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where {an,} is a real sequence such that 0 < «a,, < 1, and P is a sunny and nonexpansive
retraction of E onto C.
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1. INTRODUCTION

Let C' be a nonempty closed convex subset of a Hilbert space H and S :
C — C be a nonexpansive mapping such that the set F(.S) of all fixed points
of S is nonempty. Recently, Shimizu and Takahashi [15] proved the strong
convergence of an iteration process to a common fixed point of a family of
nonexpansive mappings in a Hilbert space H. Using Shimizu and Takahashi’s
idea in [15], Shioji and Takahashi [16] proved the strong convergence of an
iterative sequence {z,} to an element of F'(S) which is nearest to = in the
setting of a Banach space F where for a given sequence {a,} with 0 < o, < 1,
the sequence {z,} is generated from any elements zg,x € C' by

IR
i1 = anz+ (1= an) g 3 Son forn=0,1,2,.... (1)
j=0

But unfortunately this approximation method is not suitable for some non-
expansive nonself-mappings. On the other hand Matsushita and Kuroiwa [9]
studied the convergence of two sequences generated by

r1=2€C, xpy1=aopx+ (1 —ay)PTz, forn=1,2,.., (2)

y1 =9y €C, ynt1=Plapy+ (1 —a,)Ty,) forn=1,2,.. (3)

where P is the metric projection from H onto C' and T is a nonexpansive
nonself-mapping from C into H. They proved that {z,} and {y,} converge
strongly to fixed points of 7' when F(T') is nonempty. Furthermore Matsushita
and Kuroiwa [10] studied the new iteration processes which are mixed iteration
processes of (1)-(3) as follows:

n

1 ,
Tntl = 277 (apz + (1 — an)(PTY z,) forn=0,1,2,.., (4)
n
J=0

1 " .
_ — J =
Ynt1 = jgzo Plapy+ (1 —an)(TP)y,) forn=0,1,2,.., (5)
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where xg, x, 9o,y are elements of C, P is the metric projection from H onto
C and T is a nonexpansive nonself-mapping from C' into H. By using the
nowhere normal outward condition given earliest in [7], under the assumption
that F'(T) is nonempty, they proved not only that the sequence {x,,} generated
by (4) converges strongly to an element of F'(7T") but also that the sequence
{yn} generated by (5) converges strongly to an element of F(T).

The purpose of this paper is to study the strong convergence of the iteration
processes (4) and (5) in the framework of a Banach space. Let E be a uniformly
convex Banach space whose norm is Gateaux differentiable and which has a
weakly continuous duality mapping; for example, every [P (1 < p < o0) space
has a weakly continuous duality map with gauge function o(t) = tP~1. Let C
be a nonempty closed convex subset of £, P be a sunny and nonexpansive
retraction of E onto C, T : C' — E be a nonexpansive nonself-mapping such
that F'(T") is nonempty, and {a,} be a real sequence such that 0 < a,, < 1.
Firstly by using the property of the sunny and nonexpansive retraction, we
consider the sequence {z,} generated by (4) and prove that {z,} converges
strongly to an element of F(T). Secondly by using the same property, we
consider the sequence {y,} generated by (5) and prove that {y,} converges
strongly to an element of F(T).

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, all vector spaces are real and we denote by N and
N4, the set of all nonnegative integers and the set of all positive integers,
respectively. Let E be a real Banach space and E* be the topological dual of
E. By 2F" we will denote the power set of E*. The value of z* € E* at x € E
will be denoted by (x,z*). Let C' be a nonempty closed convex subset of F,
and T : C — E be a nonself-mapping. We denote the set of all fixed points of
T by F(T). T is said to be nonexpansive if

[Tz — Ty|| < [|lz —y| forallz,ye C.

We denote by B,, the closed ball in E with center 0 and radius r. FE is
said to be uniformly convex if for each € > 0, there exists § > 0 such that
|(z+y)/2|| <1 -6 for each z,y € By with ||z —y|| > e.

