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1. Introduction

It is well-known that, often, for the study of many processes, having a
certain lack of precision, which arise from biology, economy or other sciences,
we are interested to replace the following semilinear operator equations:{

x1 = N1(x1, x2)
x2 = N1(x1, x2)
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(where (X, | · |) is a Banach space and Ni : X ×X → X for i ∈ {1, 2}) with
the semilinear inclusion system:

{
x1 ∈ T1(x1, x2)
x2 ∈ T1(x1, x2)

(where Ti : X × X → P (X) for i ∈ {1, 2} are multivalued operators, here
P (X) stands for the family of all nonempty subets of X). The system above
can be represented as a fixed point problem of the form

x ∈ T (x) (where T := (T1, T2) : X2 → P (X2) and x = (x1, x2)).

Hence, it is of great interest to give fixed point results for multivalued oper-
ators on a set endowed with vector-valued metrics or norms. However, the
advantages of a vector-valued norm with respect to the usual scalar norms
were already very nice pointed out by R. Precup in [13].

On the other hand, the concept of multivalued weakly Picard operator
(briefly MWP operator) was introduced in close connection with the succes-
sive approximation method and the data dependence phenomenon for the fixed
point set of multivalued operators on complete metric space, by I.A. Rus, A.
Petruşel and A. Sântămărian (see [17]). Moreover, in [11] the theory of multi-
valued weakly Picard operators in L-spaces is developed. On the other hand,
A.I. Perov [9] and A.I. Perov and A.V. Kibenko [10] proved a generalization
of the Banach contraction principle for operators on a space endowed with
vector-valued metrics. For generalizations of Perov’s result, see J. Matkowski
[4]-[5], T. Shibata [20], M. Turinici [21], C. Bacoţiu [1], etc. Some new fixed
points theorems for singlevalued operators on a set with two vector-valued
metric were established in D. O’Regan, N. Shahzad, R.P. Agarwal [8] and D.
O’Regan and R. Precup [7]. Fixed point theorems for contractive multivalued
operators in terms of vector-valued metrics were proved in M. Turinici [21],
while the theory of multivalued contractions on a set endowed with two metrics
was recently treated by A. Petruşel and I.A. Rus in [12]. For a comprehensive
study of the above topics see also I.A. Rus, A. Petruşel, G. Petruşel [19]. For
the theory of a (metrical) fixed point theorem see I.A. Rus [16].
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The purpose of this paper is to present some new fixed point results for
multivalued operators on a space endowed with one or two vector-valued met-
rics. Our theorems extend the works mentioned above and offer a nice tool for
the study of semilinear inclusion systems which appear in nonlinear analysis.

2. Preliminaries

Let (X, d) be metric space. We will use the following notations:
P (X) - the set of all nonempty subsets of X ;
P(X) = P (X)

⋃
{∅};

Pcl(X) - the set of all nonempty closed subsets of X ;
Pb(X) - the set of all nonempty bounded subsets of X ;
Pb,cl(X) - the set of all nonempty bounded and closed, subsets of X ;
For two subsets A,B ∈ Pb(X) we recall the following functionals.
D : P(X)× P(X) → R+,D(Z, Y ) = inf{d(x, y) : x ∈ Z , y ∈ Y }, Z ⊂ X -

the gap functional.
δ : P(X)×P(X) → R+, δ(A,B) := sup{d(a, b)|x ∈ A, b ∈ B} - the diameter

functional ;
ρ : P(X) × P(X) → R+, ρ(A,B) := sup{D(a,B)|a ∈ A} - the excess

functional ;
H : P(X)×P(X) → R+,H(A,B) := max{sup

a∈A
inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)} -

the Pompeiu-Hausdorff functional.
Definition 2.2. Let X be a nonempty set and consider the space Rm

+ en-
dowed with the usual component-wise partial order. The mapping d : X×X →
Rm

+ which satisfies all the usual axioms of the metric is called a generalized
metric in the sense of Perov.

Notice that the generalized metric in the sense of Perov is a particular case
of K-metric. See P.P. Zabrejko [22] for a nice survey on this topic. For some
fixed point theorems for singlevalued operators on K-metric spaces, see I.A.
Rus, A. Petruşel, M.A. Şerban [18].

