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1. Introduction

In this paper, we shall deal with the existence as well as the existence of
the extremal solutions of a periodic nonlinear boundary value problems for
first order Carathéodory impulsive ordinary differential inclusions without the
convex values of multi-valued functions. Given a closed and bounded interval
J := [0, T ] in R, R the set of real numbers, and given the impulsive moments
t0, t1 , t2 , . . . , tp with 0 = t0 < t1 < t2 < · · · < tp < tp+1 = T , J ′ =
J − {t1, t2, . . . , tp} , Jj = (tj , tj+1) , consider the following periodic boundary
value problem of impulsive differential inclusions (in short IDI)

x′(t) ∈ F (t, x(t)) a.e. t ∈ J ′ , (1.1)

x(t+j ) = x(t−j ) + Ij(x(tj)) , (1.2)

x(0) = x(T ) , (1.3)
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238 B.C. DHAGE

where F : J×R → Pp(R) is an impulsive Carathéodory multi-valued function
, Pp(R) denotes the class of non-empty subsets of R with the property p,
Ij : R → R , j = 1, 2, . . . , p are the impulse functions and x(t+j ) and x(t−j ) are
respectively the right and the left limit of x at t = tj .

Let C(J,R) and L1(J,R) denote respectively the spaces of continuous and
Lebesgue integrable real-valued functions on J . We equip the space L1(J,R)
with the norm ‖ · ‖L1 defined by

‖x‖L1 =
∫ T

0
|x(t)| dt.

Denote

X := {x : J → R : x ∈ C(J ′,R) , x(t+j ) , x(t−j ) exist,

and x(t−j ) = x(tj) , j = 1, 2, . . . , p } (1.4)

and the space

Y := {x ∈ X : x is differentiable a.e. on (0, T ) , x′ ∈ L1(J,R) } .

By a solution of (1.1)-(1.2)-(1.3), we mean a function

x ∈ YT := {x ∈ Y : x(0) = x(T ) }

that satisfies the differential inclusion (1), and the impulsive conditions given
in (1.2).

Several papers have been devoted to the study of initial and boundary
value problems for impulsive differential inclusions (see for example [2, 3]).
For impulsive differential equations in the nonresonance case, see [15, 16, 17]
and the references therein. Also, for a general theory on impulsive differential
equations we refer the interested reader to the monographs [12] and [18]. Note
that the IDI (1.1)-(1.3) has been studied for the existence theorems in Dhage
[5] under Lipschitz and Carathéodory conditions. The multi-valued functions
were assumed to be upper semi-continuous and the existence was proved via
a hybrid fixed point theorem the present author [5]. Our aim in this paper
is to provide monotonic sufficient conditions on the multi-valued functions F

and the impulsive functions Ij for guarantying the existence as well as well
existence of maximal and minimal solutions for the IDI (1.1)-(1.2)-(1.3) on J .
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In this approach, we do not require the multi-valued functions in question to
satisfy any continuity criteria on the domain of definitions.

2. Preliminaries

Let the space X be defined above and define a norm ‖ · ‖ in X by

‖x‖ = sup
t∈J

|x(t)|

and define the order relation ≤ in X by the cone K given by

K = {x ∈ X | x(t) ≥ 0 for all t ∈ J},

which is obviously normal cone in X. Thus we have

x ≤ y ⇐⇒ x(t) ≤ y(t) for all t ∈ J.

Clearly, X becomes a ordered Banach space with respect to the above norm
and order relation in X.

Let A,B ∈ Pp(X). Denote

A±B = {a± b : a ∈ A and b ∈ B},

λA = {λa : λ ∈ R and a ∈ A}.

Also denote
‖A‖ = {‖a‖ : a ∈ A}

and
‖A‖P = sup{‖a‖ : a ∈ A}.

Let the Banach space X be equipped with the order relation ≤ and define the
order relation in Pp(X) as follows.

