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1. INTRODUCTION

Let R denote the real line and let P¢(R) denote the class of all non-empty
subsets of R with a property f. In particular, Py(R), Ppy(R), Pey(R), and
Pep(R) denote respectively the classes of closed, bounded, convex and compact
subsets of R. Similarly P pq(R) and Pep o (R) denote respectively the classes
of all closed-bounded and compact-convex subsets of R. Let J = [to, t1] be a
closed and bounded interval in R for some real numbers tg, {1 € R with {5 < t7.
Now consider the two point boundary value problem (in short BVP) of second

order differential inclusions

—a"(t) e F(t,x(t),2'(t)) ae teJ (1.1)
89
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satisfying the boundary conditions
aoa?(to) — alzx’(tl) = Co}

bOJJ(to) + bll',(tl) =C1 (12)

where the function and the constants involved in (1.1) and (1.2) satisfy the
following properties:

(a) F:JxRxR— PsR),

(b) ag,a1,bp, by € RT satisfying agpai(t; — to) + apby + arbg > 0 and

(c) co,c1 €R.

By a solution of BVP (1.1)-(1.2) we mean a function z € AC*(J,R) whose
second derivative exists and is a member of L!(J,R) in F(¢,x,2'), i.e. there
exists a v € LY(J,R) such that v(t) € F(t,x(t),2'(t)) for a.e t € J, and
—2"(t) = v(t) for all t € J satisfying (1.2), where AC'(J,R) is the space of
continuous real-valued functions whose first derivative exists and is absolutely
continuous on J.

The special cases of the BVP (1.1)-(1.2) have been discussed in the literature
for existence of the solutions. The special case of the form

—2"(t) = f(t,z(t),2'(t), ae. teJ (1.3)

satisfying the boundary conditions (1.2) where f: J x R — R, ag, a1, bg, b1 €
Ry, co,c1 € Rand agaq (t1 —to)+apbi+a1bp > 0 has been discussed in Bernfeld
and Lakshmikantham [2] for the existence of solutions and in Heikkila [9] for
the existence of the extremal solutions. Again when ¢y = ¢1,a1 =0 =b1,a¢ =
by, and F not depending on 2, the BVP (1.1)-(1.2) reduces to

y' e F(t,y) aeteJ, y(to) =y(t). (1.4)

where y = —z. This is a BVP of second order differential inclusions considered
in Benchohra and Ntouyas [3]. Finally, the special case of the BVP consisting
of the equation

—y"(t) € F(t,y(t)), aeteJ (1.5)
satisfying the boundary conditions (1.2) has been studied in Dhage [6] and
Halidias and Papageorgiou [8] via the method of lower and upper solutions.
Thus the BVP (1.1)-(1.2) is more general and so is its importance in the theory
of differential inclusions. Here in the present paper, we discuss the BVP (1.1)-
(1.2) via a Nonlinear Alternative of Leray-Schauder type ([7], [12]) and on a
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selection theorem for lower semicontinuous maps ([4]). The paper is organized
as follows. In Section 2 we give some preliminaries needed in the sequel. In
Section 3 we prove the main existence results for the BVP (1.1)-(1.2) when
the right hand side has convex or nonconvex values.

2. PRELIMINARIES

Let (X,d) be a metric space. For z € X and Y,Z € P,(X) we denote
by D(z,Y) = inf{|jz —y|| | y € Y}, and p(Y, Z) = sup,cy D(a, Z). Define a
function H : Pbd,cl(X) X Pbd,cl(X) — R* by

H(A,B) =max{p(A,B), p(B,A)}.

The function H is called a Hausdorff metric on X. Note that ||Y|p =
H(Y,{0}).

Amap T : X — P(X) is called a multi-valued mapping on X into itself. A
point u € X is called a fixed point of the multi-valued operator T': X — P(X)
if u € T'(u). The fixed points set of T" will be denoted by Fiz(T).

Definition 2.1. Let T : X — Py(X) be a multi-valued operator. Then T is
called a multi-valued contraction if there exists a constant \ € (0,1) such that
for all x,y € X we have

H(T(x), T(y)) < Mz —yll.
The constant X\ is called a contraction constant of T'.

Theorem 2.2. (Covitz and Nadler [5]) Let X be a complete metric space and
let T : X — Py(X) be a multi-valued contraction. Then the fized point set
F(T) of T is non-empty and closed set in X.