Let (X, d) be a generalized metric space in Perov’ sense. Here, if v, r ∈ Rm,
v := (v1, v2, · · · , vm) and r := (r1, r2, · · · , rm), then by v ≤ r we mean
vi ≤ ri, for each i ∈ {1, 2, · · · ,m}, while v < r stands for vi < ri, for
each i ∈ {1, 2, · · · ,m}. Also, |v| := (|v1|, |v2|, · · · , |vm|). If u, v ∈ Rm,
with u := (u1, u2, · · · , um) and v := (v1, v2, · · · , vm), then max(u, v) :=
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(max(u1, v1), · · · ,max(um, vm)) and, if c ∈ R then v ≤ c means vi ≤ c,
for each i ∈ {1, 2, · · · ,m}.

Notice that in a generalized metric space in Perov’ sense the concepts of
Cauchy sequence, convergent sequence, completeness, open and closet sub-
sets are similar defined as those in a metric space. If x0 ∈ X and r ∈ Rm

+

with ri > 0 for each i ∈ {1, 2, · · · ,m} we will denote by B(x0; r) := {x ∈
X| d(x0, x) < r} the open ball centered in x0 with radius r := (r1, r2, · · · , rm)
and by B̃(x0; r) := {x ∈ X| d(x0, x) ≤ r} the closed ball centered in x0 with
radius r.

If T : X → P (X) is a multivalued operator, then we denote by Fix(T ) the
fixed point set of T , i.e. Fix(T ) := {x ∈ X|x ∈ T (x)} and by SFix(T ) the
strict fixed point set of T , i.e. SFix(T ) := {x ∈ X|{x} = T (x)}. The symbol
Graph(T ) := {(x, y) ∈ X ×X : y ∈ T (x)} denotes the graph of T .

Definition 2.3. Let (X,→) be a generalized metric space in the sense of
Perov. Then T : X → P (X) is a multivalued weakly Picard operator (briefly
MWP operator), if for each x ∈ X and each y ∈ T (x) there exists a sequence
(xn)n∈N in X such that:

(i) x0 = x, x1 = y;
(ii) xn+1 ∈ T (xn), for all n ∈ N;
(iii) the sequence (xn)n∈N is convergent to a fixed point of T .

Notice that the sequence(xn)n∈N having the properties (i)-(ii) is called a
sequence of successive approximations for T starting from (x, y).

For several examples of MWP operators, see [11], [17].

Throughout this paper we denote by Mm,m(R+) the set of all m×m matrices
with positive elements, by Θ the zero m×m matrix and by I the identity m×m

matrix. If A ∈ Mm,m(R+), then the symbol Aτ stands for the transpose matrix
of A.

Recall that a matrix A issaid to be convergent to zero if and only if An → 0
as n →∞.

Notice that, for the proof of the main results, we need the following theorem,
see [14].

Theorem 2.4. Let A ∈ Mm,m(R+). The following are equivalents:
(i) An → 0 as n →∞;



FIXED POINTS MULTIVALUED OPERATORS 23

(ii)The eigen-values of A are in the open unit disc, i.e. |λ| < 1, for every
λ ∈ C with det(A− λI) = 0;

(iii) The matrix I −A is non-singular and

(I −A)−1 = I + A + ... + An + ...;

(iv) The matrix I − A is non-singular and (I − A)−1 has nonnenegative
elements.

(v) Anq → 0 and qAn → 0 as n →∞, for each q ∈ Rm.
For examples and other considerations on matrices which converges to zero,

see I.A. Rus [14], M. Turinici [21], etc.

3. Main results

Throughout this section (X, d) is a generalized metric space in Perov’
sense. We start our considerations by presenting a local fixed point theorem
for a multivalued operator on a generalized metric space in the sense of Perov.

Definition 3.1. Let Y ⊂ X and T : Y → P (X) be a multivalued operator.
Then, T is called a multivalued left A-contraction if A ∈ Mm,m(R+) is a
matrix convergent to zero and for each x, y ∈ Y and each u ∈ T (x) there
exists v ∈ T (y) such that d(u, v) ≤ Ad(x, y).

