1|
< (1= anm)||zn — zn-1|l + L|An — An—1]
+M|ay, — an—1| + M|an By, — n—16n-1|

for every n =0, 1,2, ..., where L is a positive constant such that L > ||T'z,,|| for
o0 oo

o
everyn = 0,1,2,.... Since Zan = 00, Z A1 —An| < o0, Z lap+1—an| <

oo and Qnt10nt1 — apfn| < 00, so by Lemma 2.1, we have hm Tptl —
+1Pn+ +

|| = O Then we obtain hm |Yn+1 — ynll = 0.

Now observe that
lzn = Synll < |20 — Syn—1ll + 1SYn—1 — Synl|
= HPC{(I - an—lA)Syn—l + an—l[syn—l - /Bn—l(BSyn—l - ’Yf(xn—l))]}
*PCSynfln + ||Syn71 - SynH
< U = an-14)SYn—1+ n-1[Syn—1 — Bu-1(BSyn—1 —7f (xn-1))]} — Syn—1|

Hyn—1 — ynl
= || = an—1ASyn—1 + an1[(I = Bu1B)Syn—1 + Bn-17f (xn-1)lll
+|Yyn—1— |
< ana[|ASYn—1|| + (1 = Bua1 B)Syn—1ll + Brn-a¥ || f(zn-1)|l]
+Yn-1 — yall

< o[ ASyn—ll + 1Syn—all + Y1 f (@n-0)I] + l[yn—1 = ynll-
Hence we have lim ||z, — Sy,|| = 0. For p € D,
n—oo

[Zn41 = plI* = | Po{(I — anA)Syn + n[Syn — Bn(BSyn — 7f (2n))]} — pII?
< [T = anA)Syn + an[Syn — Bu(BSyn — 7 f(xn))] — p|I?
= [|(I = anA)(Syn — p) + an[Syn — Bu(BSyn — vf(xn)) — Ap]||*
= I(I = anA)(Syn — p)II> + a2 ISYn — Bu(BSyn — 7 (xn)) — Apl|®
+20((I — anA)(Syn — D), SYn — Bn(BSyn — vf(zn)) — Ap)
< (1= an)?(lyn — pII* + a3 l|(1 = B B)Syn + Buy f(xn) — Apll®
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+2an(1 — an¥)llyn = PIII = BnB)Syn + Bny.f(zn) — Apl|
< (1= anM)lyn = pl* + ap (I = $aB)Syn + B f (@a) — A
+2anlyn = pIIII = BaB)Syn + B f(2n) — Apl|
< (1= anlyn = pl* + @2 [(1 = BuB)1Syall + Barvll f ()|l + [ ApllJ?
+2an|lyn =PI = BuB)1Synll + Buy || f ()] + [ Apll]
< (1= an)lyn — 2I* + o [I1Syall + vIIf ()|l + 1 4P|
+2an[yn = plIISynll + I f (@)l + | ApI]
< (1= anW[llan = plI? + Xa(An — 20)[|Tan — Tp||?)
+ap [[|Synll + YIlf (a) | + [l Ap]]>
+20nln — pIIISall + 11 @) + 4. (3.7
So, we obtain
(1 - an?)a(2a — b)| Tz, — Tp|?
< (1 - an¥)An(2a = Ap) | Tzn — Tp|?
< (1= an¥)llzn = pI? = lznsr = pl* + o [ Synll +711.f @)l + || Ap]]*
+ 20 lyn = PIIISynll + 11 f () | + | Apl]
< (len =2l + lznsr = pIDlzn — zasall + A [1Syall + Y1 f (@)l + [ Ap]]?
+ 20 [[yn = PIIISynll + 11 f (@n) | + ([ Apll]-
Since o, — 0, ||z, — zpt1]| — 0, and {z,}, {yn}, {Syn} and {f(z,)} are
bounded, so we have n11_>H010 Tz, — Tp|| = 0. Further, from (2.1) we obtain
lyn = plI* = | Po(@n = ATwn) = Po(p = XaTp)|?
< ((&n = AnTxn) = (p = AnTP); Yo — p)
= 2 {ln — MT2) = (0= MTD) P + 1y — o
— (@0 = ATp) = (0 = AaTp) = (v — D)%}
< {0l =PI + g = B2~ e = all* + 2on e — g, T = )
= Nol|Tan — Tpl|*}.
Hence, we get

lym =211 < llwn = plI* = 120 = ynl* + 220 (20 — yn, Tan = Tp) = Ayl Twn — T,
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Consequently, from (3.7) we derive

lzn41 = plI? < (1= an¥)lyn — 2l + 4 1S ynll + 711 (2n) | + [ Ap]]*
+ 20 lyn — PUIISYnll +YILf (zn) | + [ Apl]
<l = plI? = (1 = an¥) |20 — yal®
+2(1 — apy) An{xn, — Yn, Txyy — T'p)
— (1= anW)A | Tan — Tpl* + ap [[1Synll + I f () || + | ApIl]?
+ 20 lyn = pUIISynll +YILf (z0) I + 1 Apl],
and hence
(1 - an)llzn = yal®
< (len = pll + 201 = pl)ll#n — 2nga | + 2(0 — any) An(n — yn, T — Tp)
— (= a3 | Tn — Tpl* + an[llSyall + I f(za) | + [ Ap[]?
+ 2anllyn — pllll[Syall + I/ (za) | + [ Apll]-

Since ay, — 0, ||[zp+1 — zp]| — 0, || T2y — Tp|| — 0 and {zy}, {yn}, {Syn} and
{f(z,)} are bounded, so we obtain lim ||z, — y,| = 0.

By Lemma 2.3, it follows that for 0 < v < %, B—-—~f:C — His
strongly monotone with coefficient 3 — vk > 0. Hence for lim 38, = n €
n—oo

1—7 21) _
, , we have ¥y — 1+ n(8 —vk) € (0,1) and
(= 7= T 14 9(8 - 7) € (0.1)

(A=T+nB-=7f))z—(A=T+n(B—=7f))y,z—y)

= (A(z —y),z —y) = |z —y|> +n{(B =)z = (B=7f)y.x —y)

> Al = yl? =z = ylI* +0(8 — vk)l|lz — y||?

=[7—1+n0(8—vk)llz —yl*, forallz,yeC,
that is, A— I +n(B—~f):C — H is ¥ — 1 4+ n(B — vk)-strongly monotone.
Furthermore, it is clear that A — I 4+ n(B — vf) is Lipschitz continuous with
coefficient ||A — I|| + n(||B|| +~k) > 0. This implies that A — I +n(B —~f) is
also strongly monotone and Lipschitz continuous on D. In this case, it is well
known that the variational inequality

([A=I+4+n(B—~f)gx—q) >0, forallxeD,

has the unique solution g € D.
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Choose a subsequence {n;} of {n} such that

limsup(q — Bu(Bg — vf(q)) — Ag, Syn — q)

n—oo

= lim (—[A = I + B,,(B = vf)la, Syn, — ). (3.8)

i—00
As {yn,} is bounded, we have a subsequence {yn } of {yn,} which converges
weakly to z. We may assume without loss of generahty that y,, — 2. Since
|SYn — ynl|l — 0, we obtain Sy,, — z. Then we can obtain z € D. Indeed, let
us first show that z € VI(C,T). Let

Tx+ Noz, x¢€C,
Fx =
0, x ¢ C.

