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1. Introduction

Let R denote the real line and let Pf (R) denote the class of all non-empty
subsets of R with a property f . In particular, Pcl(R),Pbd(R),Pcv(R), and
Pcp(R) denote respectively the classes of closed, bounded, convex and compact
subsets of R. Similarly Pcl,bd(R) and Pcp,cv(R) denote respectively the classes
of all closed-bounded and compact-convex subsets of R. Let J = [t0, t1] be a
closed and bounded interval in R for some real numbers t0, t1 ∈ R with t0 < t1.
Now consider the two point boundary value problem (in short BVP) of second
order differential inclusions

−x′′(t) ∈ F (t, x(t), x′(t)) a.e. t ∈ J (1.1)
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satisfying the boundary conditions

a0x(t0)− a1x
′(t1) = c0

b0x(t0) + b1x
′(t1) = c1

}
(1.2)

where the function and the constants involved in (1.1) and (1.2) satisfy the
following properties:

(a) F : J × R× R → Pf (R),
(b) a0, a1, b0, b1 ∈ R+ satisfying a0a1(t1 − t0) + a0b1 + a1b0 > 0 and
(c) c0, c1 ∈ R.

By a solution of BVP (1.1)-(1.2) we mean a function x ∈ AC1(J,R) whose
second derivative exists and is a member of L1(J,R) in F (t, x, x′), i.e. there
exists a v ∈ L1(J,R) such that v(t) ∈ F (t, x(t), x′(t)) for a.e t ∈ J, and
−x′′(t) = v(t) for all t ∈ J satisfying (1.2), where AC1(J,R) is the space of
continuous real-valued functions whose first derivative exists and is absolutely
continuous on J .

The special cases of the BVP (1.1)-(1.2) have been discussed in the literature
for existence of the solutions. The special case of the form

−x′′(t) = f(t, x(t), x′(t)), a.e. t ∈ J (1.3)

satisfying the boundary conditions (1.2) where f : J × R → R, a0, a1, b0, b1 ∈
R+, c0, c1 ∈ R and a0a1(t1−t0)+a0b1+a1b0 > 0 has been discussed in Bernfeld
and Lakshmikantham [2] for the existence of solutions and in Heikkila [9] for
the existence of the extremal solutions. Again when c0 = c1, a1 = 0 = b1, a0 =
b0, and F not depending on x′, the BVP (1.1)-(1.2) reduces to

y′′ ∈ F (t, y) a.e t ∈ J, y(t0) = y(t1). (1.4)

where y = −x. This is a BVP of second order differential inclusions considered
in Benchohra and Ntouyas [3]. Finally, the special case of the BVP consisting
of the equation

−y′′(t) ∈ F (t, y(t)), a.e t ∈ J (1.5)

satisfying the boundary conditions (1.2) has been studied in Dhage [6] and
Halidias and Papageorgiou [8] via the method of lower and upper solutions.
Thus the BVP (1.1)-(1.2) is more general and so is its importance in the theory
of differential inclusions. Here in the present paper, we discuss the BVP (1.1)-
(1.2) via a Nonlinear Alternative of Leray-Schauder type ([7], [12]) and on a
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selection theorem for lower semicontinuous maps ([4]). The paper is organized
as follows. In Section 2 we give some preliminaries needed in the sequel. In
Section 3 we prove the main existence results for the BVP (1.1)-(1.2) when
the right hand side has convex or nonconvex values.

2. Preliminaries

Let (X, d) be a metric space. For x ∈ X and Y, Z ∈ Pcl(X) we denote
by D(x, Y ) = inf{‖x − y‖ | y ∈ Y }, and ρ(Y, Z) = supa∈Y D(a, Z). Define a
function H : Pbd,cl(X)× Pbd,cl(X) → R+ by

H(A,B) = max{ρ(A,B) , ρ(B,A)}.

The function H is called a Hausdorff metric on X. Note that ‖Y ‖P =
H(Y, {0}).

A map T : X → Pf (X) is called a multi-valued mapping on X into itself. A
point u ∈ X is called a fixed point of the multi-valued operator T : X → Pf (X)
if u ∈ T (u). The fixed points set of T will be denoted by Fix(T ).

Definition 2.1. Let T : X → Pf (X) be a multi-valued operator. Then T is
called a multi-valued contraction if there exists a constant λ ∈ (0, 1) such that
for all x, y ∈ X we have

H(T (x), T (y)) ≤ λ‖x− y‖.