Remark 3.2 In particular, if T is singlevalued we obtain the concept of
A-contraction given by A.I. Perov in [9] and A.I. Perov and A.V. Kibenko in
[10].

Theorem 3.3. Let (X, d) be a complete generalized metric space, x0 ∈ X

and r := (ri)m
i=1 ∈ Rm

+ with ri > 0 for each i ∈ {1, 2, · · · ,m}. Let T :
B̃(x0; r) → Pcl(X) be a multivalued left A-contraction. Suppose that:

(i) if v, r ∈ Rm
+ are such that v · (I −A)−1 ≤ (I −A)−1 · r, then v ≤ r;

(ii) there exists x1 ∈ T (x0) such that d(x0, x1)(I −A)−1 ≤ r.
Then, T has at least one fixed point.
Proof. Let x0 ∈ X and x1 ∈ T (x0) such that d(x0, x1)(I − A)−1 ≤ r ≤

(I −A)−1 · r. Then, by (i), x1 ∈ B̃(x0; r). Now, by the contraction condition,
there exists x2 ∈ T (x1) such that d(x1, x2) ≤ Ad(x0, x1). Thus d(x1, x2)(I −
A)−1 ≤ Ad(x0, x1)(I − A)−1 ≤ Ar. Notice that x2 ∈ B̃(x0; r). Indeed, since
d(x0, x2) ≤ d(x0, x1)+d(x1, x2) we get that d(x0, x2)(I−A)−1 ≤ d(x0, x1)(I−
A)−1 +d(x1, x2)(I−A)−1 ≤ Ir+Ar ≤ (I−A)−1r, which immediately implies
(by (i)) that d(x0, x2) ≤ r.
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By induction, we construct the sequence (xn)n∈N in B̃(x0; r) having the
properties:

(a) xn+1 ∈ T (xn), n ∈ N;
(b) d(x0, xn)(I − A)−1 ≤ (I − A)−1r, for each n ∈ N∗, that means (by

(i)) d(x0, xn) ≤ r;
(c) d(xn, xn+1)(I −A)−1 ≤ Anr, for each n ∈ N.

By (c) we get that

d(xn, xn+p)(I −A)−1 ≤ An(I −A)−1r, for all n ∈ N and p ∈ N∗.

Thus, the sequence (xn)n∈N is Cauchy in the complete metric space
(B̃(x0; s), d). Denote by x∗ its limit in B̃(x0; r).

We prove now that x∗ ∈ T (x∗). If n ∈ N∗, for each xn ∈ T (xn−1) there
exists un ∈ T (x∗) such that d(xn, un) ≤ Ad(xn−1, x

∗).
On the other hand d(x∗, un) ≤ d(x∗, xn) + d(xn, un) ≤ d(x∗, xn) +

Ad(xn−1, x
∗) → 0 as n →∞. Hence lim

n→∞
un = x∗.

Since un ∈ T (x∗) for n ∈ N∗ and using the fact that T (x∗) is closed, it
follows that x∗ ∈ T (x∗). The proof is complete. �

As a consequence of the previous theorem, if T : X → Pcl(X) is a multival-
ued left A-contraction on the complete generalized metric space (X, d), then
we have the following result (see also Theorem 8.1 in [11]):

Corollary 3.4. Let (X, d) be a complete generalized metric space and T :
X → Pcl(X) be a multivalued left A-contraction. Then, T is a MWP operator.

A dual concept is given in the following definition.
Definition 3.5. Let Y ⊂ X and T : Y → P (X) be a multivalued operator.

Then, T is called a multivalued right A-contraction if A ∈ Mm,m(R+) is a
matrix convergent to zero and for each x, y ∈ Y and each u ∈ T (x) there
exists v ∈ T (y) such that d(u, v)τ ≤ d(x, y)τA.

Remark 3.6. Notice that, since (d(x, y)τA)τ = Aτd(x, y), the right A-
contraction condition on the multivalued operator T is equivalent to the left
Aτ -contraction condition given in Definition 3.1. It is also obvious that the
matrix A converges to zero if and only if the matrix Aτ converges to zero (since
A and Aτ have the same eigenvalues) and [(I −A)−1]τ = (I −Aτ )−1.

