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1. Introduction

The existence and multiplicity of nonzero solutions for nonlinear problems
when zero is a trivial solution is a widely studied topic of the nonlinear analysis.

In this survey we present some recent results related to this topic and in
particular we study:

- a nonlinear equation in Lp-spaces of the type

u = Kf(u) (1)

where K is a completely continuous linear operator and f is a superposition
operator;
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- a Dirichlet problem of the type{
−∆u = g(x, u) + λf(x, u) in Ω
u = 0 on ∂Ω

(Pλ)

where Ω ⊂ RN is an open bounded set with sufficiently regular boundary ∂Ω,
f, g : Ω× R → R are two real functions and λ is a real parameter.

The abstract tools to establish our results are the variational methods. As
we will see, if, on one hand, the application of these methods requires further
assumptions on the involved linearities and nonlinearities than other methods
(such as the fixed point methods), on the other hand, using variational meth-
ods, it is easy to find natural condition in order to avoid that the solutions be
trivial when a trivial solution exists.

A typical assumption when variational methods are used to study equation
(1) is that the operator K be positive definite (see [6, 7, 13] and the references
therein). While, when the same methods are used to study problem (Pλ),
usually one assumes that f, g be Carathèodory functions with some growth
condition with respect to the second variable.

The main features of our results consists in the fact that, as concerns equa-
tion (1), we do not assume the operator K positive definite but having at most
a finite number of negative eigenvalues. Whereas, as concerns problem (Pλ),
we do not assume any growth condition with respect to the second variable
on the nonlinearity f .

All the proofs of our main results are based on the application of a general
variational theorem established by B. Ricceri in [14]. We state, for our con-
venience, a particular version of this result which will be useful when we deal
with equation (1).

Theorem 1. (Theorem 2.1 of [14]) Let X be a reflexive real Banach space.
Let

Ψ(x) =
1
2
‖x‖2 − J(x), x ∈ X,

where J : X → R is a sequentially weakly continuous functional. Assume that

inf
r>0

inf
‖x‖<r

sup‖y‖=r J(y)− J(x)
r2 − ‖x‖2

<
1
2
. (2)

Then, Ψ admits a local minimum in X.
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2. Nonlinear Equations in Lp-Spaces

Let Ω ⊂ RN be a bounded Lebesgue-measurable set, and let p, p0, q, q0 four
positive real numbers such that

p0 > p > 2 and
1
p0

+
1
q0

=
1
p

+
1
q

= 1.

We consider equation (1) assuming that

- K : Lq0(Ω) → Lp0(Ω) is a completely continuous linear operator;
- f : Lp(Ω) → Lq(Ω) is a superposition operator defined by

f(u) = f(·, u(·)),

where, f : Ω× R → R is a given Carathèodory function.

Very many articles in literature has been devoted to the study of equation (1).
This has been motivated from the fact that linear and nonlinear differential
and integral equations can be reduced just to an equation of the type (1).

For instance, the well known Hammerstein integral equation

u(x) =
∫

Ω
k(x, y)f(y, u(y))dy

with u ∈ Lq0(Ω), x ∈ Ω, k ∈ Lp0(Ω× Ω), reduces to (1) by putting

K(u)(x) =
∫

Ω
k(x, y)u(y)dy.

Certainly, the fixed point methods have been the most widely used tools to
deal with equation (1). Nevertheless, even if considerable less articles use
a variational approach to study (1), this latter approach, as mentioned in
the introduction, becomes more advantageous when we look for nontrivial
solutions of (1).

We now recall some basic properties of the operator K (see [9]):
Assume K self-adjoint and having a finite number of negative eigenvalues.
Let V be the subspace generated by the eigenvectors corresponding to these

eigenvalues. Define

K+(u) = K(u)− 2PV (u), u ∈ Lq0(Ω).

