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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖. Let C

be a nonempty closed convex subset of H and let PC be the metric projection
of H onto C. A mapping A : C → H is called monotone if

〈Au−Av, u− v〉 ≥ 0, ∀u, v ∈ C.

The variational inequality problem is the problem of finding u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C.

The set of solutions of the variational inequality problem is denoted by Ω. A
mapping A : C → H is called α-inverse-strongly-monotone if there exists a
positive real number α such that

〈Au−Av, u− v〉 ≥ α‖Au−Av‖2, ∀u, v ∈ C;

see Refs. 1-2. It is obvious that each α-inverse-strongly-monotone mapping
A is monotone and Lipschitz continuous. A mapping S : C → C is called
nonexpansive if

‖Su− Sv‖ ≤ ‖u− v‖, ∀u, v ∈ C;

see Ref. 3. We denote by F (S) the set of fixed points of S. For finding an
element of F (S) ∩ Ω under the assumption that a set C ⊂ H is nonempty,
closed and convex, a mapping S : C → C is nonexpansive and a mapping
A : C → H is α-inverse-strongly-monotone, Takahashi and Toyoda (Ref. 4)
introduced the following iterative scheme:{

x0 = x ∈ C,

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn), ∀n ≥ 0,
(I)

where {αn} is a sequence in (0, 1), and {λn} is a sequence in (0, 2α). They
proved that, if F (S) ∩ Ω 6= ∅, then the sequence {xn} generated by (I) con-
verges weakly to some element of F (S)∩Ω 6= ∅. On the other hand, for solving
the variational inequality problem in the finite-dimensional Euclidean space
Rn under the assumption that a set C ⊂ Rn is nonempty, closed and convex,
a mapping A : C → Rn is monotone and k-Lipschitz continuous and Ω is
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nonempty, Korpelevich (Ref. 5) introduced the following so-called extragradi-
ent method: 

x0 = x ∈ C,

x̄n = PC(xn − λAxn),
xn+1 = PC(xn − λAx̄n), ∀n ≥ 0,

(II)

where λ ∈ (0, 1/k). He showed that the sequences {xn} and {x̄n} generated by
this extragradient method, converge to the same point z ∈ Ω. Recently, moti-
vated by the idea of Korpelevich’s extragradient method (Ref. 5), Nadezhkina
and Takahashi (see Ref. 10) introduced an iterative scheme for finding an
element of F (S)∩Ω and presented the following weak convergence result (see
Theorem 3.1 in Ref. 10).
Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C → H be a monotone, k-Lipschitz continuous mapping and
S : C → C be a nonexpansive mapping such that F (S)∩Ω 6= ∅. Let {xn}, {yn}
be the sequences generated by

x0 = x ∈ C,

yn = PC(xn − λnAxn),
xn+1 = αnxn + (1− αn)SPC(xn − λnAyn), ∀n ≥ 0,

(1)

where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for some c, d ∈
(0, 1).

Then the sequences {xn}, {yn} converge weakly to the same point z ∈ F (S)∩
Ω where z = limn→∞ PF (S)∩Ωxn.

Very recently, inspired by Nadezhkina and Takahashi’s iterative scheme
(Ref. 10), L.C. Zeng and J.C. Yao (see Ref. 12) introduced another iterative
scheme for finding an element of F (S) ∩ Ω and obtained the following strong
convergence theorem (See Theorem 3.1 in Ref. 12).
Theorem 1.2. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C → H be a monotone, k-Lipschitz continuous mapping and
S : C → C be a nonexpansive mapping such that F (S)∩Ω 6= ∅. Let {xn}, {yn}
be the sequences generated by

x0 = x ∈ C,

yn = PC(xn − λnAxn),
xn+1 = αnx0 + (1− αn)SPC(xn − λnAyn), ∀n ≥ 0,
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where {λn} and {αn} satisfy the conditions: (a) {λnk} ⊂ (0, 1 − δ) for some
δ ∈ (0, 1), and (b) {αn} ⊂ (0, 1),

∑∞
n=0 αn = ∞, limn→∞ αn = 0.

Then the sequences {xn}, {yn} converge strongly to the same point
PF (S)∩Ω(x0), provided

lim
n→∞

‖xn − xn+1‖ = 0.