The constant λ is called a contraction constant of T .

Theorem 2.2. (Covitz and Nadler [5]) Let X be a complete metric space and
let T : X → Pcl(X) be a multi-valued contraction. Then the fixed point set
F(T ) of T is non-empty and closed set in X.

A multi-valued map T is closed-valued (resp. compact-valued) if Tx is
closed (resp. compact) subset of X for each x ∈ X. T is said to be bounded
on bounded sets if T (B) =

⋃
x∈B T (x) =

⋃
T (B) is a bounded subset of X for

all bounded sets B in X. T is called compact if ∪T (B) is relatively compact
for a bounded subset B of X. Finally T is called totally compact if ∪T (X)
is a compact subset of X. T is called upper semi-continuous (u.s.c.) if for
every open set N ⊂ X, the set {x ∈ X : Tx ⊂ N} is open in X. Again
T is called completely continuous if it is upper semi-continuous and totally
bounded on X. It is known that if the multi-valued compact map T has non



92 B.C. DHAGE, S.K. NTOUYAS AND D.S. PALIMKAR

empty compact values, then T is upper semi-continuous if and only if T has a
closed graph (that is xn → x∗, yn → y∗, yn ∈ Txn ⇒ y∗ ∈ Tx∗).

For more details on multivalued maps we refer the interested reader to the
book of Hu and Papageorgiou [10].

We apply the following nonlinear alternative in the sequel.

Theorem 2.3. (O’Regan [12]) Let U and U be the open and closed subsets
in a normed linear space X such that 0 ∈ U and let T : U → Pcp,cv(X) be a
completely continuous multi-valued map. Then either

(i) the operator inclusion x ∈ Tx has a solution, or
(ii) there is an element u ∈ ∂U such that λu ∈ Tu for some λ > 1, where

∂U is the boundary of U .

Corollary 2.4. Let Br(0) and Br(0) be the open and closed balls in a normed
linear space X centered at origin 0 of radius r and let T : Br(0) → Pcp,cv(X)
be a completely continuous multi-valued map. Then either

(i) the operator inclusion x ∈ Tx has a solution, or
(ii) there is an element u ∈ X such that ‖u‖ = r and λu ∈ Tu for some

λ > 1.

Corollary 2.5. Let Br(0) and Br(0) be the open and closed balls in a normed
linear space X centered at origin 0 of radius r and let T : Br(0) → X be a
completely continuous single-valued map. Then either

(i) the operator inclusion x = Tx has a solution, or
(ii) there is an element u ∈ X such that ‖u‖ = r and u = λTu for some

λ < 1.

Let A be a subset of J ×R. A is called a L⊗B-measurable if A belongs to
the σ-algebra generated by all sets of the form J × D, where J is Lebesgue
measurable set in J , D is Borel measurable set in R. A subset A of L1(J,R)
is called decomposable, if for all u, v ∈ A and J ⊂ J measurable, the function
uχJ + vχJ\J ∈ A, where χA stands for the characteristic function of A.

We need the following definitions in the sequel.

Definition 2.6. Let Y be a separable metric space and let N : Y →
Pf (L1(J,R)) be a multi-valued operator. We say N has property (BC) if

(i) N is lower semi-continuous (l.s.c.), and
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(ii) N has closed and decomposable values.

Let F : J × R → Pcp(R) be a multi-valued function. We assign to F , a
multi-valued operator S1

F : C(J,R) → Pf (L1(J,R)) defined by

S1
F (x) = {v ∈ L1(J,R) | v(t) ∈ F (t, x(t), x′(t)) a.e. t ∈ J}.

The multi-valued operator S1
F is called Nemytskii or selection operator asso-

ciated with the multi-function F .

Definition 2.7. Let F : J × R → Pcp(R) be a multi-valued function. We
say F is of lower semi-continuous type (l.s.c. type) if its associated Nemytskii
operator S1

F is lower semi-continuous and has closed and decomposable values.

Now we state a selection theorem due to Bressan and Colombo [4].

Theorem 2.8. Let Y be a separable metric space and let N : Y →
Pf (L1(J,R)) be a multi-valued operator which has property (BC). Then N has
a continuous selection, i.e., there exists a continuous function (single-valued)
g : Y → L1(J,R) such that g(y) ∈ N(y) for every y ∈ Y .