Then, K+ is a self-adjoint, positive definite and completely continuous linear
operator from Lq0(Ω) into Lp0(Ω).
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By the standard theory of the linear operators, K+ restricted to Lq(Ω) splits
as follows

K+ = H+H∗
+

where

H+ : L2(Ω) → Lp(Ω)

and

H∗
+ : Lq(Ω) → L2(Ω)

are completely continuous linear operator satisfying∫
Ω

H+(u)vdx =
∫

Ω
uH∗

+(v)dx,

for all u ∈ L2(Ω), v ∈ Lq(Ω). We now denote by ‖·‖m the standard Lm-norm

(m ≥ 1) and put F (x, ξ) =
∫ ξ
0 f(x, t) for all (x, ξ) ∈ Ω×R. By [9] it is known

that the solutions of (1) are exactly the functions of the type H+(u), where
u ∈ L2(Ω) is a critical point of the functional

Ψ(v) =
1
2
‖v‖2

2 −
[
‖PV (v)‖2

2 +
∫

Ω
F (x,H+(v)(x))dx

]
(3)

defined for all v ∈ L2(Ω).
We now can state our existence result for equation (1):

Theorem 2. (Theorem 2.1-2.2 of [4]) Assume K self-adjoint and denote by
E the finite (possibly empty) set of the negative eigenvalues of K. Set λ−1 =
max E if E 6= ∅. Suppose that there exists a ∈ R, with a > 1

|λ−1| when E 6= ∅
and a = 0 otherwise, such that:

inf
r>0

sup
‖u‖2=1

∫
Ω

(
F (x, rH+(u)(x))

r2
+ a(H+(u)(x))2

)
dx <

ρ

2
, (4)

where ρ = a|λ−1|−1
a|λ−1|+1 if E 6= ∅ and ρ = 1 otherwise. Then, equation (1) has at

least a solution in Lp(Ω).
In addition, suppose that f(x, 0) = 0, for a.a. x ∈ Ω and assume that one

of the following condition holds

i) E 6= ∅ and there exist M,N > 0 with M < 1
2|λ−1| such that F (x, t) ≥

−Mt2 −Ntp for a.a. x ∈ Ω and t ∈ R.
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ii) E = ∅ and there exist M,N > 0 with M > 1
2λ1

, where λ1 is the first
eigenvalue of K, such that F (x, t) ≥ Mt2 − Ntp for a.a. x ∈ Ω and
t ∈ R.

Then, equation (1) has at least a nonzero solution in Lp(Ω).

Outline of the proof. Assume E 6= ∅ (the proof in the case E = ∅ is
similar). As observed above, we have to prove that the functional Ψ defined
by (3) has a critical point. We first observe that, by standard arguments, Ψ
turns out to be Gâteaux differentiable. So, to find a critical point, we prove
that Ψ admits a local minimum in L2(Ω). To this end we want to apply
Theorem 1.

At first, we note that, since V is finite dimensional, then the functional

J(v) = ‖PV (v)‖2
2 +

∫
Ω

(∫ H+(v)(x)

0
f(x, t)dt

)
dx

is sequentially weakly continuous in L2(Ω). Moreover, using Lemma 1.2 at
p.308 of [9] we can deduce, after some calculation, that condition (4) implies
condition (2).

Therefore, applying Theorem 1 we infer that Ψ admits a local minimum
u ∈ L2(Ω).

If the additional assumptions of the theorem are satisfied, the critical value
Ψ(u) turns out to be negative and this implies, in turn, that the solution
H+(u) must be nonzero. �

The key assumption of Theorem 1 is, of course, condition (4). The propo-
sition below shows that (4) holds under an appropriate growth condition on
F .