A multi-valued map T is closed-valued (resp. compact-valued) if Tz is
closed (resp. compact) subset of X for each z € X. T is said to be bounded
on bounded sets if T'(B) = J,c5 T(x) = [JT(B) is a bounded subset of X for
all bounded sets B in X. T is called compact if UT'(B) is relatively compact
for a bounded subset B of X. Finally T is called totally compact if UT'(X)
is a compact subset of X. T is called upper semi-continuous (u.s.c.) if for
every open set N C X, the set {x € X : Tx C N} is open in X. Again

T is called completely continuous if it is upper semi-continuous and totally
bounded on X. It is known that if the multi-valued compact map T has non
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empty compact values, then 7" is upper semi-continuous if and only if 7" has a
closed graph (that is x, — Zx, Yn — Yu, Yn € Txp = ys € Txy).

For more details on multivalued maps we refer the interested reader to the
book of Hu and Papageorgiou [10].

We apply the following nonlinear alternative in the sequel.

Theorem 2.3. (O'Regan [12]) Let U and U be the open and closed subsets
in a normed linear space X such that 0 € U and let T : U — Pep,ev(X) be a
completely continuous multi-valued map. Then either
(i) the operator inclusion x € Tz has a solution, or
(ii) there is an element w € OU such that Au € Tu for some X\ > 1, where
oU is the boundary of U.

Corollary 2.4. Let B,(0) and B,(0) be the open and closed balls in a normed

linear space X centered at origin 0 of radius v and let T : B,(0) — Pepev(X)
be a completely continuous multi-valued map. Then either

(i) the operator inclusion x € Tz has a solution, or
(ii) there is an element u € X such that ||u|| = r and A € Tu for some
A> 1.

Corollary 2.5. Let B,-(0) and B,(0) be the open and closed balls in a normed

linear space X centered at origin O of radius r and let T : B,(0) — X be a
completely continuous single-valued map. Then either

(i) the operator inclusion x = Tz has a solution, or
(ii) there is an element uw € X such that ||u|| = r and v = XT'u for some
A<

Let A be a subset of J x R. A is called a £ ® B-measurable if A belongs to
the o-algebra generated by all sets of the form J x D, where J is Lebesgue
measurable set in .J, D is Borel measurable set in R. A subset A of L'(J,R)
is called decomposable, if for all u,v € A and J C J measurable, the function
Uy, + 0y, € A, where x4 stands for the characteristic function of A.

We need the following definitions in the sequel.

Definition 2.6. Let Y be a separable metric space and let N : Y —
Ps(L(J,R)) be a multi-valued operator. We say N has property (BC) if

(i) N is lower semi-continuous (l.s.c.), and
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(ii) N has closed and decomposable values.

Let F' : J x R — Pg(R) be a multi-valued function. We assign to F, a
multi-valued operator S}. : C(J,R) — P(L'(J,R)) defined by

Sh(z) = {v € L*J,R) | v(t) € F(t,x(t),2'(t) ae. t € J}.

The multi-valued operator S}; is called Nemytskii or selection operator asso-

ciated with the multi-function F'.

Definition 2.7. Let F' : J x R — P (R) be a multi-valued function. We
say F is of lower semi-continuous type (l.s.c. type) if its associated Nemytskii

operator S}; 18 lower semi-continuous and has closed and decomposable values.
Now we state a selection theorem due to Bressan and Colombo [4].

Theorem 2.8. Let Y be a separable metric space and let N : 'Y —
P¢(LY(J,R)) be a multi-valued operator which has property (BC). Then N has
a continuous selection, i.e., there exists a continuous function (single-valued)
g:Y — LY(J R) such that g(y) € N(y) for everyy €Y.

3. EXISTENCE RESULTS

Define a norm || - || in AC(J,R) by

Jall = max{sup|x<t>\,sup\x’<t>\}. (3.1)
teJ teJ

Before going to the main existence theorems of this section we give a useful
result from the theory of boundary value problems of ordinary differential

equations.