3. Existence Results

Define a norm ‖ · ‖ in AC1(J,R) by

‖x‖ = max
{

sup
t∈J

|x(t)|, sup
t∈J

|x′(t)|
}
. (3.1)

Before going to the main existence theorems of this section we give a useful
result from the theory of boundary value problems of ordinary differential
equations.

Lemma 3.1. [9, page 156] If f ∈ L1(J,R), then the BVP

−x′′(t) = f(t) a.e. t ∈ J and

{
a0x(t0)− a1x

′(t1) = c0

b0x(t0) + b1x
′(t1) = c1

(3.2)

has a unique solution x given by

x(t) = z(t) +
∫ t1

t0

G(t, s)f(s) ds, t ∈ J, (3.3)
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where z is a unique solution of the homogeneous differential equation

−x′′(t) = 0 a.e. t ∈ J and

{
a0x(t0)− a1x

′(t1) = c0

b0x(t0) + b1x
′(t1) = c1

(3.4)

given by

z(t) =
c0a1(t1 − t) + c0b1 + c1a0(t− t0) + c1b0

a0a1(t1 − t0) + a0b1 + a1b0
, t ∈ J, (3.5)

and G(t, s) is the Green’s function associated to the differential equation

−x′′(t) = 0 a.e. t ∈ J and

{
a0x(t0)− a1x

′(t1) = 0

b0x(t0) + b1x
′(t1) = 0

(3.6)

given by

G(t, s) =


(a1(t1 − t) + b1)(a0(s− t0) + b0)
a0a1(t1 − t0) + a0b1 + a1b0

, t0 ≤ s ≤ t ≤ t1,

(a1(t1 − s) + b1)(a0(t− t0) + b0)
a0a1(t1 − t0) + a0b1 + a1b0

, t0 ≤ t ≤ s ≤ t1.

(3.7)

Remark 3.1. It is known that the function z belongs to the class C1(J,R).
Therefore it is bounded on J and there is a constant C1 > 0 with

C1 = max

�
c0a1(t1 − t0) + c0b1 + c1a0(t1 − t0) + c1b0

a0a1(t1 − t0) + a0b1 + a1b0
,

c0b1 − c0a1 + c1a0 + c1b0

a0a1(t1 − t0) + a0b1 + a1b0

�

such that

‖z‖ = max
{

sup
t∈J

|z(t)|, sup
t∈J

|z′(t)|
}
≤ C1.

Remark 3.2. It is easy to see that the Green’s function G(t, s) of Lemma 3.1
is continuous in J×J and Gt(t, s) is continuous in (a, b)×(a, b)\{(t, t) | t ∈ J}
and satisfy the inequalities

|G(t, s)| = G(t, s) ≤ (a1(t1 − t0) + b1)(a0(t1 − t0) + b0)
a0a1(t1 − t0) + a0b1 + a1b0

= K1, (3.8)
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and

|Gt(t, s)| =


| − a1|(a0(s− t0) + b0)

a0a1(t1 − t0) + a0b1 + a1b0
, t0 < s < t < t1,

(a1(t1 − s) + b1)a0

a0a1(t1 − t0) + a0b1 + a1b0
t0 < t < s < t1

= max
{

a1(a0(t1 − t0) + b0)
a0a1(t1 − t0) + a0b1 + a1b0

,
(a1(t1 − t0) + b1)a0

a0a1(t1 − t0) + a0b1 + a1b0

}
= K2.

(3.9)

3.1. Convex Case. Consider first the case when F is a convex-valued multi-
valued map. We need the following definitions in the sequel.

Definition 3.3. A multi-valued map F : J → Pcp,cv(R) is said to be measur-
able if for every y ∈ R, the function t→ d(y, F (t)) = inf{‖y − x‖ : x ∈ F (t)}
is measurable.

Definition 3.4. A multi-valued map F : J × R × R → Pf (R) is called
Carathéodory if

(i) t 7→ F (t, x, y) is measurable for all x, y ∈ R, and
(ii) (x, y) 7→ F (t, x, y) is upper semi-continuous for almost all t ∈ J.

Further a Carathéodory multi-valued function F on J × R is called L1-
Carathéodory if

(iii) for each real number k > 0, there exists a function hk ∈ L1(J,R) such
that

‖F (t, x, y)‖P = sup
{
|v| : v ∈ F (t, x, y)

}
≤ hk(t), a.e. t ∈ J

for all x, y ∈ R with |x| ≤ k, |y| ≤ k.