Then F' is maximal monotone. Let (z,u) € G(F). Since v — Tz € Ncx and
yn € C, we have
(x —yp,u—Tx) > 0.

On the other hand, from y,, = Po(x, — A\yT'zy,), we have

<.CC —Yn,Yn — (1'71 - )\nTxn» Z 0

<ZL‘ — Yn, yn)\_ T +Txn> > 0.
n

and hence

Therefore, we have

<‘T nl,TSC Tynz> + (ZL‘ - yanynl - T:L‘nl>

Yni — Tn;
L= yn,,
. — T,
<$ ymaTym T"Enl> — <$_ynl’ynznz> .
An,

Hence as i — oo, we have (z — z,u) > 0. Since F' is maximal monotone, so
z € F710 and hence 2 € VI(C,T). Also, note that

[2n = S|l < [lzn = Synll + [1Syn — Szall < ll2n = Synll + [0 — ynll



VISCOSITY APPROXIMATION METHODS 49

So, we have lim ||z, — Szy| = 0. By Lemma 2.2, we obtain z € Fix(S).
n—oo

Thus we have that z € D. Therefore, for z,q € D, we conclude from (3.8) and

0Bn — n that

lim sup (q— Bn(Bqg—~f(q)) — Agq, Syn — q)

= (-[A=T+nB-7f)lgz-q <0.
Finally, we claim that lim ||z, — ¢|| = 0. Indeed, observe that

<Syn —q, (I - 5nB)Syn + Bn'yf(l‘n) - AQ>
= (SYn — ¢, (I = BuB)SYn + Buyf(wn) — [(I — BuB)q + By f()])

+ (Syn — q, (I = BuB)a + Bnvf(a) — Ag)

< ||Syn — qH[H(I BnB)Syn — (I = BuB)qll + Byl f(zn) — f(@)]]]
+ (Syn — q, (I = BuB)a + Bnvf(a) — Aq)

< 1Syn — qll[Il1 — ﬂnBHIISyn—QH + Bkl @n — [}

+ (Syn — q, (I = BuB)a + Bnvf(a) — Aq)

< l@n —all[(1 - Bnﬁ)llﬂfn — 4|l + Buvkl|lzn — qll]
+(SYn — ¢, (I = BuB)q + Buvf(q) — Aq)
= (1= Bu(B = vk)llzn — gl + (=[A = I + Ba(B = vf)]a, Syn — 9),
and hence
[Zn41 = qll* = 1Po{(I — anA)Syn + an[Syn — Bu(BSyn — 7 (zn))]} — ql?
< (I = and)Syn + an[Syn — Bu(BSyn — vf(2n))] — ql®
= (I = anA)(Syn — q) + an[Syn — Bn(BSyn — 7f (xa)) — Ad]|®
= [I(1 = nA)(Syn — DI* + @ (I = BuB)Syn + Buvf (xn) — Aq|?
+2a, (I — anA)(Syn — q), (I — 8.B)Syn + Bpv.f(2n) — Ag)
= (I = anA)(Syn — N> + ap {[I(I = B2 B)Syn + B f (x4) — Ag|®
—2(A(Syn — @), (I = BuB)Syn + Bpvf(zn) — Ag)]}
+2an(Syn — ¢, (I = BnB)Syn + Bpvf(zn) — Ag)
< (1= an)?[1Syn — gl + a2 {[(1 = BuB)ISynll + Bay | f ()| + | Agl]?
+2[| A(Syn — OI[(L = BuB)ISynll + Byl f ()| + | Ag|]}
+20n(Syn — ¢, (I = BnB)Syn + Bpvf(zn) — Ag)
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< (1= an¥)?[len — all* + aZ {{[1Synll + I f(a)ll + [ Ag[l]?
+2[|A(Syn — DIISynll + Y1 f (@)l + [[Agl]}
+2an(Syn — ¢, (I — BnB)Syn + Bpvf(2n) — Ag)
< (1= 20,7 + ap7?)lzn — gl + @i {1 Syall + I/ ()| + | Ag]]?
+2[|A(Syn — DI Synll + Y1 f (@)l + [ Agl]}
+200{(1 = Ba(B = vE) |2 — ql|* + (~[A =T + Bu(B = 7/))a: Syn — @)}
= [1 =20, (5 = 14 (B = vR)l|2n — gl + ai {[I1Synll +7I1f ()| + [ Ag]]?
+2[|A(Syn — OISyl + I f (@)l + [ Agll] + 72|20 — all*}
+2an(—[A — I+ Bu(B —vf)la, Syn — )
< (1= ap)||zn — ql* + @b,
where &,, = 2a,,7 and
B = % [1S5ynll +AI1f ()| + 1 Agll)?

+ 2| A(Syn — DN ISyall +1f @)l + | Agl] + 72|z — ql|*}

(A= T+ Bu(B = 11)la Son ).

o0
It is easily seen that a,, — 0, Z @, = 00, and limsup 3, < 0, so by Lemma

n—00
n=0

2.1, we obtain that z,, — q. O
Remark 3.1. In the definition of strongly positive operator A, we may assume
without loss of generality that 4 < 1. Consequently, whenever 0 < v < %,
B =1 and § =1, we have

1—% 1—% 2—7 2—7

T g <1< v g .

-k 1—nk 1=k B—nk

Thus we can pick G, = 1 for all n > 0 and so, as an immediate consequence

of Theorem 3.1, we obtain:

Corollary 3.1. Let C, H, f, T, S and D be as in Theorem 3.1. Let A be a
strongly positive bounded linear operator on H. Let 0 < v < % Suppose that
{zn} is a sequence in C generated by z¢ € C as:

Yn = PC’(xn - A’VLT:ETL)7
Tnt1 = Po{(I — anA)Syn + anyf(zy,)}, foralln>0.
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Assume that {a,,} and {\,} are chosen such that \,, € [a, b] for some a, b with
0 <a<b<2aand (Cl) and (C3) hold. Then {z,} converges strongly to the
unique ¢ € D which solves the following variational inequality:

(A=~f)g,q—p) <0, forallpe D and forall feIlc. (3.9)

Remark 3.2. Putting A = I and v = 1 in Corollary 3.1, we obtain Proposition
3.1 in [4]. Furthermore, if f(z,) = x, then we obtain Theorem 3.1 in [6].
The well-definedness of the implicit iterative scheme (1.8) can be obtained
in the same way as that of the explicit scheme (1.7) on the basis of (3.3)
available here as well.
Theorem 3.2. Let C be a closed convex subset of a real Hilbert space H.
Let f: C' — C be a contraction, T': C' — H an a-inverse-strongly monotone
mapping, S a nonexpansive self-mapping on C such that D # () and A, B
strongly positive bounded linear operatorson H. Let 0 < v < % Suppose that
{zn} is the sequence in C generated by (1.8). If 7}1_)1{.10 a, = 0 and nh_)rrolo Bn =

-5 2—-7% > .

n e ( , , then {z,} converges strongly to the unique ¢ € D
B =k’ B~k "

which solves the variational inequality (3.4).