Lemma 3.1. [9, page 156] If f € L'(J,R), then the BVP

—"(t) = f(t) ace. teT  and aalto) —ara'(h) = co (3.2)
a - box(to) + b1z’ (t1) = 1 )

has a unique solution x given by

z(t) = 2(t) + ! G(t,s)f(s)ds, teJ, (3.3)

to
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where z is a unique solution of the homogeneous differential equation

” ao:E(t()) — ala:’(tl) = C)
—2'(t) =0 ae. teJ and , (3.4)
bo.fc(t()) + bz (tl) =C
given by
t1 —1© b t—1 b
A(t) = coa1(t1 —t) + coby + crap(t —to) + 1 0O el (3.5)
apai (t1 — to) + apb1 + a1bo
and G(t,s) is the Green’s function associated to the differential equation
aofb(to) - alx/(tl) =0
—2"(t)=0 ae. t€J and , (3.6)
bol’(to) + bz (tl) =0

given by

(al(tl — t) —+ bl)(ao(s — to) + bg)

L to<s<t<t,
O I R o (37)
(a1(t1 — s) +b1)(ao(t — to) + bo) o <t<s<t.
a0a1(t1 - t(]) + a(]bl + albo

Remark 3.1. Tt is known that the function z belongs to the class C1(J,R).
Therefore it is bounded on J and there is a constant C7 > 0 with

{Coa1(t1 —to) + cob1 + crao(t1 — to) + c1bo  cobi — coar + crao + cibo }
C1 = max s
aoar (t1 — to) + aobr + a1bo aoai (t1 — to) + aobr + arbo

such that
lz]| = max {Sup |z(t)], sup |z'(t)|} < (.
teJ teJ

Remark 3.2. It is easy to see that the Green’s function G(¢, s) of Lemma 3.1
is continuous in J x J and Gy(t, s) is continuous in (a,b) X (a,b)\{(t,t) |t € J}

and satisfy the inequalities

(al(tl — to) + bl)(ag(tl — to) + bg)

G(t, =G(t,s) <
‘ ( S)| ( S) apaq (tl — t()) + agb1 + a1bg

— K1,  (38)
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and
| — a1](ao(s — to) + bo)
apal (tl - to) + aobl + albo,
(a1(t1 —s) + b1)ag
apay(t1 — to) + agbr + arboy

_ { aq(ap(ty — to) + bo) (a1(t1 —to) + b1)ao }
= Imax )
apa (tl — to) + agby + a1by’ agaq (tl — to) + agby + a1bg

to <s<t<ty,
‘Gt(ta S)’ -

to<t<s<ty

= K.
(3.9)

3.1. Convex Case. Consider first the case when F' is a convex-valued multi-
valued map. We need the following definitions in the sequel.

Definition 3.3. A multi-valued map F : J — Pep cv(R) is said to be measur-

able if for every y € R, the function t — d(y, F(t)) = inf{|ly — z|| : x € F(t)}
s measurable.

Definition 3.4. A multi-valued map F : J x R x R — P¢(R) is called
Carathéodory if
(1) t— F(t,z,y) is measurable for all z,y € R, and

(i) (x,y) — F(t,z,y) is upper semi-continuous for almost all t € J.

Further a Carathéodory multi-valued function F on J x R is called L'-
Carathéodory if

(iii) for each real number k > 0, there exists a function hy € L*(J,R) such
that

|F(t,z,y)|lp =sup{|v] : v € F(t,z,y)} < hi(t), ae teJ
for all x,y € R with |z| < k,|y| < k.
Then we have the following lemmas due to Lasota and Opial [11].

Lemma 3.2. If dim(X) < oo and F : J x X x X — Peep(X) Li-
Carathéodory, then Sk(z) # 0 for each x € X.

Lemma 3.3. Let X be a Banach space, F an L'-Carathéodory multi-valued
map with Sk # 0 and £ : LY(J, X) — C(J, X) be a linear continuous mapping.
Then the operator

Lo S}; : C(J,X) — Pcp,cv(C(J7X))
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is a closed graph operator in C(J, X) x C(J, X).

We list here the following assumptions:

(H1) The multi F(t,x,y) has compact and convex values for each (¢, x,y) €
J xR xR.

(Hsy) F is Carathéodory.

(H3) There exists a function ¢ € L'(J,R) with ¢(t) > 0 for a.e. t € J and
there is a nondecreasing function 1 : Rt — (0, 00) such that

1F(t, 2, y)llp = sup{lul : we F(t,z,y)} < ¢(t)y(max{|z], |y[})

for a.e. t € J and for all z,y € R.

Theorem 3.5. Assume that (Hy)-(Hs) hold. Suppose that there is a real

number r > 0 such that
r > Cy + max{Ky, Ko}||p|19(r), (3.10)

where C1, K1 and Ko are the constants defined in Remark 3.2. Then the BVP
(1.1)- (1.2) has at least one solution u such that ||ul| <.