For simplicity, the notation — denotes weak convergence and the notation

— denotes strong convergence. By a gauge function we mean a continuous
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strictly increasing function ¢ defined on Ry := [0, c0) such that ¢(0) = 0 and
lim, o ¢(r) = co. The mapping J, : £ — 2F" defined by

Jo(z) = {a" € B : (z,27) = [[z[ll2"], [|2" = @([[«])} for all z € E

is called the duality mapping with gauge function ¢. In particular, the duality
mapping with gauge function ¢(t) = ¢, denoted by J, is referred to as the
normalized duality mapping. Browder [3] initiated the study of certain classes
of nonlinear operators by means of the duality mapping J,. Set for every ¢t > 0,

O(t) = /Otgo(r)dr.

Then it is known [8, p. 1350] that J,(x) is the subdifferential of the convex
functional ®(|| - ||) at . Thus it is easy to see that the normalized duality

mapping J(x) can also be defined as the subdifferential of the convex functional
O(|lz]) = llz]|*/2, that s,

J(@) = 00(||z])) = {f € E" : &([lyll) — @([l«])
>(y—uw, f),Yye E} forallz e E.

We will use the following properties of duality mappings, respectively.

Proposition 1 [23, p. 193-194].
(i) J = I (i.e., the identity mapping of F) if and only if E is a Hilbert
space.
(ii) J is surjective if and only if E is reflexive.
(ili) Jo(Az) = sign(A)(@(|A| - [|lz]])/||z|])J(x) for each 2 € E\ {0} and each
real number \. In particular, J(—x) = —J(z) for all z € E.

Recall that a Banach space F is said to satisfy Opial’s condition [12] if for
any sequence {z,} in E the condition that {x,} converges weakly to x € E
implies that

liminf ||z, — z| < liminf ||z, — y||

n—00 n—00
for all y € FE, y # x. It is known [5] that any separable Banach space can
be equivalently renormed so that it satisfies Opial’s condition. Recall also
that E is said to have a weakly continuous duality mapping if there exists
a gauge function ¢ such that the duality mapping J, is single-valued and
continuous from the weak topology to the weak™ topology. A space with a
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weakly continuous duality mapping is easily seen to satisfy Opial’s condition;
see [3] for more details. Every P (1 < p < o0) space has a weakly continuous
duality mapping with gauge function p(t) = tP~1.

The following proposition plays an important role in our proofs; see [18] for

more details.

Proposition 2 [17, Proposition 1]. Let C be a nonempty closed convex subset
of a uniformly convex Banach space E. Then for each v > 0, R > r and € > 0,
there exist n > 0 and M € N such that for each 5 € NV and for each mapping
T from C into itself satisfying sup{||7™z| : m € N,z € CN B,} < R and
T2 — T7y|| < (1+n)||z — y|| for each x,y € C, there holds

1 & 1 .
T'x — T/ Tx)|| <
TP LTl
foralln > jM and x € C'N B,.

Let p be a continuous linear functional on [*° and let (ag,a1,---) € [*°. We
write up(ay,) instead of p((ap,a1,---)). We call p a Banach limit [1] when
satisfies [|u]| = pn(1l) = 1 and pp(ant1) = pn(ay) for each (ag,aq,---) € 1.
For a Banach limit u, we know that

liminf a,, < pp(a,) < limsupa, for all (ag,aq,---) € 1. (6)

n—oo n—00

Proposition 3 [17, Proposition 2|. Let C' be a nonempty closed convex subset
of a uniformly convex Banach space E. Let {x,} be a bounded sequence of E
and p be a Banach limit. Let g be a real valued function on C defined by

9(y) = pn(l|lzn —yl|*) for each y € C.

Then g is continuous, convex and g satisfies limy| oo g9(y) = oo. Moreover,
for each R > 0 and € > 0, there exists § > 0 such that

9(y) +9(2)
: )

(y+z
A

for all y,z € C'N Br with ||y — z|| > .

) <
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The following lemma is similar to a result in Hilbert spaces which was proved
by Matsushita and Kuroiwa; see [10, Lemma 1]. The method of their proof
can be found in Shimizu and Takahashi [14].

