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Abstract. This note is devoted to two classical theorems: the open mapping theorem for

analytic functions (OMT) and the fundamental theorem of algebra (FTA). We present a new

proof of the first theorem, and then derive the second one by a simple topological argument.

The proof is elementary in nature and does not use any kind of integration (neither complex

nor real). In addition, it is also independent of the fact that the roots of an analytic function

are isolated. The proof is based on either the Banach or Brouwer fixed point theorems. In

particular, this shows that one can obtain a proof of the FTA (albeit indirect) which is based

on the Brouwer fixed point theorem, an aim which was not reached in the past and later the

possibility to achieve it was questioned. We close this note with a simple generalization of

the FTA. A short review of certain issues related to the OMT and the FTA is also included.
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1. Introduction

The open mapping theorem for analytic functions (OMT) says that any
non-locally constant analytic function f is open (strongly interior), i.e., f(V )
is open whenever V is open. The usual proofs of this theorem are based on
either Rouché’s theorem [10, pp. 306-307], [15, Chapter V], the index (winding
number)+argument principle [1, p. 173], or on simple versions of the maximum
or minimum modulus principles [5, pp. 172-173], [13, pp. 256-257]. All these
proofs are based on complex integration theory.
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Since the theorem “is topological in nature”, mathematicians sought a proof
which is topological in nature, and uses minimal analytical theory. In partic-
ular, it should not use the “usual sophisticated machinery of analysis” [19],
such as development in power series or integration. In various places [7, p.
260], [17, p. 93], [18, p. 2], [20, p. viii] such a proof is regarded as elementary,
and this philosophy is well expressed in the book of G. T. Whyburn [20].

In 1952, it seemed that such a proof was found by H. G. Eggleston and
H. D. Ursell [7]. This was mentioned by Eggleston and Ursell, and also by
Whyburn in his review [19]. The proof is elementary in the sense that one
uses only the fact that f ′ exists, and does not use the development of f in
power series, or apply integration directly to it. However, a careful reading
of the proof shows that it is based on an integral definition of the index, and
also on the properties of the complex exponent function t 7→ exp(it) and the
number π (see below), and hence it does use the usual machinery of analysis.

Another attempt to find “an elementary” proof was by C. J. Titus and G.
S. Young [17]. They established a theorem which is elementary in the above
sense and implies the OMT, assuming one knows that f is light, i.e., that for
any c, the roots of the equation f(z) = c are isolated. They however could
not establish the lightness of f (in an elementary way).

Later, by modifications of the arguments in [7], Whyburn [20, p. 76]
obtained a proof which bypassed the integral definition of the index and seemed
apparently elementary, but again, a careful reading of it shows that it is still
based on either integration or power series, since it is based on the definition
and properties of the complex exponent function t 7→ exp(it) and the number
π. (See [1, pp. 43-46] for discussion and formal definition of them using power
series. The definition exp(it) = cos(t)+ i sin(t) which is used in [20, p. 53] can
be considered as formal only after one gives a formal non-geometric definition
of cos(t), sin(t) and π, and proves some basic trigonometric formulas. See [8,
pp. 432-438] where this is done by use of integrals.)

We note in addition that all these proofs are not elementary in the usual
sense, for example because they are long and based on hard theorems, such
as the Jordan curve theorem or considerations from degree theory. Especially
this is true for that of Whyburn, which is much longer and based on results
of several chapters of his book.
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Here we present a new proof of the OMT which is elementary in the usual
sense of the word (short, not based on hard theorems or hard arguments),
and is not based on complex integration theory. In fact, it is not based on
integration of any kind. Another property of this proof is that it does not
use the fact that f is light. As far as we know, with the exception of the
proof mentioned in [9], all known proofs of the OMT are based on this fact.
Our proof is based on either the Brouwer or the Banach fixed point theorems
(so in fact it can be considered as elementary only in the latter case). Since
the proof is also based on the theory of power series [1, pp. 39-46], and on
the Weierstrass definition of analytic function as one which can be locally
developed in power series, it is not elementary in the sense described earlier.

As a corollary of this theorem we obtain the fundamental theorem of algebra
(FTA) by a simple topological argument (C is connected). In particular, this
shows that one can obtain a proof (albeit indirect) of the FTA based on the
Brouwer fixed point theorem. This is interesting, because in the past there
was an attempt to do it (by B. H. Arnold [3]) but this attempt failed [4] due to
a serious mistake. Moreover, about 35 years later it was shown by A. Aleman
[2] that it is impossible to prove the FTA by the Brouwer fixed point theorem
if one tries to use the methods of [3], i.e., that there is no hope to correct
the mistake in [3]. This cast doubt on the possibility of proving the FTA by
applying the Brouwer fixed point theorem.

It is interesting to note in this connection that there does exist a proof
of the FTA which is based on a fixed point theorem (the Lefschetz fixed point
theorem; see [14]). In addition, a careful reading of the proof of the FTA
given in [21] shows that one of its ingredients is an argument similar to the
one appearing in the proof of the Banach fixed point theorem.