Let A,B ∈ Pp(X). Then by A
i
≤ B we mean “ for every a ∈ A there exists

a b ∈ B such that a ≤ b ”. Again A
d
≤ B means for each b ∈ B there exists

a a ∈ A such that a ≤ b. Further we have A
id
≤ B ⇐⇒ A

i
≤ B and A

d
≤ B.

Finally A ≤ B implies that a ≤ b for all a ∈ A and b ∈ B. Note that if A ≤ A,
then it follows that A is a singleton set. See Dhage [6] and references therein.

A correspondence Q : X → Pp(X) is called a multi-valued operator on
X and a point u ∈ X is called a fixed point of Q if u ∈ Qu. We denote
T (S) =

⋃
x∈S Tx for any subset S of X.
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Definition 2.1. A mapping Q : X → Pp(X) is called right monotone in-

creasing (resp. left monotone increasing) if Qx
i
≤ Qy (resp. Qx

d
≤ Qy) for all

x, y ∈ X for which x ≤ y. Similarly, Q is called monotone increasing if it is
left as well as right monotone increasing on X. Finally, Q is strict monotone
increasing if Qx ≤ Qy for all x, y ∈ X for which x ≤ y, x 6= y.

Remark 2.1. Note that every strict monotone increasing multi-valued map-
ping is right monotone increasing, but the converse may not be true.

It is known that the monotone technique is a very useful tool for proving
the existence of the extremal solutions for differential equations and inclu-
sions. The exhaustive treatment of this method for discontinuous differential
equations may be found in Heikkilä and Lakshmikantham [13]. But the use
of monotone technique in the theory of differential inclusion involving dis-
continuous multi-valued functions is relatively new to the literature. Some
recent results in this direction appear in Dhage [5, 6, 7, 8]. In this method
of monotone technique, the operator in question is required to satisfy certain
monotonicity condition with respect to certain order relation on the domain of
the definition. The following two fixed point theorems are fundamental in the
monotone theory for discontinuous differential inclusions involving the right
or strict monotone increasing multi-valued functions.

Theorem 2.1 (Dhage [7]). Let [a, b] be an order interval in a subset Y of an
ordered Banach space X and let Q : [a, b] → Pcp([a, b]) be a right monotone
increasing multi-valued mapping. If every sequence {yn} ⊂ Q([a, b]) defined by
yn ∈ Qxn, n ∈ IN has a cluster point, whenever {xn} is a monotone increasing
sequence in [a, b], then Q has a fixed point.

Theorem 2.2 (Dhage [8]). Let [a, b] be an order interval in a subset Y of an
ordered Banach space X and let Q : [a, b] → Pcp([a, b]) be a strict monotone
increasing multi-valued mapping. If every sequence {yn} ⊂ Q([a, b]) defined by
yn ∈ Qxn, n ∈ IN has a cluster point, whenever {xn} is a monotone sequence
in [a, b], then Q has the least fixed point x∗ and the greatest fixed point x∗ in
[a, b]. Moreover,

x∗ = min{y ∈ [a, b] | Qy ≤ y} and x∗ = max{y ∈ [a, b] | y ≤ Qy}.
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A single-valued mapping T : X → X is called Lipschitz if there exists a
constant α > 0 such that ‖Tx − Ty‖ ≤ α‖x − y‖ for all x, y ∈ X. The
constant α is called the Lipschitz constant of T on X. Further if α < 1, then
T is called a contraction on X with contraction constant α. A multi-valued
mapping T : X → Pcp(X) is called totally bounded if for any bounded subset
S of X, T (S) is a totally bounded subset of X.

We also need the following two hybrid fixed point theorems in the sequel.

Theorem 2.3 (Dhage [7, 9]). Let [a, b] be an order interval in an ordered
Banach space X. Let A : [a, b] → X be a single-valued and let B : [a, b] →
Pcp(X) be a multi-valued operator satisfying

(a) A is nondecreasing and single-valued contraction,
(b) B is totally bounded and right monotone increasing, and
(c) Ax + By ⊂ [a, b] for all x, y ∈ [a, b].