Lemma 1. Let E be a uniformly convex Banach space which satisfies Opial’s
condition, C' be a nonempty closed convex subset of £ and S : C — C be
a nonexpansive mapping with F(S) # 0. Let {z,,} be a sequence in C such
that {zp+1 — n%rl > =0 Six,} converges strongly to 0, and let {z,,} be a
subsequence of {z,} such that {x,,} converges weakly to z € C. Then z is a
fixed point of S.

Proof. We claim that {S'z} converges strongly to z. Indeed if this is not
true, then there exist a real number € > 0 and a subsequence {S%z} of {S'z}
such that ||S%z — z|| > ¢ for each k. Since {z,,} converges weakly to x, for
each y € C with y # x we have

liminf ||, — z| < liminf |z, —y|.
1—00 1—00

Let » = liminf; ,o ||@n, — z||. Then there exists a subsequence {x,,} of
{zp,} such that r = lim; . ||zm, — x||. Now let 1 be a Banach limit and set
R = sup{||Slz|| : 1 € N}. By Proposition 3, there exists 4 > 0 such that

u—+v
2

pilllzm, — I?) < %[M(mei —ull?) + pillem, =0l =6 (7)

for all u,v € CNBg with [[u—v|| > e. Choose § > 0 such that § < V/r2 4+ §—r.
Without loss of generality, we may assume that ||z, — 2| < r+ /6 for every
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7. On the other hand we have

m;—1

|2, = S'zll < ll@m, — a7 Y Fml
§=0
mi_l mi—l

. 1 .
+||miz Z S Tm—1 — Sl(a Z ST T, —1)||
J=0 3=0
m;—1

IS (L Y S, 1) - S'al
7=0
m;—1
<2, — = D Sl + [T, — 2
7=0

mi—l mi—l

. 1 ,
1 l
i 2o e =S 3 Sl
j=0 j=0
In particular,
m;—1 1 m;—1
Hm% Z ST T, -1 — Sl(ﬁ Z ST X, 1) ||
j=0 v =0

m; mg

. 1 . 1

l .

<l 20 S emit = 8= 30 ST el et = ™|

=1 i=1
mi;—1

i 1 ,
HIS G 2 S i) = S(— Y Fam)|
j=1 ' j=0

<l DS emem1 = S (Y Fem-) |+ 21 — 5™z
L= i i

Since {@m,—1} and {S™ix,,,_1} are bounded, there exists a positive integer 7;
such that
1 0

Emei—l - Smixmi—lH < 6
i

for each @ > 4;. Since {zp,—1} is bounded, by Proposition 2 there exists a
positive integer Ly such that for every [ > Lg, there exists a positive integer

1; such that for each i > 4;

1 o 1 o )
HE Zsjl’mi—1 - SI(E ZSJHTW—I)” <%
v =1 vi=1
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Actually let us notice that one may assume that {m;} is strictly increasing to
+o00 and that m; > i. In Proposition 2, put r =: sup{||zm,—1|| : € N}, R =:
sup{||S™z|| : m € N,x € CNB,} and Ly = M. For each | > Ly, take i; = [ Ly.

Since limy, o0 ||Zn+1 — %H >0 Siz,|| = 0, there exists a positive integer
ig such that for all i > 4

1 5
mez - e § ijmi—ln < 6
(2 JZO

Hence for any [ > Ly and i > max{iy, ig, 1}, we have

0 o 4 )
Choose I, > Lg. Then for i > max{i,, io, 1}, we have

1
2
which implies that

1<(7“+<5)2+(r+6/6)2)—3 < (r46)2=b<r?