We also note that the connection between the OMT and the FTA is not
new. For example, R. L. Thompson [16] proved that the FTA is equivalent to
the open mapping theorem for polynomials. In addition, the elementary proof
of the FTA by S. Wolfenstein [21], and the proof of the generalization of the
FTA by M. Reichaw (Reichbach) [12, p. 160] are also related to connectedness
and open mappings, but their arguments are different from ours. (They use
the fact that f is locally open when f ′(x) 6= 0, that f ′(x) = 0 only on a
finite set of points A when f is a polynomial, and that C\A is connected. In
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comparison, in our proof we merely use the fact that C is connected and it is
irrelevant whether f ′(x) vanishes.)

Finally, we note that we were informed about two things related to our
proofs. First, S. Reich has told us that the topological argument we use for
proving the FTA was also independently mentioned by him in [11], as a remark
on Thompson’s paper. Second, R. B. Burckel has told us recently that there
is another elementary proof of the OMT, due to F. S. Cater [6]. As mentioned
in [6], there is another elementary proof of the OMT in the book of S. Lang
[9, pp. 77-78]. These two proofs are also based on power series and do not use
integration of any kind. However, the arguments in both proofs are different
from ours.

2. Proof of the OMT and the FTA

We need the following simple lemma. It can be easily proved (and im-
proved) by use of integrals ( T (y) − T (x) =

∫
[x,y] T

′(z)dz), but also without
integrals as below.

Lemma 2.1. Let B ⊆ C be nonempty and convex. If T : B → C is differ-
entiable and supξ∈B |T ′(ξ)| ≤ a, then T is Lipschitz on B with a Lipschitz
constant not greater than

√
2a.

Proof. We can write T = u + iv where u, v : B → R are differentiable.
Let ξ1, ξ2 ∈ B and let γ(t) = ξ1 + (ξ2 − ξ1)t, t ∈ [0, 1] be the line segment
connecting them. Since |ux|2 + |uy|2 = |T ′|2 ≤ a2 by the Cauchy-Riemann
equations, the real version of Lagrange’s mean value theorem and the Cauchy-
Schwarz inequality imply that

|u(ξ1)−u(ξ2)|= |u(γ(0))−u(γ(1))|= |(u(γ))′(t)| ≤ ‖∇u(γ)‖|ξ1−ξ2| ≤ a|ξ1−ξ2|.

The same holds for v. Hence

|T (ξ1)− T (ξ2)| =
√
|u(ξ1)− u(ξ2)|2 + |v(ξ1)− v(ξ2)|2 ≤

√
2a|ξ1 − ξ2|.

�

Theorem 2.2. Let f(z) be a non-locally-constant analytic function defined in
an open set V 6= ∅. Then f is open, i.e., f(U) is open whenever U ⊆ V is
open.
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Proof. Suppose ∅ 6= U ⊆ V is open, and let z0 ∈ U and w0 = f(z0) ∈ f(U).
It should be proved that there exists r > 0 such that the open ball B(w0, r) of
radius r and center w0 is contained in f(U), i. e., that for any w ∈ B(w0, r),
the equation w = f(z) has a solution z ∈ U .

Since f is analytic, it can be represented as f(z) =
∑∞

k=0 ak(z − z0)k in
a neighborhood of z0. Let 1 ≤ k ∈ N be the minimal index for which the
coefficient ak does not vanish. Such k exists, because otherwise f is locally
constant in that neighborhood of z0 (and in fact globally constant if V is
also connected, by the identity/uniqueness theorem). We can write f(z) =
a0 + (z − z0)k(ak + h(z − z0)), where a0 = w0 and

h(ξ) =
∞∑

p=k+1

apξ
p−k.

By the change of variables ξ = z − z0, the equation f(z) = w becomes

ξk =
w − w0

ak + h(ξ)
. (1)

Now it is tempting to take root and transform this equation to a fixed point
equation and then to use a corresponding fixed point theorem, but one should
be careful, because there are several candidates for the root, and each one of
them has a line of discontinuity. Let g1, g2 be the complex functions defined
by

g1(ξ) = |ξ|
1
k · ei

arg(ξ)
k , g2(ξ) = |ξ|

1
k · ei

Arg(ξ)
k .

Roughly speaking, g1 and g2 are “ ξ1/k ”. Formally, g1 and g2 are right inverses
of the function G(ξ) = ξk, i.e., G(g1(ξ)) = G(g2(ξ)) = ξ. The reversed
equalities g1(G(ξ)) = ξ, g2(G(ξ)) = ξ are not necessarily true (take k = 2 and
ξ = −1 for example). Because 0 ≤ arg(ξ) < 2π and −π ≤ Arg(ξ) < π, g1 and
g2 are continuously differentiable in C\([0,∞)× {0}) and C\((−∞, 0]× {0})
respectively. In other words, g1 (g2) is continuously differentiable at any ξ 6= 0
with Arg(ξ) 6= 0 (Arg(ξ) 6= −π).