Further if the cone K in X is normal, then the operator inclusion x ∈ Ax+Bx

has a solution in [a, b].

Theorem 2.4 (Dhage [8]). Let [a, b] be an order interval in an ordered Banach
space X. Let A : [a, b] → X be a single-valued and let B : [a, b] → Pcp(X) be
a multi-valued operator satisfying

(a) A is a nondecreasing and single-valued contraction,
(b) B is totally bounded and strict monotone increasing, and
(c) Ax + By ⊂ [a, b] for all x, y ∈ [a, b].

Further if the cone K in X is normal, then the operator inclusion x ∈ Ax+Bx

has the least and the greatest solution in [a, b].

Remark 2.2. We note that the hypothesis (c) of Theorems 2.3 and 2.4 holds
if there exist the elements a, b ∈ X such that a ≤ Aa + Ba and Ab + Bb ≤ b.

In the following section we prove the main existence results of this paper.

3. Main Results

We need the following definitions in the sequel.

Definition 3.1. A multi-valued function F : J → Pcp(R) is said to be measur-
able if for every y ∈ R, the function t → d(y, F (t)) = inf{‖y − x‖ : x ∈ F (t)}
is measurable.
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Definition 3.2. Let F : [0, T ] ⊂ R → Pcl,bd(R) be a multi-function. A
function v : [0, T ] → R is called a measurable selector of F if v is measurable
and v(t) ∈ F (t) almost everywhere t ∈ [0, T ].

Definition 3.3. A multi-valued function F (t, x) is called right monotone in-

creasing in x almost everywhere for t ∈ J if F (t, x)
i
≤ F (t, y) a. e. t ∈ J ,

for all x, y ∈ R for which x ≤ y. Similarly, a multi-valued function F (t, x)
is called strict monotone increasing in x almost everywhere for t ∈ J if
F (t, x) ≤ F (t, y) a. e. t ∈ J for all x, y ∈ R for which x ≤ y, x 6= y.

Definition 3.4. A multi-valued function F : J ×R → Pp(R) is called Chan-
drabhan if

(i) t 7→ F (t, x(t)) is measurable for each x ∈ C(J,R) and
(ii) F (t, x) is right monotone increasing in x almost everywhere for t ∈ J .

Further a Chandrabhan multi-valued function F is called L1-Chandrabhan, if

(iii) for each r > 0, there exists a function hr ∈ L1(J,R) such that

‖F (t, x)‖P = sup{|u| : u ∈ F (t, x)} ≤ hr(t) a.e. t ∈ J

for all x ∈ R with |x| ≤ r.

For any x ∈ C(J,R), denote

S1
F (x) = {v ∈ L1(J,R) | v(t) ∈ F (t, x(t)) a.e. t ∈ J ′}.

The integral of the multi-function F is defined as∫ t

0
F (s, x(s)) ds =

{∫ t

0
v(s) ds : v ∈ S1

F (x)
}

.

Definition 3.5. A function a ∈ C(J,R) is called a strict lower solution of
the FDI (1.1) if for all v ∈ S1

F (a),

a′(t) ≤ v(t) a. e. t ∈ J \ {t1, . . . , tp}

a(t+j )− a(t−j ) ≤ Ij(a(tj))

a(0) ≤ a(T ).

Similarly, a strict upper solution b to IDI (1.1) is defined.

We consider the following set of hypotheses in the sequel.
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(A1) The impulsive function Ij is continuous and there exist constants cj >

0 such that |Ij(x)| ≤ cj , j = 1, 2, ..., p; for all x ∈ R.
(A2) The mapping x 7→ Ij(x) is nondecreasing in x ∈ R for each j =

1, . . . , p.
(B1) F (t, x) is closed and bounded for each (t, x) ∈ J ×R.
(B2) There exists a function h ∈ L1(J,R) such that the multi-valued func-

tion
F1(t, x) = F (t, x) + h(t)x is Chandrabhan on J ×R.