Proof. As in the proof of Theorem 3.1, we have

FErTIE N

1-% 2 —75
7 7’2, for all n > 0.

Put y, = Po(zn — A\T'zy) for every n =0,1,2,.... Let p € D. We have

lyn — pll = [[Po(zn — AT '2n) — Po(p — A1)
= HPC’(I - AnT)Zn - PC(I - )\nT)pH

< llzn —pll
for every n =0,1,2,.... Observe that

Vip = Po{(I — a,A)SPc(p — A\T'p)
+ an[SPc(p — ATp) — Ba(BSPc(p — A\Tp) —vf(p))]}
= Po{(I — anA)p + anp — Bu(Bp — 7 f ()]}
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Then from (3.3) we have

[2n = pll = Vzn — Vap + Vap — p||
< |Vazn = Vapll + [[Vap — pll
< (1= an7)lzn —p
+ |1 Pe{(I — canA)p + anlp — Ba(Bp — vf ()]} — Pepll
< (1= anm)||zn — pl| + [T = anA)p + anp — Bu(Bp — v£(p)] — pll
< (I —an7)|lzn — pll + anll — Ap+ p — Bn(Bp — v f (D))l
< (1= an7)llzn = pll + anll|A = Il[lIpll + [ Bl lIpll + I £ (R)I]]-

Hence,

lzn — pll < [HA el + [1BIHIpIF -+~ ILF P)]-

This implies that {z,} is bounded, and hence so are {y,}, {Syn}, {72} and
{f(zn)}. Forpe D,

| Pe{(I — anA)Syn + an[Syn — Bu(BSYn — vf(2n))]} — pH2
(I = nA)Syn + an[Syn — Bu(BSyn — vf(20))] — pl|>

(I = anA)(Syn — p) + an[Syn — Bu(BSyn — vf(2n)) — Ap]||?
= [|(I = anA)(Syn — p)II?

+an||Syn Brn(BSYn —vf(2n)) — ApH2

+20, (I — anA)(Syn — ), Syn — Bu(BSYn — vf(2n)) — Ap)

< (1= )|y — I + Rl (I = BnB)Syn + Buyf(2n) — Ap]?
+2an(1 = an¥)llyn — Pl = BnB)Syn + Buvf(2n) — Ap||

< (L= an)yn = plP* + o |(I = BrB)SYn + Bavf(2n) — Apl|®
+2anlyn — pll[I(I — BB )S?/n + B f(zn) — Ap|l

< (L= an)lyn = plI” + a2 (1 = BaB) | Syal

+B82Y f (za) | + || Apl[]?

+2an|[yn — PI(X = BuB)ISynll + BuyIf (20) | + [ Apll]

< (L= an)lyn = plI* + an[1Synll + I f (za) |l + [ Apl]}?

20 |yn — Pl Synll +YI1f (z0) [l + | Apl]

< (1= an¥)lllzn = plI” + An(An — 20) | Tz — Tp|?]

+ap [[1Synll + Y11 f (zn)l + [ Apl]?

+2an|lyn = pII[Synll + IS (z) | + | Apll].

l2n — pII?

| VAN

(3.10)
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So, we obtain
(1= an¥)a(2a = )Tz, — Tp|

<(1- an’_)/)/\n(QO‘ - )\n)HTzn - TpH2
< a2 [ISynll + A1 f )| + 11 APIT* + 20mllyn — I Synll + VII.f (z0) | + [ Ap]I].

Since ay, — 0 (n — 00), and {yn}, {Syn} and {f(z)} are bounded, we derive
that

IT20 = Tpll =0 (n — o).
From (2.1) we have
lyn — plI* = | Po(zn — AnTz0) — Po(p — ATp)|?
< A((zn — AT 'zn) — (p — ATD), Yy — )
1
= Sl (zn = MnTz0) = (p = M) + [l — pl|*
= [(zn = AaT2n) — (p — MTP) — (yn _p)HQ}
1
< gl = PI? + llyn = 2lI* = 120 — ynll® + 2An(zn — Yn, Tzn — Tp)
— A2||Tzn — Tp|*}
So, we obtain
lyn —p||2 < lzn _pH2 —||lzn — ynH2 +2Xn {20 — Yn, Tz —Tp) — )\72’L||TZTL - Tp||2.

Consequently, from (3.10) we derive that

lzn = pl1* < (1 = anW)llyn — 2I* + R I1Synll + 711 ()| + [ Ap]]*
+ 20 lyn = pUIISYll +ILf (z0) | + [ Apl]
< llzn = pl* = (1 = an¥)ll2n — yul?
+ 2(1 — an¥) A lzn — Yn, Tz — T'p)
— (L= anW)A Tz — Tpl* + g [ Synll + Y1 £ (zn) | + || Ap]]*
+ 2an|[yn = PIIISYall + 71 ()]l + 1 AP,
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and hence
(1= an¥)llzn — ynl?
<2(1 — an¥)Anlzn — Yn, Tz — Tp) — (1 — anfy))\%HTzn — TpH2
+ 2[|1Synll + VI )l + APl + 20|y — P I[Synll + Y11 £ (z0) ]| + | Ap]).

Since ay, — 0, || Tzn, — Tp|| — 0, {20}, {yn}, {Syn} and {f(z,)} are bounded,

we obtain lim ||z, —yx| = 0.
n—oo

Now we claim that lim ||z, — Sy,|| = 0. Indeed, observe that
n—oo

20 — Synll = [[Pc{(I — anA)Syn + an[Syn — Bn(BSYn — vf(20))]} — Synll
< H{ = anA)Syn + an[SYn — Bu(BSyn — vf(20))]} — Syull
= anH — ASyn + Syn - ﬂn(BSyn - Vf(zn))"

Hence as a;,, — 0, it follows that HILH;O |z — Syn|| = 0. This implies that
nhi& llyn, — Synl| = 0. Note that ||z, — Szn|| < ||zn — Synll + [|Syn — Sznl|-
Thus lim ||z, — Sz,| = 0.