Since limξ→0 h(ξ) = 0, there exists 0 < ρ sufficiently small such that
B[z0, ρ] ⊂ U , and such that |ak/2| < |h(ξ) + ak| and Arg(ak/(h(ξ) + ak)) ∈
(−π/8, π/8) for all ξ in the small closed ball B[0, ρ] = B(0, ρ).

Let

0 < r ≤ min(|ak/2|ρk, (1/(2α))k),
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where
α = (1/k) · |2/ak|3−

1
k · (1 + sup

|ξ|≤ρ
|h′(ξ)|).

The reason for choosing these values will become clear in a moment. We claim
that the ball B(w0, r) is contained in f(U). To see this, fix w ∈ B(w0, r). It
can be assumed that w 6= w0, because otherwise w = f(z0) and we are done.
It suffices to show that (1) has a solution ξ ∈ B[0, ρ]. Consider the equation

ξ = g

(
w − w0

h(ξ) + ak

)
≡ T (ξ). (2)

Here we take g = g1 if Re((w − w0)/ak) < 0 and g = g2 otherwise. By
applying the function G(ξ) = ξk to (2), we see that any solution of (2) is a
solution of (1) (the converse is not necessarily true because it may happen
that g(G(ξ)) 6= ξ), so it suffices to show that (2) has a solution ξ ∈ B[0, ρ].

T is well defined in B[0, ρ] by the choice of ρ. In addition, it is continuously
differentiable there, because (w−w0)/(h(ξ) + ak) is outside the discontinuous
set (ray) of g. (For example, if g = g1, then Arg((w − w0)/(h(ξ) + ak)) =
Arg(ak/(h(ξ) + ak)) + Arg((w − w0)/ak) /∈ (−π/8, π/8) by the choice of ρ.)

By the choice of ρ it follows that |T (ξ)| ≤ |2r/ak|
1
k for ξ ∈ B[0, ρ], so

T (B[0, ρ]) ⊆ B[0, ρ] by the choice of r. Since T is continuous, we can finish
the proof by applying the Brouwer fixed point theorem to (2). However, we
will show below that the more elementary Banach fixed point theorem suffices
for this purpose. By the choice of r and α,

|T ′(ξ)| = |w − w0|
1
k · |h′(ξ)|

k · |h(ξ) + ak|3−
1
k

≤ α · r
1
k , ∀ξ ∈ B[0, ρ],

so supξ∈B[0,ρ] |T ′(ξ)| ≤ 0.5, again by the choice of r. Thus, by Lemma 2.1,
T is Lipschitz on B[0, ρ] with a Lipschitz constant not greater than 0.5

√
2 <

1. Since B[0, ρ] is a complete metric space, the Banach fixed point theorem
implies that (2) has a (unique) solution ξ ∈ B[0, ρ]. �

Theorem 2.3. Let 1 ≤ m ∈ N and let f : C → C, f(z) = amzm+. . .+a1z+a0,
be a polynomial of degree m (am 6= 0). Then f is surjective, i.e., f(C) = C.
In particular, 0 ∈ f(C), i.e., f has a root.

Proof. Since f(C) is nonempty (f(0) ∈ f(C)) and open (by Theorem 2.2), it
suffices to show that it is closed, because then, the fact that C is connected
will imply that f(C) = C.
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Let (zn)n be a sequence of complex numbers with the property that f(zn) →
w ∈ C. In particular, (f(zn))n is bounded. Hence the sequence (zn)n is
bounded, because otherwise

limn→∞ |f(zn)| = limn→∞ |(zn)m| · |am +
am−1

zn
+ . . .+

a0

(zn)m
| = ∞·|am| = ∞.

Thus (zn)n has a convergent subsequence znk
→ z ∈ C, so w = f(z) since f

continuous. �

We finish by remarking that the above proof implies that Theorem 2.3
can be obviously generalized as follows: an entire analytic function f is sur-
jective if and only if its image is closed. It would be interesting to obtain a
simple necessarily and/or sufficient condition for this in terms of the coeffi-
cients of f . Unfortunately, with the exception of the condition that almost all
its coefficients vanish, i.e., that it is a polynomial, we do not know any such
condition.

Nevertheless, one can indeed obtain some simple sufficient conditions for
f to be surjective in terms of a possible representation that it might have.
A trivial example is when f is a composition of two surjective mappings.
Another example is when f(z) = p(g(z)) + q(1/g(z)), where p and q are
non-constant polynomials and g is a non-constant analytic function which
does not vanish, such as g(z) = exp(αz), α 6= 0. Indeed, suppose p(z) =∑n

k=0 akz
k, q(z) =

∑m
k=0 bkz

k where an 6= 0, bm 6= 0, and let w ∈ C be given.
Since an 6= 0, bm 6= 0, the FTA and a simple manipulation imply that there
exists t 6= 0 such that p(t) + q(1/t) = w. Because g(C) = C\{0} by Picard’s
theorem, there exists z ∈ C such that g(z) = t, so f(z) = w and f is surjective.
Hence, for instance, the function f(z) = cos7(z2 + z + i)− 3 cos(z2 + z + i) + 1
is surjective, and in particular it has a root.
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