(I, =S™ &[>+ || 2m, —2 )~ < 5

1 R

limsup[5 (|em, — S™a|® + [|zm, — z[?) -] < 72
i—oo 2

Since S'*2 and z lie in C' N By such that ||S*2 — z|| > ¢, from (6) and (7) we

obtain

_ Slkx+z”2 _ Slkm+x‘|2)
2 2

< pi([[zm,
< 3luillem, — S"al?) + pi(ll@m, — z]*)] — o

= piilz(|zm, — S™a|® + l|l2m, — 2[?) =]

< limsup|z(|lzm, — S%||* + |am, — 2[*) - o] <r?.

lim inf ||z,

1—00

71— 00
This shows that
Sl
liminf ||z, — ﬂ” <r = liminf ||, — |-

I .
However we see that w # x from ||S%x — x|| > . Thus we obtain

Shey +

2

which yields a contradiction. Thus {S'z} converges strongly to x. Conse-

liminf ||z, — | < liminf ||, —
71— 00 1—00

quently for each € > 0, there exists a positive integer [y such that

I1S'z — 2| < % for all [ > lo.
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Therefore for all [ > [y + 1 we have
1Sz — 2| < (182 — | + || — 2| < <.
Since € is arbitrary, we derive Sx = x and the proof is complete. [J

Let U = {z € E : ||z|| = 1} be the unit sphere of E. The norm of F is said
to be Gateaux differentiable if the limit

ety — ]
t—0 t

exists for each x,y € U. In this case E is said to be smooth. It is known [4]
that if F is smooth then the normalized duality mapping J is single-valued
and continuous from the strong topology to the weak* topology.

Lemma 2. Let F be a smooth Banach space. Then there holds
2 +yl* < [l2]* + 2(y, J(z + y)) for all 2,y € E.

Proof. Since FE is smooth, J is single-valued. Note that J can be equivalently
defined as the subdifferential of the functional ®(||z||) = |z||?/2. Therefore
the conclusion follows immediately from the definition of the subdifferential
of ®(||z|). O

Let C be a convex subset of E/, K be a nonempty subset of C' and let P be a
retraction from C onto K, i.e., Px = x for each x € K. We say that P is sunny
if P(Px+t(x — Px)) = Px for each x € C and t > 0 with Pz +t(z — Pz) € C.
If there is a sunny and nonexpansive retraction from C onto K, K is said
to be a sunny and nonexpansive retract of C. For a sunny and nonexpansive

retraction, there exists the following useful characterization:

Lemma 3 [17, p. 59, Proposition 4]. Let C' be a convex subset of a smooth
Banach space F, K be a nonempty subset of C and let P be a retraction from
C onto K. Then P is sunny and nonexpansive if and only if for all z € C and
yeK,

(x — Pz, J(y — Px)) <0.

Hence there is at most one sunny and nonexpansive retraction from C' onto

K.
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More properties regarding sunny and nonexpansive retractions can be found

in [6, 13).

Remark 1. If F is a real Hilbert space H and C'is a nonempty closed convex
subset of H, then every nearest point projection of H onto C is a sunny and
nonexpansive retraction of H onto C where mapping Po : H — C' is defined
as follows: for each x € H, Pox is the unique element of C' that satisfies
|z — Pox|| = d(z,C) := infycc || — y||. Indeed it is easy to see that Pc is a
retraction of H onto C. Moreover for all x € H and y € C, we have

(x — Pox, Pox —y) > 0.

According to Lemma 3, we know that Po is a sunny and nonexpansive retrac-
tion of H onto C.

Lemma 4 (see [2]). Let {\,} be a sequence in [0, 1) such that lim,, . Ap, = 0.
Then

Y =00 & [[a-M)=0.
n=1 n=1

Lemma 5 [11, Lemma 2.2]. Let {)\,} be a sequence in [0,1) that satisfies
lim, oo Ap = 0 and Y 7 A\, = o0. Let {a,} be a sequence of nonnegative
real numbers that satisfies any one of the following conditions:

(a) For all € > 0, there exists an integer M > 1 such that for all n > M,

ant1 < (1= Ap)apn, + Ane.

(b) ant1 < (1=Ap)an+0on, n > 0 where o, > 0 satisfies lim,,—,00 07, /Ay, = 0.
(¢) ant1 < (1 = N\p)an + A\pe,, where limsup,,_, . ¢n, < 0.

Then lim,, ., a, = 0.
Remark 2. The proof of Lemma 5 can be found in [22].