Regeggng the same argument as in the proof of Theorem 3.1, we can deduce
that A — I +n(B — ~f) is strongly monotone and Lipschitz continuous on D.
So

([A=I+n(B-~f)lg,x—q) >0, foralaxeD,

has the unique solution ¢ € D and hence, as before, (3.8) holds.
As {ypn,} is bounded, we have a subsequence {ymj } of {yn, } which converges
weakly to z. We may assume without loss of generality that y,, — z. Asin

the proof of Theorem 3.1, we can show that z € D. Therefore, for z,q € D,
we conclude from (3.10) and 3, — 7 that

limsup(q— Bn(Bq—7f(q)) — Aq, Syn—q) = (—[A—T+n(B—~f)]lg,z—q) <0.

n—oo

Finally, we claim that lim ||z, —q|| = 0. We can now obtain as in the proof
n—oo

of Theorem 3.1 by essentially replacing z, with x,, that
l2n — QHZ < (1 —am)llzn — QHQ + @ fn.
Consequently, it follows that

l2n = glI* < Bn-



VISCOSITY APPROXIMATION METHODS 55

Since ay, — 0 (n — o0), limsup(—[A — I + B,(B — vf)]q, Syn — q) < 0, and

n—oo B

{zn}, {f(zn)} and {Sy,} are bounded, so we obtain that 3, — 0 (n — 00).

Hence lim ||z, —¢| =0. O
n—oo

In view of Remark 3.1, we can take B=1,6=1and 8, =1, foralln >0
in Theorem 3.2 to get:
Corollary 3.2. Let C, H, f, T, S, D and A be as in Theorem 3.2. Let
0<y< % Suppose that {z,} is a sequence in C' generated by:

zn = Pc{(I — anA)SPo(zn, — AT zn) + anyf(zn)}.

If {a, } and {\,} are chosen so that A, € [a, b] for some a,b with 0 < a < b <
2a, and lim a,, = 0, then {z,} converges strongly to the unique ¢ € D which
n—oo

solves the following variational inequality (3.9).
Putting A = I and v = 1 in Corollary 3.2, we obtain Theorem 3.1 in [4].

4. AN EXTRAGRADIENT-LIKE APPROXIMATION METHOD

In this section, we establish strong convergence of the explicit and im-
plicit iterative schemes (1.5) and (1.6) by the extragradient-like approximation
method which is based on the so-called extragradient method and viscosity
approximation method. The results obtained herein can be viewed as hy-
brid viscosity approximation results for monotone mappings and nonexpansive
mappings.

Let T : C' — H be an a-inverse-strongly monotone mapping and S be a
nonexpansive self-mapping on C. As before, we can verify that the schemes
(1.5) and(1.6) are well-defined by utilizing nonexpansiveness of I — A\, 7.

We prove strong convergence of (1.5) when S is nonexpansive mapping and
T is an a-inverse-strongly monotone mapping; thereby, we find solution of the
variational inequalities (1.4) in the subclass; namely, a-inverse-strongly mono-
tone mappings, of the class of monotone and Lipschitz continuous mappings.
Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let f : C'— C be a contraction, T': C — H an a-inverse-strongly
monotone mapping and S a nonexpansive self-mapping on C such that D # ().
Suppose that {z,} and {y,} are two sequences in C' generated by z¢ € C' as
in (1.5). Assume that {ay,}, {8} and {v,} satisfy the following conditions:

(1) an + B <0 for all n > 0;
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o0
(i) nh—>Holo apn =0 and Zoozn = 00;
n—=
(iii) 0 < liminf 3, < limsup 3, < 1;
n—oo n—o0
(iv) lim v, =0 and lim |Ap41 — Ap| =0.
n—oo n—oo
Then {x,} and {y,} converge strongly to the unique ¢ € D which solves the
variational inequality (1.4).
Proof. Put t, = Po(yn — M\Tyy) for every n = 0,1,2,.... Then we have
Tnt1 = (L —ay — Bp)xn + anf(yn) + BnSty, for every n =0, 1,2, .... We divide
the proof of the theorem into several steps.
Step 1. {z,} is bounded. Indeed, let u € D. We have
lyn — ull = [(A=vn)2n + WmPo(zn—AnTzn) — (1 = ym)u+ ymPo(u — ApTu)|
< (A =v)llzn —ull + Wl Pe(l = AT)2n — Po(I — AT )ul
< (A = )llzn — ull + llzn — ull
= l|zn — ul
and hence
[tn — ull = 1Pe(yn — AnTyn) — Po(u — AnTu)|| < |lyn — ull < [lzn — ull

for every n =0,1,2,.... Then we have

[2n1 = ull = [I(1 = an = Bu)(2n — u) + an(f(Yn) — u) + Bu(Stn — u)|
< (1= an = )|z — ull + anll f(yn) — ull + BullStn — ull
< (1 —an = B)llzn — ull + anll f(yn) = f(W)]
+ anl|f(uw) = ull + Bulltn — ull
< (1= an = Bo)lln — ull + onkllyn — ull
+anllf(u) = ull + Bnllzn —ul
< (1= ap)llen —ull + ankllzn — ull + anl f(u) = ull
= (1= (1 = KE)an)|[zn = ull + o[ f(u) = u]

1
< o { o~ ul, T 170) = ul}.
By induction,

1
|xn —ul < max{”:co —ull, ﬁHf(u) - u||} , foralln>0.



VISCOSITY APPROXIMATION METHODS

Therefore, {z,} is bounded and hence so are

Step 2. lim ||x,4+1 — x| = 0. Indeed, observe that
n—oo

HPC’(xn—H - )\n-l—lTxn—‘rl) - PC(xn - )\nTxn)H
< HPC(mn—H - /\n+1T33n+1) — Po(zy — /\n+1Txn)H
+ || Po(zn, — Ar1Tzn) — Po(zy, — ATy ||

< zna1 — 2l + [Anr1 — Al Tzn

Yn+1 — ynll

= [[(1 = ym+1)@nt1 + 1 Po(@ns1 — A1 Tong1)

— (I =)0 — mPe(@n — AnTzy)||

= [(1 = Y41) (@nt1 — @n) = (Y41 — W) Tn

+ Yn+1(Po(@n+1 — A1 TTns1) — Po(@n — ApTn))

+ (Y1 = o) Po(@n — MTay) ||

= [[(1 = Wt1)(@ns1 — 2n) + (Ynt1 — W) (Po(Tn — ATTy) — 20)
+ Y1 (Po(Tng1 — A1 Toni1) — Po(wn — ATxy)) ||

< (A =Y )l[#ns1 — 2l + [ms1 — WAl Tzn|

+ Ynt1([[2n+1 = zn || + [Angr = M| | Tzn|)