(B3) S1
F+h(x) 6= ∅ for all x ∈ C(J,R).

(B4) The multi-valued map x 7→ S1
F+h(x) is right monotone increasing in

C(J,R).
(B5) FDI (1.1) has a strict lower solution a and a strict upper solution b

with a ≤ b.
(B6) The function ` : J → R defined by

`(t) = ‖F1(t, a(t))‖P + ‖F1(t, b(t))‖P

is Lebesgue integrable.

Remark 3.1. Note that if (B2), (B5)-(B6) hold, then we have

‖F1(t, x(t))‖P ≤ `(t) a. e. t ∈ J

for all x ∈ [a, b].

Hypotheses (B1) and (B3) are much common in the literature. Some nice
sufficient conditions for guarantying (B3) appear in Deimling [4], and Lasota
and Opial [14]. A mild hypothesis of (B5) has been used in Halidias and
Papageorgiou [11]. Hypothesis (B5) holds in particular if F is bounded on
J ×R. Hypotheses (B2), (B3) and (B6) are relatively new to the literature,
but these are assumed for (B4) to make sense and the special forms of these
hypotheses have been appeared in the works of several authors. See Dhage
[5, 6] and references therein.

Now consider the following impulsive differential inclusion

x′(t) + h(t)x(t) ∈ F1(t, x(t)) a. e. t ∈ J \ {t1, . . . , tp}

x(t+j )− x(t−j ) = Ij(x(tj))

x(0) = x(T )

 (3.1)
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where, F1 : J ×R → Pp(R) defined by F1(t, x(t)) = F (t, x(t)) + h(t)x(t) and
x(t+j ), x(t+j ), Ij(x(tj)) have the usual meanings as in IDI (1.1).

Note that, if a function a is a lower solution for the IDI (1.1), then it is also
a lower solution for the IDI (3.1) on J . The same fact is also true for upper
solution. Thus x is a solution for the IDI (1.1) if and only if it is a solution
for the IDI (3.1). We need the following result in the sequel.

Lemma 3.1. Let σ ∈ L1(J,R). Then for any h ∈ L1(J,R+), the function
x : J → R is a solution of the differential equation

x′(t) + h(t)x(t) = σ(t) a. e. t ∈ J \ {t1, . . . , tp} (3.2)

x(t+j )− x(t−j ) = Ij(x(tj)) (3.3)

x(0) = x(T ) (3.4)

if and only if it is a solution of the integral equation

x(t) =
∫ T

0
gh(t, s)σ(s) ds +

p∑
j=1

gh(t, tj)Ij(x(tj)) (3.5)

for t ∈ J , where the Green’s function gh is given by

gh(t, s) =


e−H(t)−H(s)

1− e−H(T )
, 0 ≤ s ≤ t ≤ T

e−H(T )+H(t)−H(s)

1− e−H(T )
, 0 ≤ t < s ≤ T .

and H(t) =
∫ t

0
h(s) ds.

Notice that the Green’s function gh(t, s) is nonnegative on J × J and the
number Mh := max { |gh(t, s)| : t, s ∈ [0, T ] } exists for all h ∈ L1(J,R). Note
that x ∈ YT is a solution of (3.1)-(3.2)-(3.3) if and only if x ∈ Qx , where the
multi-valued operator Q is defined by

Qx(t) :=
∫ T

0
gh(t, s) [h(s)x(s) + F (s, x(s))] ds +

p∑
j=1

gh(t, tj)Ij(x(tj)) . (3.6)

See Nieto [15, 16] and the references given therein.