Lemma 6. Let {o,} be a sequence of nonnegative real numbers with

limsup o, < 00
n—oo
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and {f,} be a sequence of real numbers with limsup,, ,., 5, < 0. Then
lim sup a,, Gy, < 0.
n—oo
Proof. We prove the conclusion in two cases.
Case 1: SUp;>, Bj = 0 for all n > 0. For any fixed n > 0, observe that

sup ;3 < sup(ey - sup ;) = (sup o) (sup f3;).
>n >n ji>n >n ji>n

Thus taking the limit as n — oo, we obtain the conclusion.
Case 2: B = sup,>p, Bn < 0 for some mo > 0. It is easy to see that
anfn < anB <0 for all n > mg. This implies the conclusion. [J

Throughout the rest of the paper, we shall use the notation: for any se-
quence {z,} in E, we denote by wy(z,) the weak w-limit set of {z,}; that

is,
ww(Ty) :={z € E : z,; — x for some subsequence {z,,} of {z,}}.

3. STRONG CONVERGENCE THEOREMS

Now we can state and prove the main results in this paper. The method
employed in [10, 19, 21] is extended to develop the new technique for proving
our results.

Theorem 1. Let E be a uniformly convex Banach space whose norm is
Gateaux differentiable and which has a weakly continuous duality mapping
J, with gauge function . Let C' be a nonempty closed convex subset of E,
P be a sunny and nonexpansive retraction of £ onto C, T : C — FE be a
nonexpansive nonself-mapping with F(T') # 0, and {«,} be a sequence in
[0,1] such that lim, oo, = 0 and Y 2 ) oy, = 00. Let {z,,} be the sequence
generated by
xg, x € C,

Tyl = %—H (anz + (1 — an)(PiT) 2,,) for n =0,1,2, ....
j=0
Assume that there hold the following conditions:
(i) Twy(zy) C C;



230 LU-CHUAN CENG, ADRIAN PETRUSEL AND JEN-CHIH YAO

(ii) there exists a sunny and nonexpansive retraction P, of C' onto F(T')
such that

sup{ ||z, — Paz||/¢(||xrn — Pox||) : p # Pax} < 0.
Then {x,} converges strongly to Pox € F(T).

Proof. We divide the proof into four steps.
Step 1. We claim that the sequence{z, } is bounded. Indeed let z € F(T)
and D = max{||z — z||, |[zo — z||}. Then we have

lz1 = 2] = laoz + (1 — ag)zo — 2| < aollz — 2[[ + (1 — ap) |z — 2| < D.

If ||xy, — z|| < D for some n € N, then we can show that ||x,+1 — z|| < D
similarly. Therefore, by induction we obtain ||z, — z|| < D for all n € N and
hence {z,} is bounded.

Step 2. We claim that ||z,4+1 — T%H Z?ZO(PlT)jan — 0 asn — oo. Indeed
observe that

n
|21 = 57 D (PT) 24|

n = . 1 & .
= [l D_(ame + (1= an)(PITPn) = =0 3 (AT |
j=0 =0
n
< apllz — %4.1 Z(PIT)jwnH~
j=0

Since lim,, oo @, = 0, the sequence {zp41 — %H Z?:O(PlT)j Tn} converges
strongly to 0 as claimed.

Step 3. We claim that limsup,, . (x — Pox, J (zp41 — Pox)) < 0. Indeed let
{zn,; 11} be a subsequence of {x,} such that

limsup(z — Pz, J(xny1 — Pox)) = lim (z — Pox, J(2n;41 — Pox)).

n—oo Jj—00

Since FE is uniformly convex, F is reflexive. Hence without loss of generality,
we may further assume that {w, 41} converges weakly to some u € C due to
the weak closedness of C. From Lemma 1 and Step 2, we obtain u € F(P,T).
Note that Twy(z,) € C. This implies that Tu = PyTu = u and hence
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u € F(T). On the other hand by using gauge function ¢, we define for every
n>0
Mo = { Ale a1 @n 7 Pov,
0, if z, = Pyx.
From sup{|z, — Px|/¢(|lxn — Pex|]) : x, # Pex} < o0, we obtain
lim sup,,_, . 7, < 00. Also from Proposition 1 (iii), we obtain

J(xn — Pox) = nudo(x, — Pox) for allm > 0.