Then we have the following lemmas due to Lasota and Opial [11].

Lemma 3.2. If dim(X) < ∞ and F : J × X × X → Pcp,cv(X) L1-
Carathéodory, then S1

F (x) 6= ∅ for each x ∈ X.

Lemma 3.3. Let X be a Banach space, F an L1-Carathéodory multi-valued
map with S1

F 6= ∅ and L : L1(J,X) → C(J,X) be a linear continuous mapping.
Then the operator

L ◦ S1
F : C(J,X) −→ Pcp,cv(C(J,X))
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is a closed graph operator in C(J,X)× C(J,X).

We list here the following assumptions:

(H1) The multi F (t, x, y) has compact and convex values for each (t, x, y) ∈
J × R× R.

(H2) F is Carathéodory.
(H3) There exists a function φ ∈ L1(J,R) with φ(t) > 0 for a.e. t ∈ J and

there is a nondecreasing function ψ : R+ → (0,∞) such that

‖F (t, x, y)‖P = sup{|u| : u ∈ F (t, x, y)} ≤ φ(t)ψ
(
max{|x|, |y|}

)
for a.e. t ∈ J and for all x, y ∈ R.

Theorem 3.5. Assume that (H1)-(H3) hold. Suppose that there is a real
number r > 0 such that

r > C1 + max{K1, K2}‖φ‖L1ψ(r), (3.10)

where C1,K1 and K2 are the constants defined in Remark 3.2. Then the BVP
(1.1)- (1.2) has at least one solution u such that ‖u‖ ≤ r.

Proof. Let X = AC1(J,R) and consider an open ball Br(0) centered at origin
of radius r, where r satisfies the condition given in (3.10). The problem of
existence of a solution of BVP (1.1)-(1.2) reduces to finding the solution of
the integral inclusion

x(t) ∈ z(t) +
∫ t1

t0

G(t, s)F (s, x(s), x′(s)) ds, t ∈ J. (3.11)

Define a multi-valued map T : Br(0) → Pf (AC1(J,R)) by

Tx =
{
u ∈ AC1(J,R) : u(t) = z(t) +

∫ t1

t0

G(t, s)v(s)ds, v ∈ S1
F (x)

}
.

(3.12)
We shall show that the multi T satisfies all the conditions of Corollary 2.4.
The proof will be given in several steps.

Step I. We prove that Tx is a convex subset of AC1(J,R) for each x ∈
AC1(J,R). Let u1, u2 ∈ Tx. Then there exist v1 and v2 in S1

F (x) such that

uj(t) = z(t) +
∫ t1

t0

G(t, s)vj(s) ds, j = 1, 2.
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Since F (t, x, y) has convex values for all x, y ∈ R, one has for 0 ≤ k ≤ 1

[kv1 + (1− k)v2](t) ∈ S1
F (x)(t), ∀t ∈ J.

As a result we have

[ku1 + (1− k)u2](t) = z(t) +
∫ t1

t0

G(t, s)[kv1(s) + (1− k)v2(s)] ds.

Therefore [ku1 + (1 − k)u2] ∈ Tx and consequently T has convex values in
AC1(J,R).

Step II. T maps bounded sets into bounded sets in AC1(J,R). To see this,
let B be a bounded set in AC1(J,R). Then there exists a real number q > 0
such that ‖x‖ ≤ q,∀x ∈ B.

Now for each u ∈ Tx, there exists a v ∈ S1
F (x) such that

u(t) = z(t) +
∫ t1

t0

G(t, s)v(s)ds.

Then for each t ∈ J,

|u(t)| ≤ |z(t)|+
∫ t1

t0

|G(t, s)||v(s)| ds

≤ |z(t)|+
∫ t1

t0

|G(t, s)|φ(s)ψ
(
max{|x(t)|, |x′(t)|}

)
ds.

Again,

|u′(t)| ≤ |z′(t)|+
∫ t1

t0

|Gt(t, s)||v(s)| ds

≤ |z′(t)|+
∫ t1

t0

|Gt(t, s)|φ(s)ψ
(
max{|x(t)|, |x′(t)|}

)
ds.