Proof. Let X = AC'(J,R) and consider an open ball B,.(0) centered at origin
of radius r, where r satisfies the condition given in (3.10). The problem of
existence of a solution of BVP (1.1)-(1.2) reduces to finding the solution of
the integral inclusion

t1

x(t) € 2(t) + G(t,s)F(s,x(s),2'(s))ds, t € J. (3.11)

Define a multi-valued map T : B,(0) — P;(AC(J,R)) by
t1 I
Tz = {u € ACY(J,R) s u(t) = 2(t) + G(t,s)v(s)ds, v € Sll;(:c)} .
to
(3.12)
We shall show that the multi T satisfies all the conditions of Corollary 2.4.

The proof will be given in several steps.

Step I. We prove that Tz is a convex subset of AC'(J,R) for each z €
AC'(J,R). Let ug,ug € Tx. Then there exist vy and ve in Sh(z) such that

w(t) =20+ [ Gt s);(s)ds, j=1,2.

to
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Since F'(t,x,y) has convex values for all x,y € R, one has for 0 <k <1
[kvr + (1 — k)wo](t) € Sp(x)(t), Vt e J.

As a result we have
[kur + (1 — k)ug](t) = 2(t) + ttl G(t,s)[kvi(s) + (1 — k)va(s)] ds.

Therefore [ku; + (1 — k)uz] € Tx and consequently T' has convex values in
ACY(J,R).

Step II. T maps bounded sets into bounded sets in AC*(J,R). To see this,
let B be a bounded set in AC!(J,R). Then there exists a real number q > 0
such that ||z|| < ¢,Vx € B.

Now for each u € Tz, there exists a v € Sk(z) such that

u(t) = 2(t) + 1 G(t, s)v(s)ds.

to

Then for each t € J,

u(t)] < Z(t)|+/1\G(t78)Hv(S)!dS

to

< =@+ /t 1 |G(t, 5)|6(s)y (max{|z(t)], |2'(£)[}) ds.
Again,
/()] < IZ’(t)IJr/l!Gt(tys)llv(S)!dS

to

< IZ'(t)|+/1IGt(t,S)I¢(S)¢(max{lfv(t)|,I:E’(t)l}) ds.

to
This further implies that
= t), |2'(t
lull = max{lz(?), ["(£)I}
< B, 12(t
< maxmax{|z(t)], |2()l}
t1

+ [ max{|G(t, )], |Ge(t, 5)|}o(s)y (max{|z(s)], |2"(s)l}) ds

tO t,sEJ
< C1 + max{ K1, Ko} 9] 114(q)
for all w € Tx C |JT'(B). Hence |JT'(B) is bounded.
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Step III. Next we show that T" maps bounded sets into equi-continuous
sets. Let B be a bounded set as in step II, and u € Tz for some x € B. Then
there exists v € Sk (x) such that

Then for any ¢, 7 € J, we have

u(t) = u(7)|
< z2(t) = 2(7)| + t 2 G(t,s)v(s)ds — t ) G(r,s)v(s)ds
< fz(t) = 2(7)] +/t [6(t5) = G(r )| Jo(s)] ds

< IZ(t)Z(T)|+/1|G(t,5)G(TaS)ch(SW(maX{Iw(S)\vIﬂf’(S)I}) ds

to

< IZ(t)—Z(T)H/1IG(taS)—G(Tvs)W(S)l/f(Q)dS-

to
Similarly we have
t1
W' (t) — /(1) < |2 (t) = 2/(7)] +/ |Gi(t, s) — Gi(T, )]
to

Therefore from the above two estimates, it follows that
max{|u(t) — u(7)], |u'(t) — v/ (7)]} =0, as t — 7.

As aresult | JT(B) is an equi-continuous set in AC*(J,R). Now an application
of Arzela-Ascoli theorem yields that the multi T is completely continuous
operator on AC(J,R).

Step IV. Next we prove that T has a closed graph. Let {z,} € AC(J,R)
be a sequence such that z,, — xz, and let {y,} be a sequence defined by
Yn € Tz, for each n € N such that y, — y.. We must show that y, € Txz,.
Since yy, € Ty, there exists a v, € Sk(zy,) such that

t1

yn(t) = 2(t) + G(t, s)vn(s) ds.

to
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Consider the linear and continuous operator £ : L'(J,R) — AC*(J,R) defined
by

t1
Lo(t) = G(t,s)v(s)ds.
to
Now

max{[yn(t) — 2(8) = (y=(£) = 2(E))]. lyn(8) = 2'(1) = (WL 8) = =" ()]}
< max{[ya(t) = y«(D)], [y (t) — yL (D)}
= [lyn —y«ll = 0 as n — oo.