Since J, is continuous from the weak topology to the weak® topology, we

conclude that

lim (x — Pz, Jo(wp, 41 — Pox)) = (v — Pax, Jyo(u — Pox)).

J—00

It is clear that Proposition 1 (iii) yields

e(lu—Poz|) _ :
Jou— Py = teera Ju— Poa) ifu P,
0 if u= Py,
which implies that

elu=Pozl) 1o poo Ty — P if P
(& — Py, Jo(u— Pyz)) = le—Poall (&~ P22, J(u = Por)), if w # Pox,
0, if u= Pz.

Since P, is the sunny and nonexpansive retraction of C onto F(T'), from

Lemma 3 we obtain

lim (z — Pox, Jo(wn, 11 — Pow)) = (x — Paw, Jp(u — Pax)) <0,

J—00

and hence we infer by Lemma 6 that

limsup(z — Pz, J(Tni1 — Pox)) = lim (z — Pox, J(Tn;41 — Pox))

Nn—00 Jj—00
= Jlggo Nnj+1(T — Por, Jp(wn; 11 — Pox)) < 0.

Step 4. We claim that x,, — Pyx. Indeed by Step 3, we have that for any
€ > 0, there exists m € N such that for all n > m

(x — Py, J(xp 1 — Pox)) <

| ™

Also observe that

Tpt1 — Pox + ap(Pox — x) = n%rl Z?:o(anx + (1= ap) (T )
—(anz + (1 — ap)Pax).
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This together with Lemma 2, implies that for all n > m,

n

1 .
i = Poall? < | —— Z}anfv + (1 - an)(PTYx,)
-

— (apz + (1 — an)ng)H2
+ 2an(x — Pox, J(xp 41 — Pox))

<{@ _an)LinlT)an — Pox |}2
n+1

=0
+ 20 (x — Pox, J(xpy1 — Pox))
< (1 = an)?||zn — Poz|* 4 2an(z — Pox, J (241 — Pox))

< (1—ap)|len — PQJ?”Q + oeE.

Therefore by Lemma 5, we conclude that x,, — Px. The proof is now com-
plete. O

Theorem 2. Let E be a uniformly convex Banach space whose norm is
Gateaux differentiable and which has a weakly continuous duality mapping
J, with gauge function ¢. Let C' be a nonempty closed convex subset of E,
P be a sunny and nonexpansive retraction of £ onto C, T': C' — FE be a
nonexpansive nonself-mapping with F(T) # (), and {«,} be a sequence in
[0,1] such that lim, o, = 0 and > 7 j o, = 0. Let {y,} be the sequence
generated by

Yo, Y € 07
Ynil = n%rl Z?:o Pi(any+ (1 — an) (TP ) y,) forn=0,1,2, ....

Assume that there hold the following conditions:

(i) Tww(yn) c C;

(ii) there exists a sunny and nonexpansive retraction P of C' onto F(T')
such that

sup{||yn — Poyll/e(|lyn — Poyl|) : yn # Poy} < .

Then {y,} converges strongly to Poy € F(T).

Proof. We divide the proof into four steps.
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Step 1. We claim that the sequence {y,} is bounded. Indeed let z € F(T)
and D = max{|ly — z||, |lyo — z||}. Then we have

ly1 — 2l = [[Pi{eoy + (1 — a0)yo) — 2]l < [levoy + (1 — a0)yo — 2|
< aolly — 2| + (1 — ) lyo — 2] < D.

If ||yn, — 2|| < D for some n € N, then we can show that ||y,+1 — 2|| < D
similarly. Therefore by induction we obtain ||y, — z|| < D for all n € N and
hence {y,} is bounded.