Proposition 1. Let m ∈]2, p], b ∈ L
p

p−m (Ω) with b ∈ L∞(Ω) if m = p, and

c ∈ L1(Ω). Put b0 = sup
‖u‖2=1

∫
Ω

b(x)|H+(u)(x)|mdx, c0 =
∫
Ω |c(x)|dx and

suppose that m(b0)
2
m

(
m−2
2c0

) 2
m
−1

< ρ.
Then, if

F (x, ξ) ≤ −aξ2 + b(x)|ξ|m + c(x)

for a.a x ∈ Ω and all ξ ∈ R, where a, ρ are as in Theorem 2, we have that
condition (4) of Theorem 2 is satisfied.
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In view of the above Proposition, it is useful to have an upper estimation
of the constant b0. Denoting by λp the norm of the operator K+ acting from
Lq(Ω) into Lp(Ω), we have the following estimation

b0 ≤ ‖b‖ p
p−m

λ
m
2
p . (5)

The above inequality corrects the estimation given in Remark 2.1 of [4]. To
deduce (5), let ϕ ∈ L2(Ω). Using the Hölder-Schwartz inequality and the
splitting representation of K+, we have

‖H(ϕ)‖p
p =

∫
Ω

H(ϕ)H(ϕ)p−1dx =
∫

Ω
ϕH∗(H(ϕ)p−1)dx

≤ ‖ϕ‖2‖H∗(H(ϕ)p−1)‖2 =

‖ϕ‖2

√∫
Ω

H(ϕ)p−1H(H∗(H(ϕ)p−1))dx =

‖ϕ‖2

√∫
Ω

H(ϕ)p−1K+(H(ϕ)p−1))dx ≤

‖ϕ‖2

√
‖H(ϕ)p−1‖q‖K+(H(ϕ)p−1)‖p ≤

√
λp‖ϕ‖2‖H(ϕ)p−1‖q =

‖ϕ‖2

√
λp‖H(ϕ)‖p−1

p

from which

‖H(ϕ)‖p ≤
√

λp‖ϕ‖2.

Then, (5) follows applying the Schwartz inequality.

3. The Dirichlet Problem

Let Ω ⊂ RN be an open bounded set with sufficiently regular boundary ∂Ω.
Let f, g : Ω× R → R be two Carathèodory functions. Finally, let λ > 0.

Consider the following Dirichlet problem{
−∆u = g(x, u) + λf(x, u) in Ω
u = 0 on ∂Ω

(Pλ)

In recent years some authors have investigated the existence and multiplicity
of solutions to problem (Pλ) for λ small enough, imposing no growth condition
on f .

Among the most interesting papers , we cite, for instance, [10, 11, 12].
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A common feature in the above articles is that g is supposed symmetric
with respect to the second variable and/or satisfying an Ambrosetti - Rabi-
novitz superlinear type condition. Instead, the nonlinearity f is only assumed
continuous in Ω× R.

Here we want to present some new contributions on this topic where com-
pletely different assumptions are imposed on the nonlinearity g and no growth
condition is imposed on f (in fact, we assume on f even weaker conditions
than the solely continuity, as in the aforementioned articles.)

At first, we recall that if h : Ω×R → R is Carathèodory function satisfying,
if N ≥ 2,

sup
(x,t)∈Ω×R

h(x, t)
1 + |t|m

< +∞

for some m > 0 with m < N+2
N−2 if N ≥ 3, then by standard argument we have

that the functional

u ∈ W 1,2
0 (Ω) →

∫
Ω

(∫ u(x)

0
h(x, t)dt

)
dx

is (strongly) continuous, sequentially weakly semicontinuous and Gâteuaux
differentiable on W 1,2

0 (Ω). This fact will be implicitly used in all the successive
results. We recall that a weak solution of problem (Pλ) is exactly a critical
point of the corresponding energy functional

u ∈ W 1,2
0 (Ω) →

∫
Ω

(
1
2
|∇u|2 −

∫ u(x)