< lzns1 = @all + a1 = WAl Tznll + [Ans1 = Al Tanl,

and hence

[tnt1 — tall

= [[Po(Ynt+1 — An+1TYn+1) — Po(yn — AnTyn) ||

<|[Pe(Yn+1 = An+1TYn+1) — Po(yn — A1 Tyn) ||

+ 1Pe(yYn — Ant1TYn) — Po(yn — MTyn)||

< Mynt1 = ynll + [Ans1 = Al Tynll

< Nznt1 = 2all + [+t = Yol Al Tznll + [Ant1 = Anl[| Tz

+ At = Al 1Tyl

< zns1 = 2ol + [ns1 = WAl Tznll + [Ansr = Al (I Tznl| + | Tynl])-

57
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Now we define a sequence {z,} by
Tpt1 = OnTn + (1 — 0n)2n, foralln >0,

where 0, =1 — o, — By, for all n > 0. Then we have

Tn+4+2 — On+1Tn+1 Tn+1 — OnTn

Zn+l — ”n = 1_ Ont1 - 1— on
_ an+1f(yn+1) + Bn+1Stn+1 . anf(yn) + BnStn
1- On+1 1- On
Qnt1 Qn
= —_— 1) —
O ) — 1)
ﬁn+1 Qp Q41
4+ ———(Stpye1 — Stn) + — St
1_Qn+1( i n) <1_Qn 1_Qn+1) "
On41 An+1 (e
= 1_n70+1(f(yn+1) = flya)) + (5 _ng T _ng ).f (yn)
n n n
671-1—1 (679 Ap41
+———(Stp1 — Sty) + — St,.
l_Qn-‘rl( n—l- n) (1_Qn 1_Qn+1) "

Hence from o, =1 — «;, — 3, it follows that

On+1 On+1 %
1241 = 2nll < [ f (yn+1) = flyn)|l + 1 - 1 _”Q LS ()
mn

—1- On+1 — On+1
ﬂ 1 o Qp41
|| St gy — Stall + | — ||| St
1= ont1 I—on 1—=0nt1
kont1 Ot 1 On
S o llYnt1 — Unll + - Fy)l + ISt
Oy — gl 2 — 217+ 1t
Br+1
+1n7+th+1 — tn|
— On+1
ko1
< 1 Znt1 = 2nll + [yntr1 = Yol Al Tznll + [Ant1 — Al | T2 ]
— On+1
Ap41 (679
+ — + ||.St
2 — )]+ 15t
Br1
o " (|nt1 — Zall + st — Yl Al Tznl|
— On+1

HAnt1 = Anl(ITzn |l + ([ Tynll)]
ko1 + Bnta

1—ont1
HAnt1 = ATzl + [ Tynll)]

Qp41 Qn
— + ||St
LA )]+ )

< Hxn+1 - xn” + ‘PYn-‘rl - ’Yn’)‘n”Txn”

< Znt1 = Znll + [Vns1 — YalAnl| T2n ||

+|
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A1 = Al (1720l + [[Tynl])

Qp41 (079
+ — + [IStal),
o (1 )+ St )

which implies that

201 = zall = |Tnt1 — znll

< [nsr = Yl Al Tl + Anga = Al (1T 20l + [ Tynl])

Ap41 (679
+ - Flyn)ll +11Stnl])-
2 1 () + 5t )
Note that
3 . an . an
lim su =limsup ——— < limsup — = 0.
n—>oop — On n—>oop o + ﬁn o n—>oop ﬁn

Since 111520 h/n-l-l - ’YTL’ =0, nlggo ‘/\n—i-l - An’ =0, {A:UTI}? {Ayn}v {f(yn)} and
{St,,} are bounded, so we deduce that
limsup ([[zn+1 = 2n = [|2n4+1 — 2al]) = 0.
n—oo

Since gp, =1 — @, — Bp, we know from the conditions (ii) and (iii) that

0 < liminf g, <limsup g, < 1.

n—00 n—oo
Thus by Lemma 2.6, we obtain lim ||z, — z,|| = 0. Consequently,
n—oo
lim |zp41 — znl] = lm (1 — o,)|lzn — zn]] = 0.
n—oo n—oo

Step 3. lim ||St, — || = lim ||Sx, — z,| = 0. Indeed, observe that
n—oo n—oo
Tnt1 — Tn = an(f(Yn) — Tn) + Bn(Stn — n).
Hence we have
Bnl|Stn — x| < [[#ns1 — @all + anll f(yn) — znll.

Since lim ||zp4+1 — zp] =0, lim o, =0 and 0 < liminf 3, < limsup 3, < 1,
n—o0 Nn—00 n—00 N—00

so by the boundedness of {f(yn) — .}, we obtain

lim ||St, — x| = 0.
n—oo
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Also, observe that for u € D,
1 = ul? = (1 = an = Ba) (@n — ) + an(f(Yn) = u) + Bu(Stn — w)||?
< (L= an = Bo)llzn — ull® + anll £ (yn) = ull® + Balltn — ul?
< (1= apn = Bo)llzn — ull® + | f(yn) — ull?
+ Balllyn — ull® + An(An = 20)[| Ty — Tul?]
< (1= an = Bo)llzn — ull® + anll £ (yn) — ull* + Balllzn — ul®
+ (A = 20)[| Ty — Tul]?]
<l = ull® + anll f(yn) = ull? + Budn(An = 20) | Typ — Tul)?.
Thus, we have
Bna(20 = b)|| Tyn — Tull*
< BpAn (20— A\o) [ Tyn — Tul)?
< anll £ (yn) = ull® + (lzn — ull + |21 — ul) (2 =l = znp1 —ull)
< anll £ (yn) = ull® + (lzn — ull + |21 — ul)zn = zpal.
Since nlggo |xn+1 — znl| =0, nh_)rrgo an, =0and 0 < Iilrri}i(gfﬂn < limsup 8, < 1,

n—oo
we have lim ||T'y, — T'u|| = 0. Further, from (2.1), we obtain
n—oo

ltn — ull® = [|Pe(yn = MTyn) = Polu = ATu)|”
< {(yn — MTyn) — (u — NTu), t,, — u)
= {0~ M) — (0= AT )+ [t —
= ATon) — (= M) = (10— )2}
< 5 {llm =l + ltw — P = g — tall® + 220 (g1 — b, T — Tt
~ X2 Tyn — Tul?).
So, we get
=l <l — ll? ~ g — tall? + 220y — b, T — Tt
X7y~ Tul?
< e = wll® = lgn — tall? + 2An{yin — b, Ty — T
— X2Ty ~ T”
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Hence

[Zn41 — ul]* < (1= an — Ba)llzn — ull® + anl| f(yn) — ull?

+ Bnl|Stn — ul?
< (1 —an—Ba)llzn — uH2 + an | f(yn) — UH2
+ Bulltn _UH2

< (1= an = Bo)llzn —ull? + anl f (yn) — ull?