This further implies that

‖u‖ = max
t∈J

{|x(t), |x′(t)|}

≤ max
t∈J

max{|z(t)|, |z′(t)|}

+
∫ t1

t0

max
t,s∈J

{|G(t, s)|, |Gt(t, s)|}φ(s)ψ
(
max{|x(s)|, |x′(s)|}

)
ds

≤ C1 + max{K1, K2}‖φ‖L1ψ(q)

for all u ∈ Tx ⊂
⋃
T (B). Hence

⋃
T (B) is bounded.
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Step III. Next we show that T maps bounded sets into equi-continuous
sets. Let B be a bounded set as in step II, and u ∈ Tx for some x ∈ B. Then
there exists v ∈ S1

F (x) such that

u(t) = z(t) +
∫ t1

t0

G(t, s)v(s) ds.

Then for any t, τ ∈ J , we have

|u(t) − u(τ)|

≤ |z(t)− z(τ)|+
∣∣∣∣∫ t2

t1

G(t, s)v(s) ds−
∫ t2

t0

G(τ, s)v(s) ds
∣∣∣∣

≤ |z(t)− z(τ)|+
∫ t1

t0

|G(t, s)−G(τ, s)| |v(s)| ds

≤ |z(t)− z(τ)|+
∫ t1

t0

|G(t, s)−G(τ, s)|φ(s)ψ
(
max{|x(s)|, |x′(s)|}

)
ds

≤ |z(t)− z(τ)|+
∫ t1

t0

|G(t, s)−G(τ, s)|φ(s)ψ(q) ds.

Similarly we have

|u′(t)− u′(τ)| ≤ |z′(t)− z′(τ)|+
∫ t1

t0

|Gt(t, s)−Gt(τ, s)| .

Therefore from the above two estimates, it follows that

max{|u(t)− u(τ)|, |u′(t)− u′(τ)|} → 0, as t→ τ.

As a result
⋃
T (B) is an equi-continuous set in AC1(J,R). Now an application

of Arzelá-Ascoli theorem yields that the multi T is completely continuous
operator on AC1(J,R).

Step IV. Next we prove that T has a closed graph. Let {xn} ⊂ AC1(J,R)
be a sequence such that xn → x∗ and let {yn} be a sequence defined by
yn ∈ Txn for each n ∈ N such that yn → y∗. We must show that y∗ ∈ Tx∗.

Since yn ∈ Txn, there exists a vn ∈ S1
F (xn) such that

yn(t) = z(t) +
∫ t1

t0

G(t, s)vn(s) ds.
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Consider the linear and continuous operator L : L1(J,R) → AC1(J,R) defined
by

Lv(t) =
∫ t1

t0

G(t, s)v(s) ds.

Now

max
t∈J

{|yn(t)− z(t)− (y∗(t)− z(t))| , |y′n(t)− z′(t)− (y′∗(t)− z′(t))|}

≤ max
t∈J

{|yn(t)− y∗(t)|, |y′n(t)− y′∗(t)|}

= ‖yn − y∗‖ → 0 as n→∞.

From Lemma 3.2 it follows that (K ◦ S1
F ) is a closed graph operator and from

the definition of L one has

yn − z ∈ (L ◦ S1
F (xn)).

As xn → x∗ and yn → y∗, there is a v∗ ∈ S1
F (x∗) such that

y∗(t) = z(t) +
∫ t1

t0

G(t, s)v∗(s)ds.

Hence the multi T is an upper semi-continuous operator on Br(0).
Thus, T is an upper semi-continuous and compact operator on Br(0). Now

an application of Corollary 2.4 yields that either (i) the operator inclusion
x ∈ Tx has a solution in Br(0), or (ii) there is an element u ∈ X with ‖u‖ = r

such that λu ∈ Tu for some λ > 1. We show that the assertion (ii) is not
possible. Assume the contrary. Then proceeding with the arguments as in
Step II, we obtain

r = ‖u‖ ≤ C1 + max{K1, K2}‖φ‖L1ψ(r),

which is a contradiction to (3.10). Hence BVP (1.1) -(1.2) has a solution u on
J such that ‖u‖ ≤ r. �

3.2. Nonconvex Case. Now, we study the case when F is not necessarily
convex valued. We give two results. The first, Theorem 3.6, based on Covitz
and Nadler fixed point theorem, and the second, Theorem 3.7, based on the
Leray-Schauder Alternative for single valued maps combined with a selection
theorem due to Bressan and Colombo [4] for lower semicontinuous multivalued
operators with decomposable values.