0
(g(x, t) + λf(x, t))dt

)
dx

while a strong solution of problem (Pλ) is any u ∈ W 2,1(Ω) ∩ W 1,2
0 (Ω) ∩

C(Ω) satisfying the equation −∆u = g(x, u) + λf(x, u) a.e. in Ω and the

boundary condition pointwise. Hereafter, we denote by ‖u‖ :=
√∫

Ω |∇u|2dx

the standard norm of W 1,2
0 (Ω). Moreover, we will make use of the following

definition: given a function h : Ω×R → R we say that a function g : Ω×R → R
is the truncation of h with respect to the interval ]a, b[⊆ R if

g(x, t) =


h(x, a) if (x, t) ∈ Ω×]−∞, a]
h(x, t) if (x, t) ∈ Ω×]a, b[
h(x, b) if (x, t) ∈ Ω× [b, +∞[

.

We start with the following theorem where a sublinear growth condition is
imposed on the nonlinearity g
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Theorem 3. (Theorem 2.1 of [3]) Let s ∈]1, 2[, q > N
2 and a > 0. Let D ⊆ Ω

be a non empty open set. Assume f, g satisfying the following conditions

i) sup
0≤ξ≤r

|f(·, ξ)| ∈ Lq(Ω) for all r > 0 ;

ii) f(x, 0) = 0 for a.e. x ∈ Ω;

iii) |g(x, t)| ≤ ats−1 for all t ≥ 0 and a.e x ∈ Ω.

iv) lim inf
ξ→0+

infx∈D

∫ ξ
0 g(x, t)dt

ξ2
= +∞

Then, there exist σ, λ > 0 such that, for every λ ∈ [−λ, λ], there exists a
nonzero nonnegative strong solution uλ ∈ W 1,2

0 (Ω) ∩W 2,q(Ω) of problem (Pλ)
with ‖uλ‖W 2,q(Ω) ≤ σ.

Outline of the proof. Let g0 be the truncation of g with respect to ]0,+∞[
and put

Ψ(u) =
1
2
‖u‖2 −

∫
Ω

(∫ u(x)

0
g0(x, t)dt

)
dx.

for all u ∈ W 1,2
0 (Ω). By condition iii) it is easy to prove that Ψ is coercive.

Moreover, condition iv) assures that inf
W 1,2

0 (Ω)
Ψ < 0. Thus, we can fix

t ∈

]
inf

W 1,2
0 (Ω)

Ψ, 0

[
.

Now, by Theorem 8.16 of [8], there exists a constant C0 = C0(N, q,Ω) such
that, for each h ∈ Lq(Ω) and for each weak solution u ∈ W 1,2

0 (Ω) of the
equation −∆u = h on Ω, one has ‖u‖∞ ≤ C0‖h‖q.

At this point, fix a constant C > (aC0)
1

2−s m(Ω)
1

q(2−s) , where m(Ω) is the
Lebesgue measure of Ω, and let f0 be the truncation of f with respect to ]0, C[.
Applying Theorem 2.1 of [14] to the functional Ψ jointly to the functionals

Φ±(u) := ±
∫

Ω

(∫ u(x)

0
f0(x, t)dt

)
dx, u ∈ W 1,2

0 (Ω),

we find λ > 0 such that for all λ ∈ [−λ, λ] there exists a critical point uλ of
the functional Ψ + λΦ− satisfying

Ψ(uλ) < t < 0. (6)
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So, in particular uλ is non-zero.
Moreover, using a standard argument, it follows that uλ is nonnegative.

Finally, using Schauder estimates and taking the choice of C into account, we
also have, choosing a smaller λ if necessary, that uλ(x) ≤ C for a.a. x ∈ Ω.
This implies that uλ is a weak solution of problem (Pλ). To finish the prove,
we observe that, by standard regularity results ([1]), one has uλ ∈ W 2,q(Ω)
(hence uλ ∈ C(Ω)) and uλ is a strong solution of (Pλ). Finally, the existence
of an upper estimate of ‖uλ‖W 2,q(Ω) which is independent of λ follows again
by the Schauder estimates. �

From Theorem 3, with a clear change of the assumptions, we obtain the
following multiplicity result

Theorem 4. (Theorem 2.3 of [3]) Let s ∈]1, 2[ q > N
2 and a > 0. Let D ⊆ Ω

be a non empty open set. Assume f, g satisfying the following conditions

i) sup
|ξ|≤r

|f(·, ξ)| ∈ Lq(Ω) for all r > 0 ;

ii) f(x, 0) = 0 for a.e. x ∈ Ω;

iii) |g(x, t)| ≤ a|t|s−1 for all t ∈ R and a.e x ∈ Ω.

iv) lim inf
ξ→0

ess inf
x∈D

∫ ξ
0 g(x, t)dt

ξ2
= +∞

Then, there exist σ, λ > 0 such that, for every λ ∈ [−λ, λ], there exist a
strong nonzero nonnegative solution uλ ∈ W 1,2

0 (Ω) ∩ W 2,q(Ω) and a strong
nonzero nonpositive solution vλ ∈ W 1,2

0 (Ω) ∩ W 2,q(Ω) of problem (Pλ) with
max{‖uλ‖W 2,q(Ω), ‖vλ‖W 2,q(Ω)} ≤ σ.

We now pass to state another existence result for problem (Pλ) where differ-
ent conditions are imposed on the nonlinearity g. However, also in this result,
as the previous one, we impose no growth condition on f .

Theorem 5. (Theorem 1 of [2]) Let q, λ0, t1, t2 be four positive constants with
t2 > t1 and q > N

2 . Let D ⊆ Ω be a non empty open set. Assume f, g satisfying
the following conditions:

i) g(x, 0) + λf(x, 0) ≥ 0 for almost all x ∈ Ω and all λ ∈ [−λ0, λ0];
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ii) ess sup
x ∈ Ω

sup
t∈[t1,t2]

g(x, t) < 0;

iii) sup
t∈[0,t2]

(|g(·, t)|+ |f(·, t)|) ∈ Lq(Ω);

iv) lim inf
ξ→0+

ess inf
x∈D

∫ ξ
0 g(x, t)dt

ξ2
= +∞;

Then, there exist λ, σ > 0 such that, for all λ ∈ [−λ, λ] there exists a strong
nonzero solution uλ ∈ W 1,2

0 (Ω) ∩ W 2,q(Ω) of problem (Pλ) satisfying 0 ≤
uλ(x) ≤ t2 for all x ∈ Ω, with ‖uλ‖W 2,q(Ω) ≤ σ.

Outline of the proof. Let g0, f0 : Ω×R → R be respectively the truncations
of g, f with respect to ]0, t2[. Put

Ψ(u) =
1
2
‖u‖2 −

∫
Ω

(∫ u(x)

0
g0(x, t)dt

)
d

and

Φ(u) = −
∫

Ω

(∫ u(x)

0
f0(x, t)dt

)
dx.

for all u ∈ W 1,2
0 (Ω). Observe that the functional Ψ is coercive. Moreover,

denoting by K the set of its global minima, it is possible to shows that
inf∂Kε Ψ > inf

W 1,2
0 (Ω)

Ψ for all ε > 0, where Kε is the set of u ∈ W 1,2
0 (Ω)

whose distance from K is less than or equal to ε. Since by condition iv) one
has inf

W 1,2
0 (Ω)

Ψ < 0 we can consider a decreasing sequence εk of positive real
numbers converging to zero and such that the zero-function does not belong
to Kεk