Theorem 3.1. Assume that (A1)− (A2) and (B1)− (B6) hold. Then the FDI
(1.1) has a solution in [a, b] defined on J .
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Proof. Define an order interval [a, b] in X which is well defined in view of
hypothesis (B5). Now the IDI (1.1) is equivalent to the integral inclusion

x(t) ∈
∫ T

0
gh(t, s)F1(s, x(s)) ds +

p∑
j=1

gh(t, tj)Ij(x(tj)). (3.7)

Define a multi-valued operator Q : [a, b] → Pp(X) by

Qx =
{

u ∈ X : u(t) =
∫ T

0
gh(t, s)F1(s, x(s)) ds +

p∑
j=1

gh(t, tj)Ij(x(tj))
}

= (L ◦ S1
F+h)(x),

(3.8)
where L : L1(J,R) → C(J,R) is a continuous operator defined by

Lv(t) =
∫ T

0
gh(t, s)v(s) ds +

p∑
j=1

gh(t, tj)Ij(x(tj)). (3.9)

Clearly the operator Q is well defined in view of hypothesis (B3). We shall
show that Q satisfies all the conditions of Theorem 2.1.

Step I : First, we show that Q has compact values on [a, b]. Observe that
if t ∈ J , then operator Q is equivalent to the composition L ◦ S1

F+h of two
operators on L1(J,R), where L : L1(J,R) → X is the continuous operator
defined by (3.9). To show Q has compact values, it then suffices to prove that
the composition operator L ◦ S1

F has compact values on [a, b]. Let x ∈ [a, b]
be arbitrary and let {vn} be a sequence in S1

F+h(x). Then, by the definition
of S1

F+h, vn(t) ∈ F1(t, x(t)) a. e. for t ∈ J . Since F1(t, x(t)) is compact, there
is a convergent subsequence of vn(t) (for simplicity call it vn(t) itself) that
converges in measure to some v(t), where v(t) ∈ F1(t, x(t)) a.e. for t ∈ J .
From the continuity of L, it follows that Lvn(t) → Lv(t) pointwise on J as
n →∞. In order to show that the convergence is uniform, we first show that
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{Lvn} is an equi-continuous sequence. Let t, τ ∈ J ; then

|(Lvn)′(t)| ≤
∣∣∣∫ T

0

∂

∂t
gh(t, s)vn(s) ds +

p∑
j=1

∂

∂t
gh(t, tj)Ij(yj(tj))

∣∣∣
=

∣∣∣∫ T

0
(−h(t))gh(t, s)vn(s) ds +

p∑
j=1

(−h(t))gh(t, tj)Ij(yj(tj))
∣∣∣

≤ H Mh

∫ T

0
vn(s) ds + H

p∑
j=1

cj

= c

where, H = maxt∈J h(t). Hence for any t, τ ∈ [0, T ] one has

|yn(t)− yn(τ)| ≤ c |t− τ | → 0 as t → τ.

Since vn ∈ L1(J,R), the right hand side of above inequality tends to 0 as
t → τ . Hence, {Lvn} is equi-continuous, and an application of the Arzelá-
Ascoli theorem implies that there is a uniformly convergent subsequence. We
then have Lvnj → Lv ∈ (L ◦ S1

F+h)(x) as j → ∞, and so (L ◦ S1
F+h)(x) is

compact. Therefore, Q is a compact-valued multi-valued operator on [a, b].

Step II : Secondly we show that Q is right monotone increasing and maps

[a, b] into itself. Let x, y ∈ [a, b] be such that x ≤ y. Since S1
F+h(x)

i
≤ S1

F+h(y),

we have that Q(x)
i
≤ Q(y). From (B4), it follows that a ≤ Qa and Qb ≤ b.

Now Q is right monotone increasing, so we have

a ≤ Qa
i
≤ Qx

i
≤ Qb ≤ b

for all x ∈ [a, b]. Hence Q defines a right monotone increasing multi-valued
operator Q : [a, b] → Pcp([a, b]).