In this paper, inspired by Takahashi and Toyoda (Ref. 4), Korpelevich (Ref.
5), Nadezhkina and Takahashi (Ref. 10) and L.C. Zeng and J.C. Yao (Ref.
12), we introduce and consider a modified extragradient method, as follows:

x0 = x ∈ C,

yn = PC [(1− βn)(xn − λnAxn) + βnPC(xn − λnAxn)],
xn+1 = αnxn + (1− αn)SPC(xn − λnAyn), ∀n ≥ 0.

Suppose {αn}, {βn} are sequences in [0, 1] and {λn} is a sequence in (0, 1/k)
such that

(i) lim supn→∞ αn < 1 and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1;
(ii)

∑∞
n=0 β2

n < ∞.
It is shown that the sequences {xn}, {yn} generated by the above modified

extragradient method converge weakly to the same point z ∈ F (S)∩Ω where
z = lim

n→∞
PF (S)∩Ωxn. It is easy to see that if βn = 0 for all n ≥ 0 then the last

iterative scheme reduces to Nadezhkina and Takahashi’s one (1). Our main
result improves and extends of Nadezhkina and Takahashi’s Theorem 3.1 in
Ref. 10.

Throughout the rest of this paper, we denote by “→” and “⇀” the strong
convergence and weak convergence, respectively.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. It is
well known that there holds the identity

‖λx+(1−λ)y‖2 = λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)‖x−y‖2, ∀x, y ∈ H,λ ∈ [0, 1].

Let C be a nonempty closed convex subset of H. Then, for any x ∈ H, there
exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, ∀y ∈ C.
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Such a PC is called the metric projection of H onto C. We know that PC is a
nonexpansive mapping of H onto C. It is also known that PC is characterized
by the following properties (see Ref. 3 for more details): PCx ∈ C and for all
x ∈ H, y ∈ C,

〈x− PC , PCx− y〉 ≥ 0, (2)

and
‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2. (3)

Let A : C → H be a mapping. It is easy to see from (2) that the following
implications hold:

x̄ ∈ Ω ⇔ x̄ = PC(x̄− λAx̄), ∀λ > 0. (4)

It is also known that H satisfies the Opial property (Ref. 6); i.e., for any
sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x. A set-valued mapping T : H → 2H is called
monotone if, for all x, y ∈ H, f ∈ Tx and g ∈ Ty we have 〈x − y, f − g〉 ≥
0. A monotone mapping T : H → 2H is maximal if its graph G(T ) is not
properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping T is maximal if and only if for (x, f) ∈ H × H,
〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ), then f ∈ Tx. Let A : C → H be a
monotone, k-Lipschitz continuous mapping and let NCv be the normal cone
to C at v ∈ C; i.e., NCv = {w ∈ H : 〈v − y, w〉 ≥ 0, ∀y ∈ C}. Define

Tv =

{
Av + NCv, if v ∈ C,

∅, if v 6∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω; see Ref. 7.
In order to prove the main result in Section 3, we shall use the following

lemmas in the sequel.
Lemma 2.1. Let H be a real Hilbert space, let {αn} be a sequence of real
numbers such that 0 < a ≤ αn ≤ b < 1 for all n ≥ 0, and let {vn} and {wn}
be sequences in H such that

lim sup
n→∞

‖vn‖ ≤ c, lim sup
n→∞

‖wn‖ ≤ c and lim
n→∞

‖αnvn + (1− αn)wn‖ = c

for some c ≥ 0. Then, limn→∞ ‖vn − wn‖ = 0.
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Lemma 2.2. Let H be a real Hilbert space and let D be a nonempty closed
convex subset of H. Let {xn} be a sequence in H. Suppose that, for all u ∈ D,

‖xn+1 − u‖ ≤ ‖xn − u‖, ∀n ≥ 0.