. Also, choose rk ∈] inf
W 1,2

0 (Ω)
Ψ, inf∂Kεk

Ψ[ for all k ∈ N. At this point,
since Kεk

turns out to be weakly compact, we can apply Theorem 2.1 of [14]
to the restriction to Kεk

of the functionals Ψ and Φ. Then, we find λk ∈]0, λ0[
such that, for all λ ∈ [0, λk], there exists a non-zero critical point uλ,k of
Ψ + λΦ|Kεk

with Ψ(uλk
) < rk. Using standard arguments, we deduce that

uλ,k is nonnegative and uλ,k ∈ W 2,q(Ω) (and so uλ,k ∈ C0(Ω)). Moreover,
by the Maximum Principle it is easy to see that every point u ∈ K satisfies
u(x) ∈ [0, t1] for all x ∈ Ω. Hence, assuming λk converging to 0, by regularity
results and the Schauder estimates ([1]), it is possible to prove for that, for k

sufficiently large, one has uλ,k(x) ≤ t2 and supλ∈[0,λk] ‖uλ‖W 2,q(Ω) < +∞. As
a consequence, for such k’s, uλ,k is actually a strong solution of problem (Pλ).



NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS 13

To finish the prove, it is now enough to repeat the above argument with −f

in place of f . �

From Theorem 5, with a clear change of the assumptions, we obtain the
following multiplicity result

Theorem 6. (Theorem 3 of [2]) Let q, λ0, t1, t2, t̃1, t̃2 be six positive constants
with t2 > t1, t̃2 > t̃1 and q > N

2 . Let D ⊆ Ω be a non empty open set. Assume
f, g satisfying the following conditions:

i) g(x, 0) + λf(x, 0) = 0 for almost all x ∈ Ω and all λ ∈ [−λ0, λ0];

ii) ess inf
x ∈ Ω

inft∈[−t̃2,−t̃1] g(x, t) > 0;

ii) ess sup
x ∈ Ω

supt∈[t1,t2] g(x, t) < 0;

iii) sup
t∈[−t̃2,t2]

(|g(·, t)|+ |f(·, t)|) ∈ Lq(Ω);

iv) lim inf
ξ→0

ess inf
x∈D

∫ ξ
0 g(x, t)dt

ξ2
= +∞;

Then, there exist λ, σ > 0 such that, for all λ ∈ [−λ, λ] there exist two
strong nonzero solutions uλ, vλ ∈ W 1,2

0 (Ω) ∩ W 2,q(Ω) of problem (Pλ) sat-
isfying 0 ≤ uλ(x) ≤ t2 and −t̃2 ≤ vλ(x) ≤ 0 for all x ∈ Ω, with
‖uλ‖W 2,p(Ω) + ‖vλ‖W 2,p(Ω) ≤ σ.

We now consider the case in which g(x, ·) has an oscillating behavior. We
will show that, assuming again only a mild summability condition on f , it
is possible to establish, for any fixed k ∈ N, the existence of at least k-weak
solutions for problem (Pλ) for λ small enough. We want to stress out that
these results are directly comparable with the results of [10] where completely
different conditions are imposed on g.

The first theorem we state deals with the case in which g(x, ·) has an oscil-
lating behavior in every neighborhood of the origin

Theorem 7. (Theorem 2.1 of [5]) Let s0 > 0 and let {bn}, {cn} ⊂]0,+∞[ and
{dn} ⊂] −∞, 0[ be three sequences with limn→+∞ cn = limn→+∞ dn = 0. Let
D ⊆ Ω be a non empty open set. Finally, let p ≥ 1 with p > 2N

N+2 if N ≥ 2.
Assume f, g satisfying the following conditions:

i) sup
|t|≤s0

|f(·, t)|, sup
|t|≤s0

|g(·, t)| ∈ Lp(Ω),
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ii) ess sup
x ∈ Ω

(g(x, cn) + λf(x, cn)) < 0, ess inf
x ∈ Ω

(g(x, dn) + λf(x, dn)) > 0,

for all λ ∈ [−bn, bn] and all n ∈ N.

iii) lim inf
ξ→0

ess inf
x∈D

∫ ξ
0 g(x, t)dt

ξ2
= +∞;

Then, for every k ∈ N and σ > 0 there exists bk,σ > 0 such that, for every
λ ∈ [−bk,σ, bk,σ], problem (Pλ) has at least k distinct weak solutions whose
norms in W 1,2

0 (Ω) are less than σ.