+ Bulllzn — ull? = llyn — tal?

4+ 220 (Yn — tn, Ty — Tu) — N2 || Ty, — Tul?]

< lwn = ull® + anll £ (yn) — ull* = Ballyn — tall?

+ 260 A0 (Yn — tn, Tyn — T) — Bu X[ Ty — Tul?,

which implies that

Bullyn — tall® < (lzn — ull + lzns1 — ulDllzn — znga |l + ol f (yn) — ul®
+ Qﬁn)\n@n —tn, Ty — TU> - ﬁn)‘iHTyn - TUHQ-

Since lim [|zpt1 — 2nl| = 0, lim [Ty, — Tu| = 0, lim o, = 0 and 0 <
n—oo n—oo n—oo

liminf £, < limsup 3, < 1, we obtain lim ||y, —t,]| = 0. Note that lim -, =
n—o0 n—00 n—o0 n—o0
0 so we have

lim ||y, — z,|| = lim v,||Po(xn — AnTzy) — z,| = 0.
n—oo n—oo
Since
15tn — tnll < 1Stn — 2|l + [[2n = ynll + llyn — tall;
so we get lim ||St, — t,|| = 0. Also, observe that
n—oo
1520 — x| < [[S20 — Synll + [[Syn — Stull + [|Stn — zal|
< lzn = ynll + [1yn = tull + [1Stn — zall.
Consequently, we have lim ||Sz, — z,| = 0.
n—oo

Step 4. limsup(f(q) — ¢,zn, —q) < 0. Indeed, pick a subsequence {t,,} of

n—oo

{tn} such that

limsup(f(q) — ¢, Stn — q) = lim (f(q) — q, Stn, — q).

n—o00 1—00
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Now using the same argument as in the proof of Theorem 3.1, we can show
that

limsup(f(q) — ¢, Stn — q) = lim (f(q) — ¢, Stn, —q) = (f(q) —¢,2 —q) <0.

n— oo 1—00

Consequently, from lim [|St, — z,|| = 0 we get that
n—oo

limsup(f(q) — ¢, zn — q) <limsup(f(q) — ¢, zn — Stn)

n—oo n—oo

+ limsup(f(q) — ¢, St, —q) < 0.

Step 5. nh—%lo |zn — q|| = 0 where ¢ = Prix(synvi(c,r)f(q). Indeed, by Lemma
2.7 we have
|2nt1 = all* = (1 = = Bn) (@ — @) + an(f(yn) — @) + Bu(Stn — Q)|
< (1 = an = Bo) (@0 — ) + Bu(Stn — )|
+ 200 (f(yn) — ¢, Tny1 — q)
< (1 = an = Ba)ll&n — gll + Balltn — all)?
+ 200 (f(yn) — ¢, Tny1 — q)
< (1= an = Ba)llzn — qll + Bullzn — ql]?
+ 200 (f(yn) — ¢, Tny1 — q)
< (1= ap)?|lzn — g
+ 200 [(f(yn) — F(@); Tns1 — @) + (F(@) — ¢ Znt1 — )]
< (1= an)?[lzn — ql* + 200klyn — qll2n41 — g
+2an(f(q) — ¢, Tn41 — q)
< (1= an)?[lzn — ql* + 2ank||2n — gll|2ns1 — gl]
+ 2an(f(q) — ¢, Tn41 — q)
< (1= ap)?[lzn = ql* + kan(llzn = gl* + 01 — qll?)
+20,(f(q) — ¢ Tnt1 — q),

which implies that

1—an)?+ka 201

_ 2 < ( n n _ 2 n _ _
lzns1 =gl < ——— . lzn = all” + 7= T (f(@) = ¢, Tns1 = q)
< (1= 201 = F)an + — o — al2 + —2°"(7(q) @, 2ns1 — )
- "l — ke, 1— ko, et
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= (1 =201 = k)ay)|lzn — gl

1

P20 =R TN kay)

[%Hxn —a?+ (f(@) — ¢, Tny1 — q>] .

(e}
Note that lim «,, =0 and Z 2(1 — k)ay,, = oo. Since
n—oo n—0

limsup(f(q) — ¢, Tn+1 — q) <0,

n—oo

and {x,, — ¢} is bounded, we have

. 1 Qp
lim sup Tl —alP + (£(a) = g 2001 — )] <0.

nooo (1 —Fk)(1—kay)
Therefore, by Lemma 2.1, we conclude that ||z, —¢g|| — 0 as n — oo. Further,
from ||y, — zn|| — 0 (n — 00), we get ||y, — ¢q|| — 0 (n — ). O
Putting v, = 0, for all n > 0 in Theorem 4.1, we obtain:
Corollary 4.1. Let C, H, f, T, S and D be as in Theorem 4.1. Suppose that
{zyn} in C is generated by zo € C as:

Tyl = (1 — apn — Bn)xn + an f(zn) + BuSPo(xn — A\Txy), forallm >0

where {A\,}, {an} and {5,} are sequences in [0,1] satisfying the following
conditions:

(i) an + Bn < 1 for all n > 0;

o0

(ii) nhl& ap =0 and 7;)04” = 00;

(iii) 0 < linrr_l)gf On < 1i7rln_)solip On < 1;

(iv) lim |Ant1 — An| =0.
Then {Zvn? converges strongly to the unique ¢ € D which solves variational
inequality (1.4).
Remark 4.1. Our Theorem 4.1 improves and develops ([4], Proposition 3.1)
in the following aspects:

(i) Our explicit iterative scheme is very much different and contains a two
step iterative scheme with four parameteric sequences;

(ii) The technique of proof of Theorem 4.1 is based on an alternative result
by Suzuki (Lemma 2.6);
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o0
(iii) Our Theorem 4.1 removes the restrictions Z |on41 — ap| < oo and

n=0

o

Z [Ant1 — An| < oo from Proposition 3.1 [4].

n=0

Theorem 4.2. Let C' be a nonempty closed convex subset of a real Hilbert

space H. Let f : C'— C be a contraction, T': C — H an a-inverse-strongly
monotone mapping and S a nonexpansive self-mapping on C such that D # ().
Suppose that {z,} in C is generated by (1.6) with {an}, {M\n}, {8} and
{Yn} such that a,, + 8, < 1 for all n > 0, lim a,, = 0, ILm Y, = 0 and
liminf 3, > 0. Then {z,} converges stronggfﬁg the uniq?leo(; € D which

n—oo
solves the variational inequality (1.4).