From Remark 3.6 and Theorem 3.3 we get the following dual result:
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Theorem 3.7. Let (X, d) be a complete generalized metric space, x0 ∈ X

and r := (ri)m
i=1 ∈ Rm

+ with ri > 0 for each i ∈ {1, 2, · · · ,m}. Let T :
B̃(x0; r) → Pcl(X) be a multivalued right A-contraction. Suppose that:

(i) if v, r ∈ Rm
+ are such that (I −A)−1 · v ≤ r · (I −A)−1, then v ≤ r;

(ii) there exists x1 ∈ T (x0) such that (I −A)−1d(x0, x1) ≤ r.
Then, T has at least one fixed point.

We are now interested for the problem that, if T : B̃(x0; r) → Pcl(X) is a
multivalued A-contraction, wheather the closed ball B̃(x0; r) is invariant with
respect to T .

For example, for the case of a multivalued right A-contraction, we have:
Theorem 3.8. Let (X, d) be a complete generalized metric space, x0 ∈ X

and r := (ri)m
i=1 ∈ Rm

+ with ri > 0 for each i ∈ {1, 2, · · · ,m}. Let T :
B̃(x0; r) → Pcl(X) be a multivalued right A-contraction. Suppose also that
d(x0, u)(I −A)−1 ≤ r, for each u ∈ T (x0).

Then, the following assertions hold:
a) B̃(x0; r) is invariant with respect to T ;
b) T is a MWP operator on B̃(x0; r).

Proof. a) In order to prove that B̃(x0; r) is invariant with respect to T ,
let us consider x ∈ B̃(x0; r). Then, we have to show that T (x) ⊆ B̃(x0; r).
For this purpose, let y ∈ T (x) be arbitrarily chosen. Then, by the contraction
condition, there exists u ∈ T (x0) such that d(y, u) ≤ d(x0, x)A. Then, by the
triangle inequality, we get that:
d(x0, y)(I −A)−1 ≤ d(x0, u)(I −A)−1 + d(u, y)(I −A)−1 ≤ r + d(x0, x)A(I −
A)−1 ≤ r + rA(I −A)−1 = r[I + A(I −A)−1] = r[I + A(I + A + A2 + · · · )] =
r(I−A)−1. Thus, we get that d(x0, y) ≤ r. Hence, the proof of a) is complete.
b) Since T : B̃(x0; r) → Pcl(B̃(x0; r)), Corollary 3.4 (see also Theorem 8.1 in
[11]) applies and the conclusion follows. �

A dual result is:
Theorem 3.9. Let (X, d) be a complete generalized metric space, x0 ∈ X

and r := (ri)m
i=1 ∈ Rm

+ with ri > 0 for each i ∈ {1, 2, · · · ,m}. Let T :
B̃(x0; r) → Pcl(X) be a multivalued left A-contraction. Suppose also that
(I −A)−1d(x0, u) ≤ r, for each u ∈ T (x0).

Then, the following assertions hold:
a) B̃(x0; r) is invariant with respect to T ;
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b) T is a MWP operator on B̃(x0; r).

Notice that, if T is singlevalued, then we obtain a local result for nonself
singlevalued A-contractions.

Corollary 3.10. Let (X, d) be a complete generalized metric space, x0 ∈ X

and r := (ri)m
i=1 ∈ Rm

+ with ri > 0 for each i ∈ {1, 2, · · · ,m}. Let f :
B̃(x0; r) → X be a singlevalued left A-contraction. Suppose also that (I −
A)−1d(x0, f(x0)) ≤ r.

Then, f has a unique fixed point in B̃(x0; r).

Notice that a generalized Popmpeiu-Hausdorff functional can be introduced
in the setting of a generalized metric space in the sense of Perov. Namely, if
(X, d) is a generalized metric space in the sense of Perov with d := (d1, · · · , dm)
and if Hi denotes the Pompeiu-Hausdorff metric on Pb,cl(X) generated by di,
(where i ∈ {1, 2, · · · ,m}) then be denote by H : Pb,cl(X) × Pb,cl(X) → Rm

+ ,
H := (H1, · · · ,Hm) the vector-valued Pompeiu-Hausdorff metric on Pb,cl(X).