Step 2. We claim that ||yn4+1 — n%rl E?ZO(PlT)jynH — 0 as n — oo. Indeed

observe that

n
st — 5 S (AT Py
j=0
= Ik i Pilany + (1= ) (TPYy) — by o (PT Vg
T S0 Py + (1= ) (TP ) — (PLTY g
)
)

IN

J
= %H Z?:O [P1(any + (1 = an)(TP1) yn) — Pr(TP1) ynl|
n

< %4-1 Z Hany + (1 - an)(Tpl jyn - (Tpl)jynH
=0

n
<anmig > Iy = (TP yall.
=0

Since limy, o o, = 0, it follows that {y,4+1 — n%rl Z?ZO(PlT Yyn} converges
strongly to 0.
Step 3. We claim that limsup,, .. (y — Poy, J(yn+1 — Poy)) < 0. Indeed let
{Yn;4+1} be a subsequence of {y,} such that
limsup(y — Py, J(Yn+1 — Poy)) = jli_{go(y = Poy, I (Yn;+1 — P2y)).

n—oo

Since FE is uniformly convex, F is reflexive. Hence without loss of generality,
we may further assume that {y,,1} converges weakly to some u € C'. From
Lemma 1 and Step 2, we obtain u € F(P,T). Note that Twy(y,) C C. This
implies that Tu = PyTu = u and hence u € F(T). On the other hand by
using gauge function ¢, we define for every n > 0

lyn—Poyll -
= 4wl 1 Y0 7 P2y,
0, if ¥, = Poy.
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From sup{|lyn — Pyll/¢(llyn — Poyl]) : yn # FPoy} < oo, we obtain
limsup,, ., 7 < 00. Also from Proposition 1 (iii), we obtain

J(Yn — Poy) = nJyp(yn — Poy) for all n > 0.

Since J, is continuous from the weak topology to the weak® topology, we
conclude that

jling@ — Py, Jy(Yn;+1 — Poy)) = (y — Py, Jy(u — Poy)).
It is clear that Proposition 1 (iii) yields

P(llu—Poyl) _ :
Jo(u — Poy) = Tu—roy 7 (U = Poy), if w7 Py,
0’ lf u = ng

which implies that

M(y_}byw](u_PQy»a 1fu7éP2y7

— Py, J(u— Poy)) = lu=Py]
(y — Pay, Jp(u — Pay)) { 0 if u= Pyy.

Since P, is the sunny and nonexpansive retraction of C' onto F(T'), from

Lemma 3, we obtain
jlijgo@ — Poy, Jp(Yn;+1 — Poy)) = (y — Py, Jp(u — Poy)) <0
and hence we infer by Lemma 6 that

limsup(y — P2y, J (Ynt+1 — P2y)) = jliggo@ — Py, J(yn;+1 — Pay))

n—oo

= jﬁ_{go Mn+18Y — Poy, Jo(Yn;+1 — Pay)) < 0.

Step 4. We claim that y, — Poy. Indeed by Step 3 we have that for any
€ > 0, there exists m € N such that for all n > m

(Y — Py, J(ynt1 — Poy)) <

N ™

Also observe that

Yn+1 — PQQ + an(P2y - y) = %4-1 Z?:o Pl(any + (1 - an)(TPI)jyn)
_Pl(any + (1 - an)PQy)‘
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This together with Lemma 2 implies that for all n > m,

n
||yn+1 - }DQZI/H2 < H%H Z Pl(any + (1 - an)(Tpl)jyn)

=0
—Pi(any + (1 — an) Poy)||? + 200 (y — Poy, J(yni1 — Poy))
n

< {725 D) I1Pi(eny + (1 — an) (TP yn)
=0

—Pi(any + (1 — an) Poy)|}? + 200y — Poy, J(yn+1 — Poy))

<{(1 - )iy Z (TP yn — Payll}?
=0

+20,(y — Poy, J (Yn+1 — Poy))
< (1= an)?lyn — Poy|* + 200 (y — Poy, J(yns1 — Poy))
< (1 - O‘n)”yn - P23/”2 + ane.

Therefore by Lemma 5, we obtain y, — Pey and the proof is complete. [
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