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1. INTRODUCTION

J. Caristi’s fixed point theorem [1] states that each operator f from a com-
plete metric space (X, d) into itself satisfying the condition:

(*) there exists a lower semicontinuous ¢ : X — R, such that d(z, f(z)) <
g(z) — g(f(x)), for each x € X,

has at least a fixed point.

For the multivalued case, there exist several results involving multivalued
Caristi type conditions (see for example [2], [4], [5]). There are several exten-
sions and generalizations of these important principles of nonlinear analysis
(see for example the references listed in [8], [10]).

Let (X, d) be a metric space and P(X) the space of all nonempty subsets of
X. We denote by P.(X) the space of all nonempty closed subsets of X. We
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consider the following functionals:
D:P(X)x P(X)— R4, D(A,B) =inf{d(a,b)|la € A,b € B},

H:P(X)xP(X)— RyU{+o0}, H(A, B) = max {ilelgD(a, B),iggD(b, A)}.

H is called the Hausdorff-Pompeiu generalized functional and it is well
known that if (X, d) is a complete metric space, then (P.(X), H) is also a
complete metric space.

2. PRELIMINARIES

If X,Y are nonempty sets and F' : X — P(Y) is a multivalued operator,
then a selection of F' is a single valued operator f : X — Y such that f(z) €
F(z), for each z € X.

First result concerning the existence of a selection which satisfies the Caristi
condition (*) (briefly called Caristi selection) was established by J.R. Jachym-
ski [3] for a multivalued operator with closed valued.

Theorem 2.1 ([3]). Let (X,d) be a metric space and F : X — Py(X) be a
multivalued contraction.

Then there exists f : X — X a Caristi selection (with a Lipschitz map g )
of F.

Some extensions of Theorem 2.1 are proved in [9], [10], [11].

Theorem 2.2 ([9]). Let (X,d) be a metric space and F : X — Py(X) such
that

H(F(z), F(y)) < ad(z,y) +bD(x, F(x)) + cD(y, F(y)),
for each x,y € X, where a,b,c € Ry anda+b+c < 1.
Then there exists f : X — X a Caristi selection of F.

Theorem 2.3 ([11]). Let (X,d) be a metric space and F : X — Py(X) such
that

H(F(z), F(y)) < avd(z,y) + a2 D(z, F(x)) + a3 D(y, F(y))+

+ayq D(x, F(y)) + a5 D(y, F(x)),

for each x,y € X, where ay,...,a5 € Ry and a1 + az + a3 + 2a4 < 1.
Then there exists f : X — X a Caristi selection of F.
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Theorem 2.4 ([10]). Let (X,d) be a metric space and F : X — Py(X) such
that
H(F(z), F(y))
< q max{d(z,y), D(z, F(x)), D(y, F(y)), D(z, F(y)), D(y, F(x))},
where 0 < q < 1.
Then there exists f : X — X a Caristi selection of F.

The present author considered in [6], [7] the study of fixed point for map-
pings satisfying implicit relations.

3. IMPLICIT RELATION

Let F be the set of all real functions F(t1,...,t) : RS — R satisfying the
following conditions:
(F1) F is non-decreasing in variable t; and non-increasing in variables ¢5
and t3;
(Fy) there exists h € (0,1) such that for every u,v > 0 with F(u,v,v,u,u+
v,0) < 0 we have u < hv.

Example 3.1. F(t1,...,ts) = t1 — aite — asts — agty — aqts — aste, where
ai,...,a5 € Ry, a; +as+ag >0 and a1 + as + ag + 2a4 < 1.
(F1) Obviously.
(Fy) Let F(u,v,v,u,u+v,0) =u—ajv—agv —agu — as(u+v) <0. Then
u < hv, where 0 < h = (a1 +az + as)/(1 —ag —aq) < 1.

Example 3.2. F(t1,...,tg) = t1 — k maX{tQ,tg,t4,%(t5 +t6)}, where 0 <
k< 1.
(F1) Obviously.
(Fy) Let F(u,v,v,u,u+ v,0) = u—k max{u,v, %(u+v)} <0. Ifu>0
and u > v, then u(1 — k) < 0, a contradiction. Hence u < v which
mmplies u < hv, where 0 < h=k < 1. If u =0, then u < hv.

Example 3.3. F(t1,...,t5) = t? + atity — btsty — ctsts, where a,c > 0 and
0<b<l
(Fy) Obviously.
(Fp) Let F(u,v,v,u,u+v,0) = u?+auv—buv < 0, which implies u? —buv <
0. Ifu>0, then u < hv, where 0 < h=b<1. If u =0, then u < hv.
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Example 3.4. F(ty,...,t5) =t
a+b>0anda+b+c<l1.
(F1) Obviously.
(Fy) Let F(u,v,v,u,u+v,0) =u?+ Trurs — (av? + bv? + cu?) <0, which
implies u? — (av? + bv? + cu?) < 0. Hence u < hv, where 0 < h =

a+b
ITC < 1-

+ﬁ — (a3 + bt +ct?), where a,b,c > 0,

Example 3.5. F(t1,...,ts) = max{ty,ta,t4} — min{ts, te} — qt3, where 0 <
qg <1l
(F1) Obviously.
(Fy) Let F(u,v,v,u,u+ v,0) = max{u,v} —qv < 0. Ifu >0 and u > v,
then u(1 — q) < 0, a contradiction. Hence u < v and u < hv, where
O0<h=q<1. Ifu=0, then u < hv.

The purpose of this paper is to prove a general theorem which generalizes
the results from Theorems 2.2, 2.3 and 2.4.

4. MAIN RESULTS

Theorem 4.5. Let (X, d) be a metric space and F : X — Py(X) a multivalued

function such that
O(H(F(x), F(y)),d(z,y), D(z, F(z)), D(y, F(y)), (4.1)
D(x, F(y)), D(y, F(z))) <0,
for each x,y € X, where ® € F.
Then there exists f : X — X a Caristi selection of F.

Proof. Let €= ﬂ and g(z) = 1D(z, F(z)). Then, obviously e+ h = % <
1. Since - h > 1, for each z € X we can choose f(z) € F(z) such that

1
Ao, (@) € 7

By 4.1 and (F;) we have successively

O(H (F(x), F(f(2))), d(z, f(2)), D(x, F(z)), D(f(x), F(f(x))),
D(z, F(f(x))), D(f(x), F(x))) <0
O(D(f(x), F(f(x))), d(, f(x)),d(z, f(x)), D(f ( ), F(f())),
d(x, f(z)) + D(f(2), F(f(2))),0) <

D(z, F(x)).
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By (F») we have
D(f(x), F(f(2))) < hd(z, f(x)),
for each z € X.
We will prove now that f is a Caristi type operators. Indeed, for each x € X

we have

d(x, f(x)) = %[(6 + h)d(z, f(2)) — hd(z, f(2))] <

< é[D(wv F(z)) = D(f(x), F(f(2)))] = g(z) — g(f (). O
Remark 4.1. Theorems 2.2-2.4 follow from Theorem 4.1 and, respectively
Example 3.1, for a4y = a5 = 0, Example 3.1 and Example 3.2.
Remark 4.2. Other results can be obtained from Theorem 4.1 via Examples
3.3-3.5.
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