By definition, a multivalued operator T : Y ⊆ X → Pb,cl(X) is said to be
a multivalued left A-contraction in the sense of Nadler if A ∈Mm,m(R+) is a
matrix convergent to zero and and

H(T (x), T (y)) ≤ Ad(x, y), for all x, y ∈ Y.

Notice that for m = 1 we get the well-known concept of contraction mapping
introduced by S.B. Nadler Jr. [6]. We point out also that, by the properties
of the functional H, if T is a multivalued left A-contraction, then T is a
multivalued left A-contraction in the sense of Nadler.

Remark 3.11. If (X, d) is a complete generalized metric space and T :
X → Pb,cl(X)is a multivalued left A-contraction in the sense of Nadler, then
it is an open problem to establish a fixed point theory for T .

We will present now some applications of the above results.
Theorem 3.12. Let (X, | · |) be a Banach space and T1, T2 : X → Pcl(X)

be two multivalued operators. Suppose there exist aij ∈ R+, i, j ∈ {1, 2} such
that:

(1) for each u := (u1, u2), v := (v1, v2) ∈ X ×X and each y1 ∈ T1(u1, u2)
there exists z1 ∈ T1(v1, v2) such that:

|y1 − z1| ≤ a11|u1 − v1|+ a12|u2 − v2|
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(2) for each u := (u1, u2), v := (v1, v2) ∈ X ×X and each y2 ∈ T2(u1, u2)
there exists z2 ∈ T2(v1, v2) such that

|y2 − z2| ≤ a21|u1 − v1|+ a22|u2 − v2|.

In addition assume that the matrix A :=

(
a11 a12

a21 a22

)
converges to 0.

Then, the semilinear inclusion system:{
u1 ∈ T1(u1, u2)
u2 ∈ T1(u1, u2)

has at least one solution in X ×X.
Proof. Consider the multivalued operator T : X2 → Pcl(X2) given by

T := (T1, T2). Then, the conditions (1)+(2) can be represented in the follwing
form: for each u, v ∈ X2 and each y ∈ T (u) there exists z ∈ T (v) such that

‖y − z‖ ≤ A · ‖u− v‖.

Hence, Corollary 3.4 applies (with d(u, v) := ‖u − v‖ :=

(
|u1 − v1|
|u2 − v2|

)
) and

T has at least one fixed point u ∈ T (u). �

Notice that, similar results can be obtained for arbitrary n ∈ N. See also S.
Czerwik [2] and M. Turinici [21] for other theorems of this type.

We will prove now an open operator principle in generalized Banach spaces
in Perov’ sense. For this purpose, we recall some useful concepts and results.

Let A ∈Mm,m(R+) be a matrix convergent to zero. Then:

(α) r ≤ (I −A)−1r, for each r ∈ Rn
+;

(β) the set PA := {ρ ∈ Rn : ρ > 0, (I −A)ρ > 0} is nonempty

and coincide with the set QA := {(I −A)−1r : r ∈ Rn, r > 0}.

(γ) a subset U ⊂ X is open if and only if for each x ∈ U there exists ρ ∈ PA

such that B̃(x; ρ) ⊂ U.
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Let E be a Banach space and Y ⊂ E. Given an operator f : Y → E, the
operator g : Y → E defined by g(x) := x − f(x) is called the field associated
with f . An operator f : Y → E is said to be open if for any open subset U of
Y the set f(U) is open in E too.

As a consequence of Corollary 3.10 we have the following domain invariance
theorem for contraction type fields in generalized Banach spaces.

Theorem 3.13. Let E be a generalized Banach space in Perov’ sense and
let U be an open subset of E. Let f : U → E be a left A-contraction. Let
g : U → E g(x) := x − f(x) be the associated field. Then g : U → E is an
open operator.

Proof. We will prove that for each open subset V of U , the set g(V ) is
open in E too. For this purpose, we will show that for each y ∈ g(V ) there
exists r ∈ Rn, r > 0 such that B̃(y, r) ⊂ g(V ). Since y ∈ g(V ), it is enough
to prove that B̃(g(x), r) ⊂ g(V ), for some x ∈ V . Now, since V is open,
for each x ∈ V there exists (by (γ)) p ∈ PA such that B̃(x, p) ⊂ V . Thus,
g(B̃(x, p)) ⊂ g(V ). The proof is complete if we prove that there exists r > 0,
r ∈ Rn such that B̃(g(x), r) ⊂ g(B̃(x, p)). We will show that the relation take
place with r := (I −A)p. Notice that r > 0, by (β).