Then the sequence {PDxn} converges strongly to some z ∈ D.
Remark 2.1. Regarding the above two lemmas, let us notice that the first
was proved by Schu (Ref. 8) in a uniformly convex Banach space and the
second was proved by Takahashi and Toyoda (Ref. 4).
Lemma 2.3. (The demiclosedness principle, see Ref. 3.) Assume that S is
a nonexpansive self-mapping of a nonempty closed convex subset C of a real
Hilbert space H. If F (S) 6= ∅, then I − S is demiclosed; that is, whenever
{xn} is a sequence in C weakly converging to some x ∈ C and the sequence
{(I − S)xn} strongly converges to some y, it follows that (I − S)x = y, where
I stands for the identity operator of H.
Lemma 2.4. (see Ref. 11.) Let {an}∞n=0 and {bn}∞n=0 be two sequences of
nonnegative real numbers satisfying the inequality

an+1 ≤ an + bn, ∀n ≥ 0.

If
∑∞

n=0 bn converges, then limn→∞ an exists.

3. Weak Convergence Theorem

In this section, we deal with an iterative scheme by the modified extragra-
dient method for finding the common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of the variational inequality
problem for a monotone, Lipschitz continuous mapping in a Hilbert space.
Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let A : C → H be a monotone k-Lipschitz continuous mapping
and let S : C → C be a nonexpansive mapping such that F (S) ∩ Ω 6= ∅. Let
{xn}, {yn} be the sequences generated by

x0 = x ∈ C,

yn = PC [(1− βn)(xn − λnAxn) + βnPC(xn − λnAxn)],
xn+1 = αnxn + (1− αn)SPC(xn − λnAyn), ∀n ≥ 0.

Suppose {αn}, {βn} are sequences in [0, 1] and {λn} is a sequence in (0, 1/k)
such that

(i) lim supn→∞ αn < 1 and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1/k;
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(ii)
∑∞

n=0 β2
n < ∞.

Then, the sequences {xn}, {yn} converge weakly to the same point z ∈ F (S)∩Ω,
where z = lim

n→∞
PF (S)∩Ωxn, provided {Axn} is bounded.

Proof. First, we claim that {xn} is bounded. Indeed, put tn = PC(xn −
λnAyn) for all n ≥ 0. Let x∗ ∈ F (S)∩Ω. Then x∗ = PC(x∗−λnAx∗). Taking
x = xn − λnAyn and y = x∗ in (3), we obtain

‖tn − x∗‖2 ≤ ‖xn − λnAyn − x∗‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − x∗‖2 − 2λn〈Ayn, xn − x∗〉+ λ2
n‖Ayn‖2

− ‖xn − tn‖2 + 2λn〈Ayn, xn − tn〉 − λ2
n‖Ayn‖2

= ‖xn − x∗‖2 + 2λn〈Ayn, x∗ − tn〉 − ‖xn − tn‖2

= ‖xn − x∗‖2 − ‖xn − tn‖2 − 2λn〈Ayn −Ax∗, yn − x∗〉

− 2λn〈Ax∗, yn − x∗〉+ 2λn〈Ayn, yn − tn〉

≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+ 2〈xn − λnAyn − yn, tn − yn〉.

Now, observe that

〈xn − λnAxn − PC(xn − λnAxn), PC(xn − λnAxn)− yn〉

≤ ‖xn − λnAxn − PC(xn − λnAxn)‖‖PC(xn − λnAxn)− yn‖

≤ {λn‖Axn‖+ ‖xn − PC(xn − λnAxn)‖}‖xn − λnAxn

− [(1− βn)(xn − λnAxn) + βnPC(xn − λnAxn)]‖

= {λn‖Axn‖+ ‖PCxn − PC(xn − λnAxn)‖}βn‖xn − λnAxn

− PC(xn − λnAxn)‖

≤ {2λn‖Axn‖}βn{λn‖Axn‖+ ‖PCxn − PC(xn − λnAxn)‖}

≤ {2λn‖Axn‖}βn{2λn‖Axn‖}

= 4βnλ2
n‖Axn‖2.
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Further, from (2) we have