The following assumptions will be needed in the sequel.
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(H4) The multi-valued function t 7→ F (t, x, y) is measurable and integrably
bounded for all x, y ∈ R.

(H5) The multi-function F : J × R× R → Pcl(R) satisfies

H(F (t, x1, y1), F (t, x2, y2)) ≤ `1(t)|x1 − y1|+ `2(t)|x2 − y2| a.e. t ∈ J

for all x1, x2, y1, y2 ∈ R, where `1, `2 are integrable functions.
(H6) The multi-function F : J × R× R → Pcp(R) satisfies:

(a) (t, x, y) 7→ F (t, x, y) is (L ⊗ B ⊗ B)-measurable, and
(b) (x, y) 7→ F (t, x, y) is lower semi-continuous for almost every t ∈ J .

Lemma 3.4. Let F : J×R×R → Pcp(R) be an integrably bounded multi-valued
function satisfying (H6). Then F is of lower semi-continuous type.

First, we prove an existence result for BVP (1.1)-(1.2) under a Lipschitz
condition on multi-valued function F .

Theorem 3.6. Assume that the hypotheses (H4) and (H5) hold and suppose
that

(‖`1‖L1 + ‖`2‖L1) max{K1, K2} < 1,

where K1 and K2 are given in Remark 3.2. Then the BVP (1.1)-(1.2) has at
least one solution on J.

Proof. First, we transform the BVP (1.1)-(1.2) into a fixed point inclusion
problem in a suitable Banach space. Let X = C1(J,R) be equipped with the
norm given by (3.2). ThenX is a Banach space with this norm. Define a multi-
valued operator T on X by (3.12). Then the BVP (1.1)-(1.2) is equivalent to
the operator inclusion

x(t) ∈ Tx(t), t ∈ J. (3.13)

We will show that the multi-valued operator T satisfies all the conditions of
Theorem 2.2. Clearly the operator T is well defined since S1

F (x) 6= ∅ for each
x ∈ X.

First we show that Tx is closed subset of X for each x ∈ X. This follows
easily if we show the values of Nemytskii operator S1

F has closed values in
L1(J,R). Let {wn} be a sequence in L1(J,R) converging to a point w. Then
wn → w in measure, and so, there exists a subsequence S of positive integers
with wn converging a.e. to w as n→∞ through S. Now since (H4) holds, the
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values of S1
F are closed in L1(J,R). Thus for each x ∈ X, we have that Tx is

non-empty and closed subset of X.
Next we show that T is a multi-valued contraction on X. Let x, y ∈ X and

let u1 ∈ T (x). Then u1 ∈ X and u1(t) = z(t) +
∫ t1

t0

k(t, s)v1(s) ds for some

v1 ∈ S1
F (x). From hypothesis (H5) it follows that

H(F (t, x(t), x′(t)), F (t, y(t), y′(t)) ≤ `1(t)|x(t)− y(t)|+ `2(t)|x′(t)− y′(t)|.

Hence there is w ∈ F (t, y(t), y′(t)) such that

|v1(t)− w| ≤ `1(t)|x(t)− y(t)|+ `2(t)|x′(t)− y′(t)|.

Thus the multi-valued operator U defined by U(t) = S1
F (y)(t) ∩ K(t) t ∈ J ,

where K(t) is given by

K(t) =
{
w| |v1(t)− w| ≤ `1(t)|x(t)− y(t)|+ `2(t)|x′(t)− y′(t)|

}
,

has nonempty values and is measurable. Let v2 be a measurable selection for
U (which does exist by Kuratowski-Ryll-Nardzewski’s selection theorem. See
[1]). Then v2 ∈ F (t, y(t), y′(t)) and

|v1(t)− v2(t)| ≤ `1(t)|x(t)− y(t)|+ `2(t)|x′(t)− y′(t)| for a.e. t ∈ J.

Define u2(t) = z(t) +
∫ t1

t0

k(t, s)v2(s) ds. It follows that u2 ∈ Tx and

|u1(t)− u2(t)| ≤
∣∣∣∣∫ t1

t0

k(t, s)v1(s) ds−
∫ t1

t0

k(t, s)v2(s) ds
∣∣∣∣

≤
∫ t1

t0

|k(t, s)||v1(s)− v2(s)| ds

≤
∫ t1

t0

k(t, s)
[
`1(t)|x(t)− y(t)|+ `2(t)|x′(t)− y′(t)|

]
ds

≤ K1 (‖`1‖L1 + ‖`2‖L1)‖x− y‖.