Proof. Put y, = (1 — ) zn + mPo(zn — AMTzn) and t, = Po(yn — AnTyn)
for every n =0,1,2,.... Let u € D. We have
lyn — ull = |(1 = ) (zn — w) + W (Po(zn — AnT2n) — Po(u— AnTw))||
< (1 =)llzn — ull + yullPe(I = A1) 20 — Po(I — AT )ul|
< |lzn — pll

for every n =0, 1,2, .... Observe that

Vou = (1= an = Ba)u+ an f((1 = m)u+mFPo(u = AnTu))
+ BnSPe(1 — n)u + v Po(u — ATu)
— T (1 = vn)u + v Po(u — ATu)))
= (1 —ap— Bn)u+ anf(u) + 5,Su
=(1—ap)u+ anf(u).
Then from (3.3) we have

lzn — || = | Vazn — Vau 4+ Vou — uf|
< |Vazn = Vaull + [[Vau — uf
< (1= =k)an)llzn — ull + anl| f(u) = ull
= ankllzn — ull + (1 = an)l[zn = ull + anl| f(u) = u].
Hence,

1
l2n = ull < 3= I1£(w) =l
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This implies that {z,} is bounded, and hence so are {T'z,}, {yn}, {Tyn}, {tn}
and {f(yn)}. For u € D,

(1 = an = Bn)zn + anf(yn) + BnStn — u”2

(1 = an = Ba)llzn — ull® + anll f(yn) — ull* + Balltn — ull?
(1 = an = B)llzn — ull® + anll f(yn) — ull?

+Bnlllyn — ull® + An(An = 20) | Tyn — Tul]?]

< (1= an —Bu)llzn — qu + anll f(yn) — uH2

+0nlllzn — ull® + Xa(An — 20) [Ty — Tul?]

< (1= an)llzn — ull* + ol f(yn) — ul]?

+BnAn(An — 20) | Ty, — Tu|?

< (1= an)llzn = ull® + anll f(yn) — ul?

+Bna(b — 20)|| Ty — Tul*.

12n = ull?

IA A

So, we obtain
Bna(2a = b)||Tyn — Tul® < an(|lf(yn) = ull* = |20 — u]?).

Since lim «a, = 0, liminf 8, > 0, and {f(yn)},{2zn} are bounded, we derive

n—oo n

that
Ay, — Aul] — 0 (n — 00).
From (2.1) we have
[tn — ull® = | Po(yn — MaTyn) — Po(u— A Tu)|®
< A(Yn — MTyn) — (u — A\yTw), b, — )
= S~ MTya) — (= AT + i —
~ 0 = AaTyn) = (= A Tu) = (tn —u)|*}
< 2l — =l = g~ tall> + 22l — 1 Ty — T
— ATy — Tul?}.
So, we get
tn = ull® < llyn — ull® = [lyn — tall®
2 (yn — tn, Tyn — Tu) — A?LHTyn - Tu||2
< lzn = ull® = llyn — tall?

+2)\n<yn —tn, TYn — TU) - )‘%”Tyn - TUH2'
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Consequently, from (4.1) we derive that
I = ull® < (1= an = Bu)lzn = ull® + cnll f(yn) — ull? + Bull Stn — ull?
< (1= an = Ba)llza = ull® + anll f(yn) — ull® + Balltn — ull?
< (1= an = Ba)llza = ull® + anll f(yn) — ul® + Bal
— [lyn = tall* + 22 (yn — tn, Tyn — Tu) = A2 Tyn — Tul|?)
< anlf(yn) = ul® + (1 = an)lzn = ull® = Ballyn — tull?
+ 2B A0 (Y — tn, Ty — Tu) — B Ao || Ty — Tul|*.

|z — ul?

Hence,
Bullyn — thQ < anllf(yn) — u||2 — apllzn — uH2
+ 280 M (Y — t, Ty — Tw) — B2 || Tyn — Tu|*.
As lim ap, = 0, liminf 8, > 0, lim [Ty, — Tul = 0, {zn}, {yn}, {tn} and
n—oo

n—oo n—oo

{f(yn)} are bounded, so we obtain lim ||y, — t,|| = 0.

Now we claim that lim ||¢t, —St,|| =0 and lim ||z, —Sz,| = 0. Note that
n—00 n—00

zn — St = (1 — an — Bn) (20 — Stn) + an(f(yn) — Stn),

so we have

|20 — Stnll < (1 = an = Bn)l|zn — Stull + anll f(yn) — Stal,

and hence
Bullzn — Sto|| < an| f(yn) — Stall — anllzn — Sty
Since lim a, = 0 and liminf 3, > 0, it follows that lim |z, — St,| = 0.
n—oo n—oo n—oo

Also, note that

[yn — zull = Wl Po(zn — AnT2n) — zull < WAl T2l

from lim 7, =0 we obtain lim |y, — z,|| = 0. Now observe that
n—oo n—oo

[tn = Stull < [ltn = ynll + lyn — 2nll + [|2n — Stal|-
Consequently, we have lim ||¢, — St,|| = 0. Furthermore,
n—oo
l2n = Sznll < llzn — Stall + 1Stn = Synll + [[Syn — Szall
< |lzn = Stall + ltn = ynll + llyn — 2l
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so we have lim ||z, — Sz,| = 0.
n—oo
Define a mapping @ = Prix(s)nvi(c,r)f- Then it is clear that @ is a contrac-
tion on D. Hence there exists a unique fixed point ¢ € D such that Qq = ¢,

that is, Prix(s)nvi(e,r)f(@) = q. Tt is easy to see that Ppix(s)nvric,r)f(q) = ¢
if and only if ¢ is the unique solution in D to the variational inequality (1.4)
As before, for z,q € D we conclude that

limsup(f(q) — ¢, Stn — q) = lim (f(q) — ¢, Stn, —q) = (f(q) —q¢,2 — q) < 0.

n—00 i—00
Finally, we claim that lim ||z, — ¢|| = 0. Indeed, utilizing Lemma 2.7 and
(3.3) we have e
l2n = all* = [[Vaza — Vaa + Vaq — gl
< Vazn = Vadll* +2(Vag — 4, 20 — q)
< (1= (1= k)an)?[lzn — all” + 200 (f(9) — ¢, 20 — @)
< (1= (1 =k)an)lzn = al* + 200 {f(q) — ¢, 20 — a),

which implies that
9 2
l2n = all” < T=5(f(0) = @20 — q). (4.2)

From ||z, — St,|| — 0 (n — o0), it now follows that

limsup(f(q) — ¢, zn — ¢) < limsup(f(q) — q, 20 — Stn)

n—oo n—oo

+ limsup(f(q) — ¢, Stn — q) <0,

n—oo

and so from (4.2), we obtain
lim ||z, —¢|| = 0. O
n—oo

Putting v, = 0, for all n > 0 in Theorem 4.2, we obtain:
Corollary 4.2. Let C, H, f, T, S and D be as in Theorem 4.1. Suppose that
{zn} in C is generated by:

Zn = (1 — Qp — ﬁn)zn + anf<zn) + ﬁnSPC’(zn - )\nTzn)

If ap, + 8, < 1foraln >0, lima, =0 and liminf 5, > 0, then {z,}
n—oo n—oo

converges strongly to the unique ¢ € D which solves the variational inequality

(1.4).
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Remark 4.2. Our Theorem 4.2 improves and extends ([4], Theorem 3.1) in
the following ways:

(i) Our implicit iterative scheme is different from the implicit iterative
scheme therein and contains four sequences of iterative parameters;

(ii) The technique of proof of Theorem 4.2, uses the existence and uniqueness
of fixed points of Prix(s)nvi(c,r)f in D and so is very much different.