From Lemma 3.2 it follows that (K o S},) is a closed graph operator and from
the definition of £ one has

Yn — 2 € (‘C osi%(xn))'

As x, — z, and y,, — y«, there is a v, € S}p(a:*) such that

y«(t) = 2(t) + 1 G(t, s)vs(s)ds.

to

Hence the multi T is an upper semi-continuous operator on 5, (0).

Thus, T is an upper semi-continuous and compact operator on m Now
an application of Corollary 2.4 yields that either (i) the operator inclusion
x € T has a solution in B,(0), or (ii) there is an element u € X with |ju| = r
such that Au € Tu for some A > 1. We show that the assertion (ii) is not
possible. Assume the contrary. Then proceeding with the arguments as in

Step 1II, we obtain
r=|ull < C1 4+ max{K1, Ka}||¢| p19(r),

which is a contradiction to (3.10). Hence BVP (1.1) -(1.2) has a solution u on
J such that ||u| < r. O

3.2. Nonconvex Case. Now, we study the case when F' is not necessarily
convex valued. We give two results. The first, Theorem 3.6, based on Covitz
and Nadler fixed point theorem, and the second, Theorem 3.7, based on the
Leray-Schauder Alternative for single valued maps combined with a selection
theorem due to Bressan and Colombo [4] for lower semicontinuous multivalued
operators with decomposable values.

The following assumptions will be needed in the sequel.
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(H4) The multi-valued function ¢ +— F'(t,x,y) is measurable and integrably
bounded for all z,y € R.
(Hs) The multi-function F': J x R x R — P,(R) satisfies

H(F(t,xl,yl),F(t,:cg,yg)) < el(t)‘l'l — yl\ + eg(t)lxg — y2] ae. teJ

for all x1,x2,y1,y2 € R, where £1, {5 are integrable functions.
(Hs) The multi-function F': J x R x R — P, (R) satisfies:
(a) (t,z,y) — F(t,x,y) is (L ® B ® B)-measurable, and
(b) (z,y) — F(t,z,y) is lower semi-continuous for almost every ¢ € .J.

Lemma 3.4. Let F : JXRXR — Pgp(R) be an integrably bounded multi-valued

function satisfying (Hg). Then F is of lower semi-continuous type.

First, we prove an existence result for BVP (1.1)-(1.2) under a Lipschitz

condition on multi-valued function F'.

Theorem 3.6. Assume that the hypotheses (Hy) and (Hs) hold and suppose
that

(Heallr + 2]l 1) max{K7, Ka} <1,
where K1 and Ky are given in Remark 3.2. Then the BVP (1.1)-(1.2) has at

least one solution on J.

Proof. First, we transform the BVP (1.1)-(1.2) into a fixed point inclusion
problem in a suitable Banach space. Let X = C'(J,R) be equipped with the
norm given by (3.2). Then X is a Banach space with this norm. Define a multi-
valued operator T on X by (3.12). Then the BVP (1.1)-(1.2) is equivalent to
the operator inclusion

x(t) € Tx(t), t € J. (3.13)

We will show that the multi-valued operator T satisfies all the conditions of
Theorem 2.2. Clearly the operator T is well defined since Sk(z) # ) for each
z e X.

First we show that T'x is closed subset of X for each x € X. This follows
easily if we show the values of Nemytskii operator 5’}? has closed values in
L'(J,R). Let {w,} be a sequence in L'(J,R) converging to a point w. Then
w, — w in measure, and so, there exists a subsequence S of positive integers

with w,, converging a.e. to w as n — oo through S. Now since (H4) holds, the
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values of SL are closed in L'(J,R). Thus for each z € X, we have that Tz is
non-empty and closed subset of X.