For this aim, let us consider an arbitrary z ∈ B̃(g(x), r) . Then ‖g(x)−z‖ ≤
r. Let us show that there exists u ∈ B̃(x, p) such that g(u) = z, which also
means that u is a fixed point for thet operator h : B̃(x, p) → E, h(t) := f(t)+z.
Obviously, since f is a left A-contraction, h is a left A-contraction too. On
the other hand, we have:
‖h(x) − x‖ = ‖g(x) − z‖ ≤ r := (I − A)p. By multiplying on the left with
(I −A)−1 we get that

(I −A)−1‖h(x)− x‖ ≤ p.

By Corollary 3.10 we get that there exists a unique u ∈ B̃(x, p) such that
h(u) = u. The proof is now complete. �

A homotopy result for multivalued operators on a set endowed with a vector-
valued metric is the following.

Theorem 3.14. Let (X, d) be a generalized complete metric space in Perov’
sense, U be an open subset of X and V be a closed subset of X, with U ⊂ V .
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Let G : V × [0, 1] → P (X) be a multivalued operator with closed (with respect
to d) graph, such that the following conditions are satisfied:

(a) x /∈ G(x, t), for each x ∈ V \ U and each t ∈ [0, 1];
(b) there exists a matrix A ∈Mm,m(R+) convergent to zero such that for

each t ∈ [0, 1], each x, y ∈ Y and each u ∈ G(x, t) there exists v ∈ G(y, t) such
that d(u, v) ≤ Ad(x, y);

(c) there exists a continuous increasing function φ : [0, 1] → Rm such that
for all t, s ∈ [0, 1], each x ∈ V and each u ∈ G(x, t) there exists v ∈ G(x, s)
such that d(u, v) ≤ |φ(t)− φ(s)| ;

(d) if v, r ∈ Rm
+ are such that v · (I −A)−1 ≤ (I −A)−1 · r, then v ≤ r;

Then G(·, 0) has a fixed point if and only if G(·, 1) has a fixed point.
Proof. Suppose G(·, 0) has a fixed point z. From (a) we have that z ∈ U .

Define

Q := {(t, x) ∈ [0, 1]× U | x ∈ G(x, t)}.

Clearly Q 6= ∅, since (0, z) ∈ Q. Consider on Q a partial order defined as
follows:

(t, x) ≤ (s, y) if and only if t ≤ s and d(x, y) ≤ 2[φ(s)− φ(t)] · (I −A)−1.

Let M be a totally ordered subset of Q and consider t∗ := sup{t|(t, x) ∈ M}.
Consider a sequence (tn, xn)n∈N∗ ⊂ M such that (tn, xn) ≤ (tn+1, xn+1) for
each n ∈ N∗ and tn → t∗, as n → +∞. Then

d(xm, xn) ≤ 2[φ(tm)− φ(tn)] · (I −A)−1, for each m,n ∈ N∗,m > n.

When m,n → +∞ we obtain d(xm, xn) → 0 and, thus, (xn)n∈N∗ is d-Cauchy.
Thus (xn)n∈N∗ is convergent in (X, d). Denote by x∗ ∈ X its limit. Since
xn ∈ G(xn, tn), n ∈ N∗ and since G is d-closed, we have that x∗ ∈ G(x∗, t∗).
Thus, from (a), we have x∗ ∈ U . Hence (t∗, x∗) ∈ Q. Since M is totally ordered
we get that (t, x) ≤ (t∗, x∗), for each (t, x) ∈ M . Thus (t∗, x∗) is an upper
bound of M . By Zorn’s Lemma, Q admits a maximal element (t0, x0) ∈ Q.
We claim that t0 = 1. This will finish the proof.