(iii) Our Theorem 4.2 reduces to Theorem 3.1 in [4] when ay, + 3, = 1 and
Yn = 0 for all n > 0.

5. APPLICATIONS

Let C be a subset of a real Hilbert space H. A mapping V : C — C'is
called strictly pseudocontractive if there exists k € [0,1) such that

IVa = Vy|? < lla =yl +&I|(I = V)z — (I = V)y|*, forall z,y e C.

If £ = 0, then V is nonexpansive. Put T =1 —V, where V : C — (' is a
1—k

5 -inverse

strictly pseudocontractive mapping with constant k. Then T is

strongly monotone. Actually, we have, for all z,y € C,

I(1 = T)a — (I = TYyll? < o — yll? + K| T — Tyl?, for all 2,y € C.
On the other hand, since H is a real Hilbert space, we have
|(I=T)o—(I-T)y|]* = |a—y|*+| To—Ty|*~2(z—y, Tz—Ty), for all z,ye C.
Hence we have

1—k 9
(x —y,Tx —Ty) > THT{U—T@/H , forallz,yeC.

As applications of Theorem 3.1, we prove strong convergence theorems for
finding a common fixed point of a nonexpansive mapping and a strictly pseu-
docontractive mapping.

Theorem 5.1. Let C be a closed convex subset of a real Hilbert space H.
Let f: C — C be a contraction, S a nonexpansive self-mapping on C' and
V' a strictly pseudocontractive self-mapping on C' with constant « such that
Fix(S) NFix(V) # 0. Let A, B be strongly positive bounded linear operators
on H. Let 0 < v < % Suppose that {z,} is a sequence in C' generated by
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g € C as:

Yn = (1 - An)l'n + )\nvxna
ZTnt1 = Po{(I — anA)Syn + an[Syn — Bn(BSyn — vf(xn))]}, for alln>0

where {a,,} € [0,1), {8,} C (0, min{1, ||B||~'}] and {\,} C [a,b] for some a, b
with 0 < a < b < 1 — a. Assume that the conditions (C1)-(C3) of Theorem
3.1 hold. Then {z,} converges strongly to the unique ¢ € Fix(S) N Fix(V)
which solves the following variational inequality:

([A=I+n(B—-vf)lg,g—p) <0, forall p e Fix(S)NFix(V).

Proof. Put T=1—V. Then T is 1_?O‘—invers.e—stromgly monotone. We have
Fix(V) = VI(C,T) and Po(zp—ATxyn) = (1—An)xn+AnVzy,. So by Theorem
3.1, we obtain the result. O
Theorem 5.2. Let C' be a closed convex subset of a real Hilbert space H. Let
f : H — H be a contraction, S : H — H a nonexpansive mapping and 7" :
H — H an a-inverse-strongly monotone mapping such that Fix(S)NT =10 # (.
Let A, B be stronglyly positive bounded linear operators on H. Let 0 < v < %
Suppose that o € H and {z,} is generated by:

Yn = Tn — ATy,
Tn+1 = (I - anA)Syn + an[syn - ﬁn(BSyn - ’Vf(xn))]a for alln >0

where {a,} € [0,1), {B,} C (0,min{1, | B||~!}] and {\,} C [a,b] for some a, b
with 0 < a < b < 2a.. Assume that the conditions (C1)-(C3) of Theorem 3.1
hold. Then {z,} converges strongly to the unique ¢ € Fix(.S) N T~'0 which
solves the following variational inequality:

([A=T+n(B—~f)g,q—p) <0, forall pc Fix(S)NT 0.

Proof. We have T~10 = VI(C,T). So putting Py = I, we obtain the result
by Theorem 3.1. O
Theorem 5.3. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let f: C'— C be a contraction, S a nonexpansive self-mapping on
C and V a strictly pseudocontractive self-mapping on C' with constant « such
that Fix(S) N Fix(V) # 0. Suppose that {z,} and {y,} are sequences in C
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generated by xg € C as

Yn = (1 - ’Yn)xn + ’Yn((l - )\n)xn + )\nvxn)y
Tnt1= (1—an—LBn)xn + anf(yn) + BuS(1=Xp)yn + AnVyn), for all n>0

where {\,} C [a, b] for some a,b with 0 < a < b < 1—a, and {a,},{Bn}, {7}
are sequences in [0, 1] satisfying the conditions (i)-(iv) of Theorem 4.1. Then
{zn} and {y,} converge strongly to the unique ¢ € Fix(S) N Fix(V) which
solves the following variational inequality:

(f(q) —q,q—p) <0, for all p € Fix(S) NFix(V).

Proof. Put T = I — V. Then T is 1§a—inverse—strongly monotone. We

conclude that Fix(V) = VI(C,T), Po(xn — M\Txy) = (1 — Ap)xn + MV,
and

PC(yn - AnTyn) = (1 - )‘n)yn + A Vun.

So by Theorem 4.1, we obtain the result. O
Theorem 5.4. Let H be a real Hilbert space. Let f : H — H be a contraction,
S : H — H a nonexpansive mapping and T : H — H an a-inverse-strongly
monotone mapping such that Fix(S) N T710 # (). Suppose that xo € H and
{z,} is given by:

Yn = Tn — VnAnTxna
Tnt1 = (L —ay — Bp)xn + anf(yn) + BnS(Yn — M\ Typn), forallm >0

where {\,} C [a,b] for some a,b with 0 < a < b < 2a, {an}, {Bn} and {y,}
are sequences in [0, 1] satisfying the conditions (i)-(iv) of Theorem 4.1. Then
{x,} and {y,} converge strongly to the unique ¢ € Fix(.5)NT~10 which solves
the following variational inequality

(f(¢) —q,q—p) <0, forall pc Fix(S)NT 0.
Proof. We have T-10 = VI(C,T). So putting Py = I, we have
Un = (1 = vn)2n + ¥ P (Tn — MT20n) = 20 — AT xp.

By Theorem 4.1, we obtain the result. O
Remark 5.1. Our Theorems 5.1-5.4 generalize and improve the correspond-
ing results in [4, 3] for very much different iterative schemes involving four

parametric sequences.
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