Step III : Finally let {xn} be a monotone increasing sequence in [a, b]
and let {yn} be a sequence in Q([a, b]) defined by yn ∈ Qxn, n ∈ IN. We shall
show that {yn} has a cluster point. This is achieved by showing that {yn} is
uniformly bounded and equi-continuous sequence.
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Case I : First we show that {yn} is uniformly bounded sequence. By the
definition of {yn}, there is a vn ∈ S1

F+h(xn) such that

yn(t) =
∫ T

0
gh(t, s)vn(s) ds +

p∑
j=1

gh(t, tj)Ij(x(tj)).

Therefore,

|yn(t)| ≤
∣∣∣ ∫ T

0
gh(t, s)vn(s) ds

∣∣∣ +
∣∣∣ p∑

j=1

gh(t, tj)Ij(x(tj))
∣∣∣

≤ Mh

∫ T

0
`(s) ds + Mh

p∑
j=1

cj

≤ Mh‖`‖L1 + d

for all t ∈ J , where d = Mh
∑p

j=1 cj . Taking the supremum over t,

‖yn‖ = Mh‖`‖L1 + d

which shows that {yn} is a uniformly bounded sequence in Q([a, b]).
Next we show that {yn} is an equi-continuous sequence in Q([a, b]). Then

there is a vn ∈ Sk+F (x) such that

yn(t) =
∫ T

0
gh(t, s) vn(s) ds +

p∑
j=1

gh(t, tj)Ij(x(tj)), t ∈ J.

To finish, it is enough to show that y′n is bounded on [0, T ]. Now for any
t ∈ [0, T ],

|y′n(t)| ≤
∣∣∣∫ T

0

∂

∂t
gh(t, s)vn(s) ds +

p∑
j=1

∂

∂t
gh(t, tj)Ij(yj(tj))

∣∣∣
=

∣∣∣∫ T

0
(−h(t))gh(t, s)vn(s) ds +

p∑
j=1

(−h(t))gh(t, tj)Ij(yj(tj))
∣∣∣

≤ H Mh

∫ T

0
`(s) ds + H Mh

p∑
j=1

cj

= c

where, H = maxt∈J h(t). Hence for any t, τ ∈ [0, T ] one has

|yn(t)− yn(τ)| ≤ c |t− τ | → 0 as t → τ.
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This shows that {yn} is an equi-continuous sequence in Q([a, b]). Now {yn}
is uniformly bounded and equi-continuous, so it has a cluster point in view of
Arzelà-Ascoli theorem. Now the desired conclusion follows by an application
of Theorem 2.1. �

Below we relax the boundedness assumption on the impulsive moments Ij

on R for each j = 1, ..., p; instead we assume the Lipschitz condition on Ij and
prove the existence of solution for (1.1). We need the following hypothesis in
the sequel.

(A3) There exist constants αj > 0 such that

|Ij(x)− Ij(y)| ≤ αj |x− y|, j = 1, 2, ..., p;

for all x, y ∈ R.

Theorem 3.2. Assume that the hypotheses (A2)− (A3) and (B1)− (B5) hold.

Furthermore if Mh

p∑
j=1

αj < 1, then the IDI (1.1) has a solution in [a, b]

defined on J .

Proof. Consider the order interval [a, b] in X which is well defined in view of
hypothesis (B4). Define two operators A : [a, b] → X and B : [a, b] → Pcp(X)
by

Ax(t) =
p∑

j=1

gh(t, tj)Ij(x(tj)) (3.10)

and

Bx(t) =
∫ T

0
gh(t, s)F1(s, x(s)) ds. (3.11)
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We show that A is a contraction on [a, b]. Let x, y ∈ [a, b]. By (A3),

|Ax(t)−Ay(t)| ≤

∣∣∣∣∣∣
p∑

j=1

gh(t, tj)Ij(x(tj))−
p∑

j=1

gh(t, tj)Ij(y(tj))