Suppose t0 < 1. Choose r ∈ R∗+ and t ∈]t0, 1] such that B(x0, r) ⊂ U

and r := 2[φ(t) − φ(t0)] · (I − A)−1. Since x0 ∈ G(x,t0), by (c), there exists
x1 ∈ G(x0, t) such that d(x0, x1) ≤ |φ(t)− φ(t0)|. Thus, d(x0, x1)(I −A)−1 ≤
|φ(t)− φ(t0)| · (I −A)−1 < r.
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Since B(x0, r) ⊂ V , the multivalued operator G(·, t) : B(x0, r) → Pcl(X)
satisfies, for all t ∈ [0, 1], the assumptions of Theorem 3.3. Hence, for all
t ∈ [0, 1], there exists x ∈ B(x0, r) such that x ∈ G(x, t). Thus (t, x) ∈
Q. Since d(x0, x) ≤ r = 2[φ(t) − φ(t0)](I − A)−1, we immediately get that
(t0, x0) < (t, x). This is a contradiction with the maximality of (t0, x0).

Conversely, if G(·, 1) has a fixed point, then putting t := 1 − t and using
first part of the proof we get the conclusion. �

Remark 3.15. 1) Usually in the above result, we take Q = U . Notice that
in this case, condition (a) becomes:

(a’) x /∈ G(x, t), for each x ∈ ∂U and each t ∈ [0, 1].
2) If, in the above theorem, we replace (c) by the following condition:

(c’) there exists a continuous increasing function φ : [0, 1] → Rm such that
for all t, s ∈ [0, 1], each x ∈ V and each u ∈ G(x, t) and v ∈ G(x, s) we have:

d(u, v) ≤ |φ(t)− φ(s)|;

then the same conclusion holds in the absence of assumption (d). Here we
apply Theorem 3.9 instead of Theorem 3.3.

Some other important concepts will be presented now.
Definition 3.16. a) Let (X, d) be a generalized metric space in Perov’ sense

and T : X → P (X) be an MWP operator. Then, we define the multivalued
operator T∞ : Graph(T ) → P (Fix(T )) by the formula T∞(x, y) := { z ∈
Fix(T ) | there exists a sequence of successive approximations of T starting
from (x, y) that converges to z }.
b) Let (X, d) be a generalized metric space in Perov’ sense and T : X → P (X)
be a MWP operator. Then, T is called a C-multivalued weakly Picard operator
(briefly C-MWP operator) if and only if C ∈Mm,m(R+)\{Θ} and there exists
a selection t∞ of T∞ such that

d(x, t∞(x, y)) ≤ C d(x, y), for all (x, y) ∈ Graph(T ).

By the proof of Theorem 3.3 and by Remark 3.4 and the above definition,
we have:

Theorem 3.17. Let (X, d) be a complete generalized metric space and
T : X → Pcl(X) be a multivalued left A-contraction. Then, T is a (I −A)−1-
MWP operator.



FIXED POINTS MULTIVALUED OPERATORS 31

Proof. By the proof of Theorem 3.3., we have that for each x ∈ X and
each y ∈ T (x) there exists a sequence (xn)n∈N of successive approximations
for T starting from (x, y) such that:

d(xn, xn+p) ≤ An(I −A)−1d(x0, x1), for all n ∈ N and p ∈ N∗.

The sequence converges and its limit is a fixed point t∞(x, y) of T . By letting
p → +∞ and putting n := 0 we get that:

d(x, t∞(x, y)) ≤ (I −A)−1d(x, y). �

As in metric spaces, the following abstract data dependence result holds.
Notice that, if d := (d1, · · · , dm), then we denote by H, the vector-
valued Pompeiu-Hausdorff (generalized) metric with components Hdi

, for
i ∈ {1, 2, · · · ,m}.

Theorem 3.18. Let (X, d) be a generalized metric space and T1, T2 : X →
Pcl(X) be two multivalued operators. We suppose that:

i) Ti is a Ci-MWP operator, for i ∈ {1, 2};
ii) there exists η ∈ Rm

+ with ηi > 0 for each i ∈ {1, 2, · · · ,m}, such that
H(T1(x), T2(x)) ≤ η, for all x ∈ X.

Then

H(Fix(T1), F ix(T2)) ≤ max { C1η, C2η}.

We are going to prove now a strict fixed point theorem for a multivalued
Perov type operator.