〈xn − λnAyn − yn, tn − yn〉

= 〈xn − λnAxn − yn, tn − yn〉+ 〈λnAxn − λnAyn, tn − yn〉

= 〈(1− βn)(xn − λnAxn) + βnPC(xn − λnAxn)− yn, tn − yn〉

+ βn〈xn − λnAxn − PC(xn − λnAxn), tn − yn〉

+ 〈λnAxn − λnAyn, tn − yn〉

≤ βn〈xn − λnAxn − PC(xn − λnAxn), tn − yn〉

+ 〈λnAxn − λnAyn, tn − yn〉

= βn〈xn − λnAxn − PC(xn − λnAxn), tn − PC(xn − λnAxn)〉

+ βn〈xn − λnAxn − PC(xn − λnAxn), PC(xn − λnAxn)− yn〉

+ 〈λnAxn − λnAyn, tn − yn〉

≤ βn〈xn − λnAxn − PC(xn − λnAxn), PC(xn − λnAxn)− yn〉

+ 〈λnAxn − λnAyn, tn − yn〉

≤ 4β2
nλ2

n‖Axn‖2 + λnk‖xn − yn‖‖tn − yn‖

≤ 4β2
nλ2

n‖Axn‖2 + λ2
nk2‖xn − yn‖2 + ‖yn − tn‖2.

Since lim supn→∞ αn < 1 and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1/k,
there exists N0 ≥ 1 such that

{αn}∞n=N0
⊂ [0, a] and {λn}∞n=N0

⊂ [b, d]

for some a ∈ (0, 1) and b, d ∈ (0, 1/k). Thus, we deduce that for all n ≥ N0

‖tn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+4β2
nλ2

n‖Axn‖2 + λ2
nk2‖xn − yn‖2 + ‖yn − tn‖2

= ‖xn − x∗‖2 + (λ2
nk2 − 1)‖xn − yn‖2 + 4β2

nλ2
n‖Axn‖2

≤ ‖xn − x∗‖2 + 4β2
nλ2

n‖Axn‖2,

(5)
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and hence

‖xn+1 − x∗‖2 = ‖αnxn + (1− αn)Stn − x∗‖2

= ‖αn(xn − x∗) + (1− αn)(Stn − x∗)‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖Stn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn)‖tn − x∗‖2

≤ αn‖xn − x∗‖2 + (1− αn){‖xn − x∗‖2

+(λ2
nk2 − 1)‖xn − yn‖2 + 4β2

nλ2
n‖Axn‖2}

= ‖xn − x∗‖2 + (1− αn){(λ2
nk2 − 1)‖xn − yn‖2

+4β2
nλ2

n‖Axn‖2}
≤ ‖xn − x∗‖2 + 4β2

nλ2
n‖Axn‖2.

Note that {Axn} is bounded and
∑∞

n=0 β2
n is convergent. Therefore, according

to Lemma 2.4, there exists

c = lim
n→∞

‖xn − x∗‖

and hence the sequences {xn}, {tn} are bounded. From the last relations, we
also obtain

(1− αn)(1− λ2
nk2)‖xn − yn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+(1− αn)4β2
nλ2

n‖Axn‖2.

So we have for all n ≥ N0

‖xn − yn‖2 ≤ 1
(1−αn)(1−λ2

nk2)
(‖xn − x∗‖2 − ‖xn+1 − x∗‖2)

+ 1
1−λ2

nk2 · 4β2
nλ2

n‖Axn‖2.

Since there exists N0 ≥ 1 such that

{αn}∞n=N0
⊂ [0, a] and {λn}∞n=N0

⊂ [b, d]

for some a ∈ (0, 1) and b, d ∈ (0, 1/k), so we have

xn − yn → 0 as n →∞.
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Further, we obtain

‖yn − tn‖2 = ‖PC [(1− βn)(xn − λnAxn) + βnPC(xn − λnAxn)]− PC(xn−λnAyn)‖2

≤ ‖(1− βn)(xn − λnAxn) + βnPC(xn − λnAxn)− (xn − λnAyn)‖2

= ‖(1− βn)λn(Ayn −Axn) + βn[PC(xn − λnAxn)− (xn − λnAyn)]‖2

≤ (1− βn)λ2
n‖Ayn −Axn‖2 + βn‖PC(xn − λnAxn)− (xn − λnAyn)‖2

≤ λ2
nk2‖yn − xn‖2 + βn{‖PC(xn − λnAxn)− PCxn‖+ λn‖Ayn‖}2

≤ λ2
nk2‖yn − xn‖2 + βn(λn‖Axn‖+ λn‖Ayn‖)2

= λ2
nk2‖yn − xn‖2 + βnλ2

n(‖Axn‖+ ‖Ayn‖)2

≤ λ2
nk2

(1− αn)(1− λ2
nk2)

(‖xn − x∗‖2 − ‖xn+1 − x∗‖2)

+
λ2

nk2

1− λ2
nk2

· 4β2
nλ2

n‖Axn‖2 + βnλ2
n(‖Axn‖+ ‖Ayn‖)2.