Similarly we have

|u′1(t)− u′2(t)| ≤ K2(‖`1‖L1 + ‖`2‖L1)‖x− y‖.

Therefore,

‖u1 − u2‖ ≤ (‖`1‖L1 + ‖`2‖L1) max{K1, K2}‖x− y‖.
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From this, and the analogous inequality obtained by interchanging the roles
of x and y we obtain

H(T (x), T (y)) ≤ (‖`1‖L1 + ‖`2‖L1) max{K1, K2}‖x− y‖,

for all x, y ∈ X. This shows that T is a multi-valued contraction since (‖`1‖L1+
‖`2‖L1) max{K1, K2} < 1. Now an application of Theorem 2.2 yields that T
has a fixed point which further implies that the BVP (1.1)-(1.2) has a solution
on J . �

Now, we prove our second existence result for BVP (1.1)-(1.2).

Theorem 3.7. Assume that the hypotheses (H3)-(H6) hold and there exists a
real number r > 0 satisfying

r > C1 + max{K1, K2}‖φ‖L1ψ(r), (3.14)

where C1,K1 and K2 are the constants defined in Remark 3.2. Then the BVP
(1.1)-(1.2) has at least one solution on J.

Proof. First, we transform the BVP (1.1)-(1.2) into a fixed point problem in
a suitable normed linear space. The problem of existence of a solution of BVP
(1.1)- (1.2) reduces to finding a solution of the integral equation

x(t) = z(t) +
∫ t1

t0

k(t, s)f(x(s)) ds, t ∈ J, (3.15)

where f(x(·)) ∈ L1 with f(x(t)) ∈ F (t, x(t), x′(t)) a.e. t ∈ J (this is a conse-
quence of (H3), (H6) and Theorem 2.8). We study the integral equation (3.15)
in the space AC1(J,R). Let X = AC1(J,R) and define an open ball Br(0) in
X centered at origin 0 of radius r, where the real number r > 0 satisfies the
inequality (3.12). Define the operator T on Br(0) by

Tx(t) = z(t) +
∫ t1

t0

k(t, s)f(x((s))) ds. (3.16)

Then the integral equation (3.15) is equivalent to the operator equation

x(t) = Tx(t), t ∈ J. (3.17)

We will show that the multi-valued operator T satisfies all the conditions of
Corollary 2.5.



BOUNDARY VALUE PROBLEMS OF DIFFERENTIAL INCLUSIONS 103

First, we show that T is continuous on Br(0). Since (H3) holds, we have

|f(x(t))| ≤ φ(t)ψ(max{|x(t) , |x′(t)|}) a.e. t ∈ J

for all x ∈ AC1(J,R). Let {xn} be a sequence in Br(0) converging to a point
x ∈ Br(0). Then

|f(xn(t))| ≤ φ(t)ψ(r) a.e. t ∈ J.

Hence by the dominated convergence theorem and continuity of f , we obtain

lim
n→∞

Txn(t) = z(t) +
∫ t1

t0

G(t, s)f(xn((s))) ds

= z(t) +
∫ t1

t0

G(t, s)f(x((s))) ds

= Tx(t)

and

lim
n→∞

(Txn)′(t) = z′(t) +
∫ t1

t0

Gt(t, s)f(xn((s))) ds

= z′(t) +
∫ t1

t0

Gt(t, s)f(x((s))) ds

= (Tx)′(t)

for all t ∈ J . As a result, T is continuous on Br(0). Next following the
arguments as in the proof of Theorem 3.5 with appropriate modifications, it is
shown that T is a compact operator on Br(0). Now an application of Corollary
2.5 yields that either (i) the operator equation x = Tx has a solution in Br(0),
or (ii) there is an element u ∈ X such that ‖u‖ = r and u = λTu for some
λ ∈ (0, 1). If the assertion (ii) holds, then we obtain a contradiction to (3.12).
Hence assertion (i) holds and the BVP (1.1)-(1.2) has a solution u ∈ AC1(J,R)
such that ‖u‖ ≤ r. This completes the proof. �
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