∣∣∣∣∣∣
≤

p∑
j=1

|gh(t, tj)| |Ij(x(tj))− Ij(y(tj))|

≤ Mh

p∑
j=1

αj |Ij(x(tj))− Ij(y(tj))|

≤ Mh

( p∑
j=1

αj

)
‖x− y‖

for all t ∈ J . This further yields

‖Ax−Ay‖ ≤ α‖x− y‖

for all x, y ∈ [a, b], where α = Mh

p∑
j=1

αj < 1. Hence A is a contraction

operator on [a, b] with contraction constant α < 1.
It can be shown as in the proof of Theorem 3.1 that is a totally bounded

operator on [a, b]. Again it is easy to verify that A is nondecreasing and B is
right monotone increasing on [a, b] satisfying Ax + By ∈ [a, b] for x, y ∈ [a, b].
Now the desired conclusion follows by an application of Theorem 2.3. �

Next we prove a result concerning the extremal solutions for the IDI (1.1)
on J . We need the following definition in the sequel.

Definition 3.6. A multi-valued function F : J ×R → Pp(R) is called strict
L1-Chandrabhan if

(i) t 7→ F (t, x(t)) is measurable for each x ∈ C(J,R),
(ii) F (t, x) is strict monotone increasing in x almost everywhere for t ∈ J ,

and
(iii) for each r > 0, there exists a function qr ∈ L1(J,R) such that

‖F (t, x)‖P = sup{|u| : u ∈ F (t, x)} ≤ qr(t) a.e. t ∈ J

for all x ∈ R with |x| ≤ r.
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Remark 3.2. Note that if the multi-valued function F (t, x) is strict L1-
Chandrabhan and the hypothesis (H4) holds, then it is measurable in t and
integrably bounded on J × R, and so, by a selection theorem, S1

F has non-
empty and closed values on C(J,R), that is,

S1
F (x) = {u ∈ L1(J,R) | u(t) ∈ F (t, x(t)) a.e. t ∈ J} 6= ∅

for all x ∈ C(J,R). See Deimling [4] and the references therein. Note also
that if F is L1-Chandrabhan on J × R, then the multi-valued function F1

defined by F1(t, x(t)) = F (t, x(t)) + h(t)x(t) is also a strict L1-Chandrabhan
on J ×R, but the converse may not be true.

We consider the following hypothesis in the sequel.

(B7) The multi-function F1 is strict L1-Chandrabhan on J ×R.

Theorem 3.3. Assume that the hypotheses (A1)− (A2), (B1), (B5) and (B7)
hold. Then the IDI (1.1) has a minimal and a maximal solution in [a, b] defined
on J .

Proof. The proof is similar to Theorem 3.1. Here, S1
F+h(x) 6= ∅ and the

multi-valued map x 7→ S1
F+h(x) is strictly monotone increasing on [a, b]. Con-

sequently the multi-valued operator Q defined by (3.2) is strictly monotone
increasing on [a, b]. Hence the desired result follows by an application of The-
orem 2.2. �

Theorem 3.4. Assume that the hypotheses (A2), (A3), (B1), (B5) and (B7)

hold. If
p∑

j=1

αj < 1, then the IDI (1.1) has a minimal and a maximal solution

in [a, b] defined on J .

Proof. The proof is similar to Theorem 3.3. Consider the order interval [a, b]
in X which is well defined in view of hypothesis (B4). Define two operators
A : [a, b] → X and B : [a, b] → Pcp(X) by (3.10) and (3.11) respectively. It can
be shown as in the proofs of Theorems 3.2 that the operator A is contraction
and B is totally bounded on [a, b]. Here, the operator A is nondecreasing on
[a, b]. Also S1

F+h(x) 6= ∅ and the multi-valued map x 7→ S1
F+h(x) is strictly

monotone increasing on [a, b], so the multi-valued operator B is strictly mono-
tone increasing on [a, b]. Now the desired conclusion follows by an application
of Theorem 2.4. �
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