Since
∑∞

n=0 β2
n < ∞, we have limn→∞ βn = 0. Hence, we get

yn − tn → 0 as n →∞.

From
‖xn − tn‖ ≤ ‖xn − yn‖+ ‖yn − tn‖,

we have also
xn − tn → 0 as n →∞.

Since A is Lipschitz continuous, we have

Ayn −Atn → 0 as n →∞.

As {xn} is bounded, there is a subsequence {xni} of {xn} that converges
weakly to some z. We claim that z ∈ F (S) ∩ Ω. Indeed, first, we show that
z ∈ Ω. Since xn − tn → 0 and yn − tn → 0, we have tni ⇀ z and yni ⇀ z. Let

Tv =

{
Av + NCv, if v ∈ C,

∅ if v 6∈ C.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ Ω; see Ref. 7.
Let (v, w) ∈ G(T ). Then, we have

w ∈ Tv = Av + NCv

and hence w −Av ∈ NCv. So, we have

〈v − u, w −Av〉 ≥ 0, ∀u ∈ C.
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On the other hand, from

tn = PC(xn − λnAyn) and v ∈ C,

we have
〈xn − λnAyn − tn, tn − v〉 ≥ 0,

and hence
〈v − tn,

tn − xn

λn
+ Ayn〉 ≥ 0.

Therefore, from
w −Av ∈ NCv and ti ∈ C,

we have

〈v − tni , w〉 ≥ 〈v − tni , Av〉
≥ 〈v − tni , Av〉 − 〈v − tni ,

tni−xni
λni

+ Ayni〉
= 〈v − tni , Av −Atni〉+ 〈v − tni , Atni −Ayni〉
−〈v − tni ,

tni−xni
λni

〉
≥ 〈v − tni , Atni −Ayni〉 − 〈v − tni ,

tni−xni
λni

〉.

Hence, letting ni →∞, we obtain

〈v − z, w〉 ≥ 0.

Since T is maximal monotone, we have z ∈ T−10 and hence z ∈ Ω. We show
that z ∈ F (S). Indeed, let x∗ ∈ F (S) ∩ Ω. Since it follows from (5) that for
all n ≥ N0

‖Stn − x∗‖2 ≤ ‖tn − x∗‖2 ≤ ‖xn − x∗‖2 + 4β2
nλ2

n‖Axn‖2,

we have
lim sup

n→∞
‖Stn − x∗‖ ≤ c.

Further, we have

lim
n→∞

‖αn(xn − x∗) + (1− αn)(Stn − x∗)‖ = lim
n→∞

‖xn+1 − x∗‖ = c.

By Lemma 2.1 we obtain

lim
n→∞

‖Stn − xn‖ = 0.

Since

‖Sxn − xn‖ ≤ ‖Sxn − Stn‖+ ‖Stn − xn‖ ≤ ‖xn − tn‖+ ‖Stn − xn‖,
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we have

lim
n→∞

‖Sxn − xn‖ = 0.

By Lemma 2.3, from the demiclosedness of I − S, we know that xni ⇀ z and
limn→∞ ‖Sxn − xn‖ = 0 imply z ∈ F (S).

Let {xnj} be another subsequence of {xn} such that xnj ⇀ z′. Then,
z′ ∈ F (S) ∩ Ω. Let us show that z = z′. Assume that z 6= z′. From the Opial
condition (Ref. 6) we have

lim
n→∞

‖xn − z‖ = lim inf
n→∞

‖xni − z‖ < lim inf
i→∞

‖xni − z′‖

= lim
n→∞

‖xn − z′‖ = lim inf
j→∞

‖xnj − z′‖

< lim inf
j→∞

‖xnj − z‖ = lim
n→∞

‖xn − z‖.