Next we show that 7' is a multi-valued contraction on X. Let xz,y € X and
let u; € T'(z). Then uy € X and u;(t) = z(t) + /tl k(t, s)v1(s) ds for some
vy € Sh(z). From hypothesis (Hs) it follows that v

H(F(t,x(t),2'(t), F(t,y(t),y (1) < l(®)]x(t) — y(©)] + L(8)]2"(t) — y'(1)]-
Hence there is w € F(t,y(t),y'(t)) such that

vi(t) — w| < (@) |2(t) — y(B)] + L) (t) — y'(2)]-
Thus the multi-valued operator U defined by U(t) = Sk(y)(t) N K(t) t € J,
where K(t) is given by
K(t) = {w] Jvi(t) —w] < (®)]2(t) — y(t)] + L0)]2' () —y' ()]},

has nonempty values and is measurable. Let v be a measurable selection for
U (which does exist by Kuratowski-Ryll-Nardzewski’s selection theorem. See
[1]). Then vy € F(t,y(t),y'(t)) and

|v1(t) —va(t)] < l1(t)|z(t) — y(t)| + L2 () |2/ (t) — ' (t)] for ae. teJ

1
Define us(t) = 2(t) + / k(t, s)va(s)ds. It follows that ug € Tz and

to

ur(t) —ua(t)] <

/t1 k(t, s)vi(s) ds — /t1 k(t, s)ua(s) ds

to to

IN

/ ()l (s) — vals)] ds

to

IN

/ k(e ) [0 () — y(0)] + )2 (1) - '(1)] ds

to
Ky ([[elze + el zo)llz = yll-

IN

Similarly we have

|y (t) — us(t)| < Ka(|lallpr + 12l L) lz — yll.
Therefore,

lur —uz| < (Iallr + [[€2l 1) max{ K1, Ka}|lz — y]|.
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From this, and the analogous inequality obtained by interchanging the roles

of x and y we obtain
H(T(z), T(y)) < (I€allpr + [[€2]] 1) max{ Ky, Ko}z —yl|,

for all z,y € X. This shows that 7' is a multi-valued contraction since (||¢1]| 1+

|€2]| ;1) max{ K7, K2} < 1. Now an application of Theorem 2.2 yields that T’

has a fixed point which further implies that the BVP (1.1)-(1.2) has a solution

on J. O
Now, we prove our second existence result for BVP (1.1)-(1.2).

Theorem 3.7. Assume that the hypotheses (Hs)-(Hg) hold and there exists a

real number r > 0 satisfying
r > C1 4+ max{Ky, Ko}||o|p19(r), (3.14)

where C1, K1 and Ko are the constants defined in Remark 3.2. Then the BVP
(1.1)-(1.2) has at least one solution on J.

Proof. First, we transform the BVP (1.1)-(1.2) into a fixed point problem in
a suitable normed linear space. The problem of existence of a solution of BVP

(1.1)- (1.2) reduces to finding a solution of the integral equation

t1
x(t) = z(t) + k(t,s)f(xz(s))ds, teJ, (3.15)
to
where f(x(-)) € L' with f(x(t)) € F(t,z(t),2'(t)) a.e. t € J (this is a conse-
quence of (Hs), (Hg) and Theorem 2.8). We study the integral equation (3.15)
in the space AC'(J,R). Let X = AC'(J,R) and define an open ball B,.(0) in
X centered at origin 0 of radius r, where the real number r > 0 satisfies the

inequality (3.12). Define the operator 7" on B,(0) by

Ta(t) :z(t)+/1k‘(t,s)f(m((s)))ds. (3.16)

to

Then the integral equation (3.15) is equivalent to the operator equation
x(t) =Tx(t), t € J. (3.17)

We will show that the multi-valued operator T satisfies all the conditions of
Corollary 2.5.
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First, we show that 7' is continuous on B, (0). Since (H3) holds, we have

[f(x®)] < ¢(t)(max{|x(t), [2'(£)[}) ae. t € T

for all z € AC'(J,R). Let {z,} be a sequence in B,.(0) converging to a point

x € B-(0). Then

|f(xn(t)] < o(t)Y(r) ae. t e J.

Hence by the dominated convergence theorem and continuity of f, we obtain

Jim Ta,(0) = =(0) + "Gt 5) f(an(())) ds
=20+ [ Gl fal()ds
= Tx(t)
and
Jm (T (1) = 20+ [ Gult. ) (wa((3)) ds
=20+ [ Gt al(3)) ds
— (Ta) (1)

for all t € J. As a result, T is continuous on B,(0). Next following the
arguments as in the proof of Theorem 3.5 with appropriate modifications, it is

shown that 7" is a compact operator on B,-(0). Now an application of Corollary
2.5 yields that either (i) the operator equation z = Tz has a solution in W,
or (ii) there is an element u € X such that ||u| = r and uv = ATu for some
A € (0,1). If the assertion (ii) holds, then we obtain a contradiction to (3.12).
Hence assertion (i) holds and the BVP (1.1)-(1.2) has a solution u € AC*(J,R)

such that ||u|| < r. This completes the proof. O
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