Theorem 3.19. Let (X, d) be a complete generalized metric space and T :
X → Pcl(X) be a multivalued left A-contraction. Suppose that SFix(T ) 6= ∅.
Then, Fix(T ) = SFix(T ) = {x∗}.

Proof. Suppose that x∗ ∈ SFix(T ). Then T (x∗) = {x∗}. We will prove
that Fix(T ) ⊂ SFix(T ). Indeed, if y ∈ Fix(T ), then, by the contraction
condition we have that d(y, x∗) ≤ Ad(y, x∗). Hence, (I − A)d(y, x∗) ≤ 0 and,
by multiplying with (I −A)−1, we get d(y, x∗) ≤ 0. Thus d(y, x∗) = 0. �

The concept of well-posedness for the fixed point problem is defined as
follows.

Definition 3.20. Let (X, d) be a generalized metric space and T : X →
Pcl(X). The fixed point problem for T is well posed if and only if:
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a) Fix(T ) = {x∗};
b) if (xn, yn) ∈ Graph(T ), for n ∈ N is such that d(xn, yn) → 0 as

n → +∞, then d(xn, x∗) → 0 as n → +∞.
The following well-posedness result holds.
Theorem 3.21. Let (X, d) be a complete generalized metric space and T :

X → Pcl(X) be a multivalued left A-contraction. Suppose that SFix(T ) 6= ∅.
Then, the fixed point problem for T is well-posed.

Proof. By Theorem 3.18 we have that Fix(T ) = SFix(T ) = {x∗}. Let
(xn, yn) ∈ Graph(T ), for n ∈ N such that d(xn, yn) → 0 as n → +∞. Then,
by the contraction condition, we have that d(yn, x∗) ≤ Ad(xn, x∗) for n ∈ N.
Then d(xn, x∗) ≤ d(xn, yn) + d(yn, x∗) ≤ d(xn, yn) + Ad(xn, x∗) for n ∈ N.
Thus (I−A)d(xn, x∗) ≤ d(xn, yn) → 0 as n → +∞. The proof is complete. �

Next theorem is a fixed point result for a multivalued operator on a space
endowed with two generalized metric spaces.

Theorem 3.22. Let (X, d) be a complete generalized metric space and
ρ be another generalized metric on X. Let T : X → P (X) be a multivalued
operator.

Suppose that:
(i) there exists C ∈ Mm,m(R+) such that d(x, y) ≤ Cρ(x, y) for each

x, y ∈ X;
(ii) T : (X, d) → (P (X),Hd) has closed graph;
(iii) T is a multivalued left A-contraction with respect to ρ;

Then T has a fixed point. Moreover, T is a MWP operator with respect to
d.

Proof. Let x0 ∈ X such that x1 ∈ T (x0). Then for x2 ∈ T (x1) we have
ρ(x1, x2) ≤ Aρ(x0, x1). Thus we can define the sequence {xn} ∈ X such that
xn+1 ∈ T (xn) and ρ(xn, xn+1) ≤ Anρ(xn−1, xn) for every n ∈ N.

Then we have, for any n ∈ N,

ρ(xn, xn+1) ≤ Aρ(xn−1, xn) ≤ ... ≤ Anρ(x0, x1).

Hence, for any m,n ∈ N with m ≥ n, and using Theorem 2.4 it follows that

ρ(xn, xn+m) ≤ ρ(xn, xn+1) + ρ(xn+1, xn+2) + ... + ρ(xn+m−1, xn+m)

≤ Anρ(x0, x1) + An+1ρ(x0, x1) + ... + An+m−1ρ(x0, x1)

≤ An(I −A)−1ρ(x0, x1).
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From (iii) we have that An → 0 as n → ∞. Thus, the sequence (xn)n∈N is
a Cauchy sequence in (X, ρ). From (i) it follows that the sequence (xn)n∈N is
a Cauchy in (X, d). Thus, (xn)n∈N converges with respect to d to some point
x∗ ∈ X. We have to prove now that x∗ ∈ T (x∗). Since xn ∈ T (xn−1) for all
n ∈ N∗, by (ii), we get that x∗ ∈ T (x∗). The proof is now complete. �
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