This is a contradiction. Consequently, we have z = z′. This implies that

xn ⇀ z ∈ F (S) ∩ Ω.

Since xn − yn → 0 as n →∞, we have also

yn ⇀ z ∈ F (S) ∩ Ω.

Now, put un = PF (S)∩Ωxn. Then we claim that z = limn→∞ un. Indeed, since

un = PF (S)∩Ωxn and z ∈ F (S) ∩ Ω,

we have

〈z − un, un − xn〉 ≥ 0.

By Lemma 2.2, {un} converges strongly to some z0 ∈ F (S)∩Ω. Then, we get
〈z − z0, z0 − z〉 ≥ 0, and hence z = z0. This completes the proof of Theorem
3.1. �

Remark 3.1. In the proof of Theorem 3.1, whenever βn = 0 for all n ≥ 0,
from (5) it follows that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2, ∀n ≥ N0.

Thus the limit limn→∞ ‖xn − x∗‖ exists. Hence {xn} is bounded and so is
{Axn}. In this case, we can remove the boundedness restriction of {Axn}.
Consequently, Nadezhkina and Takahashi’s Theorem 3.1 (Ref. 10) follows
immediately from our Theorem 3.1.

Next we give two applications of Theorem 3.1.
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Corollary 3.1. Let H be a real Hilbert space. Let A : H → H be a monotone
k-Lipschitz continuous mapping and let S : H → H be a nonexpansive mapping
such that F (S) ∩A−10 6= ∅. Let {xn}, {yn} be the sequences generated by

x0 = x ∈ H,

yn = xn − λnAxn,

xn+1 = αnxn + (1− αn)S(xn − λnAyn), ∀n ≥ 0.

Suppose {αn} is a sequence in [0, 1] and {λn} is a sequence in (0, 1/k) such
that

lim sup
n→∞

αn < 1 and 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1/k.

Then, the sequences {xn}, {yn} converge weakly to the same point z ∈ F (S)∩
A−1, where z = limn→∞ PF (S)∩A−1xn.
Proof. We have A−10 = Ω and PH = I. Then

yn = PH [(1− βn)(xn − λnAxn) + βnPH(xn − λnAxn)]
= (1− βn)(xn − λnAxn) + βn(xn − λnAxn)
= xn − λnAxn,

and

xn+1 = αnxn + (1− αn)SPH(xn − λnAyn)
= αnxn + (1− αn)S(xn − λnAyn).

Note that inequality (5) yields

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2.

This implies that {xn} is bounded and so is {Axn}. Hence by Theorem 3.1
we obtain the desired result. �

Remark 3.1. Notice that F (S)∩A−10 is contained in the set of solutions of
the variational inequality problem VI(F (S), A). See also Yamada (Ref. 9) for
the case when A : H → H is strongly monotone and Lipschitz continuous and
S : H → H is a nonexpansive mapping.
Theorem 3.2. Let H be a real Hilbert space. Let A : H → H be a monotone
k-Lipschitz continuous mapping and B : H → 2H be a maximal monotone
mapping such that A−10 ∩ B−10 6= ∅. Let JB

r be the resolvent of B for each
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r > 0. Let {xn}, {yn} be the sequences generated by
x0 = x ∈ H,

yn = xn − λnAxn,

xn+1 = αnxn + (1− αn)JB
r (xn − λnAyn), ∀n ≥ 0.

Suppose {αn}, {βn} are sequences in [0, 1] and {λn} is a sequence in (0, 1/k)
such that

lim sup
n→∞

αn < 1 and 0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1/k.

Then, the sequences {xn}, {yn} converge weakly to the same point z ∈ A−10∩
B−10, where z = limn→∞ PA−10∩B−10xn.
Proof. We have F (JB

r ) = B−10. By Corollary 3.1 we obtain the desired
result. �

Remark 3.2. Corollary 3.1 and Corollary 3.2 are, essentially, Nadezhkina
and Takahashi’s Theorems 3.1 and 3.2 (Ref. 10), respectively.
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