Outline of the proof. Let n0 ∈ N such that cn, dn ∈ [−s0, s0] for all n ≥ n0.
For every n ≥ n0, let gn, fn be respectively the truncations of g, f with respect
to the interval ]cn, dn[ and put

Ψn(u) =
1
2
‖u‖2 −

∫
Ω

(∫ u(x)

0
fn(x, t)dt

)
dx,

Φn(u) = −
∫

Ω

(∫ u(x)

0
gn(x, t)dt

)
dx

for all u ∈ W 1,2
0 (Ω).

As a usual, condition iii) guarantees that inf
W 1,2

0 (Ω)
Ψn < 0. Moreover,

since Ψn is coercive, it attains its global minimum in some un ∈ W 1,2
0 (Ω). It

is easy to check that limn→+∞Ψn(un) = 0. Thus, up to a subsequence, we
can suppose Ψn(un) strictly increasing. Now, fix k ∈ N and σ > 0. For every
i ∈ N pick

ri ∈

]
inf

W 1,2
0 (Ω)

Ψi, inf
W 1,2

0 (Ω)
Ψi+1

[
.

Applying Theorem 2.1 of [14] to the functionals Ψi,Φi we find b̃i > 0 such that,
for every λ ∈ [0, b̃i], the functional Ψi + λΦi has a local minima ui,λ which
satisfies Ψi(ui,λ) < ri < 0. Moreover, we also deduce that for some nσ ≥ n0

sufficiently large one has ‖ui,λ‖ ≤ σ for every i ≥ nσ and λ ∈ [0, b̃i]. At this
point, put

bk,σ = min{bnσ , ..., bnσ+k−1, b̃nσ , ..., b̃nσ+k−1}.
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Then, by condition ii) and the Maximum Principle, for every λ ∈ [0, bk,σ] and
i = nσ, . . . , nσ + k − 1, we have

di ≤ ui,λ(x) ≤ ci for every x ∈ Ω.

Thus, the functions ui,λ (i = nσ, . . . , nσ+k−1) are k-weak solutions of problem
(Pλ). It remains to prove that they are distinct. This is true since we can
prove that

Ψi(uj,λ) > Ψi(ui,λ)

for every i, j ∈ {nσ, ..., nσ + k − 1} with i < j.
To finish the prove, it is enough to repeat the same above arguments with

−f in place of f and choosing a smaller bk,σ if necessary. �

In the next result we assume g(x, ·) having an oscillating behavior in any
neighborhood of +∞. Its prove is based on the same arguments of that one
of Theorem 7 and so it is omitted.

Theorem 8. (Theorem 2.2 of [5]) Let d0 < 0 and let {bn}, {cn} ⊂]0,+∞[ be
two sequences with limn→+∞ cn = +∞. Let D ⊆ Ω be a non empty open set.
Finally, let p ≥ 1 with p > 2N

N+2 if N ≥ 2. Assume f, g satisfying the following
conditions:

i) sup
d0≤t≤s

|f(·, t)|, sup
d0≤t≤s

|g(·, t)| ∈ Lp(Ω) for all s ≥ 0,

ii) ess sup
x ∈ Ω

(g(x, cn) + λf(x, cn)) < 0, ess inf
x ∈ Ω

(g(x, dn) + λf(x, d0)) > 0,

for all λ ∈ [−bn, bn] and all n ∈ N.

iii) lim inf
ξ→+∞

ess inf
x∈D

∫ ξ
0 g(x, t)dt

ξ2
= +∞;

Then, for every k ∈ N there exist σk > 0 b∗k > 0 such that, for every λ ∈
[−b∗k, b

∗
k], problem (Pλ) has at least k distinct weak solutions whose norms in

W 1,2
0 (Ω) are less than σk.
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